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ABSTRACT

This paper studies the scheduling of lots (jobs) of different product types (job families) on parallel machines,
where not all machines are able (i.e. are qualified) to process all job families (non-identical machines).
This is known in the literature as scheduling with machine eligibility restrictions. A special time constraint,
associated with each job family, should be satisfied for a machine to remain qualified for processing a
job family. This constraint imposes that there must be at most a given time interval (threshold) between
processing two jobs of the same job family, on a qualified machine. A machine is considered to be qualified
to process a certain job if and only if, at a given time instant t, the time threshold corresponding to the job
family of the job is not violated. This problem comes from semiconductor manufacturing, when Advanced
Process Control constraints are considered in scheduling problems, as for example in the photolithography
area. To solve this problem, a Time Indexed Mixed Integer Linear Programming (MILP) model was
proposed and solved in a previous paper. A new adapted model will be provided in this paper. A bicriteria
objective function, that includes scheduling and qualification criteria, is considered. Dedicated heuristics
are proposed. Numerical experiments are conducted to compare heuristic and exact solutions.

1 INTRODUCTION

Semiconductor manufacturing is getting more and more competitive and industries are looking for strategies
to improve productivity, decrease cost and enhance quality. Advanced Scheduling and Advanced Process
Control (APC) systems support these objectives. Scheduling means assigning jobs to machines and
sequencing jobs on machines to minimize some given objectives under a set of constraints. Hence,
optimized scheduling helps to increase productivity. Process control is widely used to enhance the quality
of products by compensating for process drifts and adjusting machine parameters. The collection of data at
both machine and process levels helps in the detection of current process drifts and/or machine degradation,
as well as in the prediction of possible faults. Scheduling and control could be considered as mutually
related issues in semiconductor manufacturing. For example, to control, we may need information on
scheduling, and to schedule in an effective way, we need information on which machines each operation
can be processed.

Scheduling of lots has a direct impact on equipment utilization, cycle times, delivery times, etc. For
example, effective scheduling decisions would send tasks to the right machines so as to avoid idle times and
improve machine utilization. Moreover, semiconductor fabrication plants have characteristics that make
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scheduling a very complex issue (see (Kumar 1993) or (Moench, Fowler, Dauzère-Pérès, Mason, and Rose
2011) for instance). Advanced Process Control (APC) aims at controlling processes and equipment to
reduce variability, to increase equipment efficiency, to collect and classify information on equipment, etc.
APC is usually associated to the combination of Statistical Process Control (SPC), Fault Detection and
Classification (FDC), Run to Run control (R2R), and more recently Virtual Metrology (VM).

In semiconductor manufacturing facilities (fabs), a wafer is the chip holder at the end of the manufacturing
process. Lots contain 25 wafers or less and are processed in various work areas with different characteristics.
In this paper, lots will be called jobs, and lots of the same product type will be called job family. Given
the re-entrant nature of manufacturing processes, scheduling is often locally optimized in each work area.
(Kubiak, Lou, and Wang 1996) study the problem of scheduling a reentrant job shop with different job
families. They show that the shortest processing time (SPT) job order is optimal for the single machine
reentrant shop under certain assumptions. An example is scheduling in the photolithography area that can
be seen as a scheduling problem on parallel machines with job family setups (also called s-batching). A
setup is required before starting the first job of a family, but no setup is necessary between two jobs of the
same family. For example, the change of reticles in the photolithography workshop necessitates a family
dependent setup time. Although research has been performed on this problem, very little has been done to
integrate APC constraints. In R2R control for instance, a R2R controller uses data from past process runs
to adjust settings for the next run as presented for example in (Musacchio, Rangan, Spanos, and Poolla
1997). Note that a R2R controller is associated to one machine and one job family. A machine can usually
process a limited number of job families, that are said to be qualified on the machine. Machines are thus
non-identical. In addition, in order to keep its parameters updated and valid, a R2R control loop should
regularly get data. This imposes an additional constraint on scheduling, since jobs of the same family
have to be scheduled within a maximum time interval on each machine on which the family is qualified.
The value of the time threshold depends on several criteria such as the process type (critical or not), the
equipment type, the stability of the control loop, etc. If this time constraint is not satisfied, a qualification
run is required to be able to process again the job family on the machine. We assume in our problem
that this qualification run cannot be performed within the scheduling horizon. Figure 1 illustrates this time
constraint. In the first two cases, a job of a given family is started during the time interval corresponding
to its family, and hence the machine will still be qualified to process jobs of the same family for another
time interval. The third case represents the situation where a machine is no longer qualified to process
such a job family, and this is because no job is scheduled during the considered interval.

Figure 1: Time constraint.

The rest of this paper is organized as follows. In Section 2, we provide a literature review. Section 3
proposes a new MILP based on the one proposed in (Obeid, Dauzère-Pérès, Yugma, and Ferreira 2010).
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Section 4 discusses the complexity of the problem, which is shown to be NP-hard. In Section 5, the
heuristics we developed to solve the problem for large instances are presented. Computational experiments
conducted on randomly generated data sets are shown and discussed in Section 6. Section 7 concludes and
provides some perspectives for further research.

2 LITERATURE REVIEW

There are very few articles which deal with scheduling decisions while integrating APC constraints. The
impact of APC on scheduling performances is analyzed by (Li and Qiao 2008). They also study the
scheduling of job families on parallel machines. However, they consider that machines are identical, that
qualification runs can be scheduled and that the threshold between two jobs of the same family is given in
number of jobs. We consider non-identical parallel machines and assume that qualification runs cannot be
scheduled and will be performed after the scheduling horizon. The problem becomes more complicated,
since the assignment of jobs to machines is critical to avoid qualification runs. Finally, we consider a
threshold expressed in time instead of number of jobs. Both threshold types are actually relevant and
are related. Another example of integration of APC constraints in scheduling decisions can be found in
(Detienne, Dauzère-Pérès, and Yugma 2010), where measurement operations are optimally scheduled to
minimize the risk of losing products in jobs. Hence, we address a new scheduling problem in which there
is a time constraint on jobs of the same family, i.e. the time interval between two consecutive jobs of the
same family should be smaller than a given threshold. As mentioned above, this constraint is inspired from
the needs of APC systems, and in particular Run-To-Run (R2R) control loops for a given product type on
a machine, that require to regularly collect data for product types on machines. In what follows, we briefly
review some existing topics which are related to our problem.

2.1 Dynamic Deadlines / Due Dates

A deadline d is a point in time by which the task (job) must absolutely complete. The deadline can be
hard, soft, or firm. Scheduling with dynamic deadlines exists in the literature under various topics and
rarely in the domain of semiconductor manufacturing. Topics concerning mobile communications are one
of the fields where studies about dynamic deadlines can be found.

(Somasundara, Ramamoorthy, and Srivastava 2007) study the problem of Mobile Element Scheduling
(MES). The mobile element visits the nodes of a wireless sensor network to collect their data before their
buffers are full. In addition, as soon as a node is visited, its deadline (time before which it should be
revisited to avoid buffer overflow) is updated. Thus, deadlines are dynamically updated as the mobile
element performs the job of data gathering. The idea is to find a schedule for a controlled mobile element
so that there is no data loss due to buffer overflow. Other examples of dynamic deadlines problems in the
same domain include mobile element for data collection, battery charging, and calibration (Kallapur and
Chiplunkar 2010). (Caccamo, Lipari, and Buttazzo 1999) address the problem of scheduling hybrid tasks in
a shared resource environment (hard periodic and soft aperiodic) with dynamic deadlines. They develop an
algorithm which finds the optimal solution for a schedule of hybrid tasks on shared resources. The problem
basically is a problem of task scheduling in computer operating systems. The problem of lot release control
and scheduling in wafer fabs producing multiple products with due dates, was tackled in (Kim, Kim, Lim,
and Jun 1998). The authors suggest several new rules to minimize the mean tardiness. They show that
new dispatching rules work better in terms of tardiness of orders other than existing rules such as the EDD
(earliest due date) rule and other well-known dispatching rules for multi-machine scheduling.

By analogy, the idea of dynamic deadlines exists in our problem under the form of job family
thresholds, where each family threshold creates a deadline at the machine qualification level. This threshold
is dynamically updated with a fixed value once a job of a given family is scheduled on a qualified machine.

2001



Obeid, Dauzère-Pérès, and Yugma

2.2 Parallel Machines with Objectives

Parallel machine scheduling problems are frequent in semiconductor manufacturing. A wafer fab can be
modeled as a complex job shop (Mason, Fowler, and Carlyle 2002), which contains unrelated parallel
machines with sequence-dependent setup times and dedications, parallel batch machines, re-entrant flows,
and ready times of the jobs (Moench, Fowler, Dauzère-Pérès, Mason, and Rose 2011). Classical scheduling
objective functions include the minimization of makespan (Cmax), total weighted tardiness (∑w jTj), etc
(Pinedo 2009). The makespan is schedule dependent when there are m machines in parallel. In such
problems, scheduling with LPT (longest processing time first) is usually used as a scheduling rule, but it
does not guarantee an optimal solution. Another classical scheduling objective function is the minimization
of the total completion time (∑C j). Rules such as SPT (shortest processing time first) are used to tackle
such problems. When the total weighted completion time (∑w jC j) is to be minimized on parallel machines,
the problem is NP-Hard.

2.3 Setup Times in Scheduling

A setup is a non-productive period of time which usually models operations to be carried out on machines
after processing a job to leave them ready for processing the next job in the sequence. An extended survey
on scheduling problems with setup times or costs was done in (Allahverdi, Ng, Cheng, and Kovalyov 2008).
The authors provide an extensive review of the scheduling literature on models with setups covering more
than 300 papers. They classify, throughout their paper, scheduling problems into those with batching and
non-batching considerations, and with sequence independent and sequence dependent setup times. They
also categorize the literature according to shop environments, including single machine, parallel machines,
flow shop, no-wait flow shop, flexible flow shop, job shop, open shop, and others.

In addition, scheduling jobs on parallel machines with sequence-dependent family setup times is also
studied in (Eom, Shin, Kwun, Shim, and Kim 2002). The authors propose a three-phase heuristic to
minimize the total weighted tardiness of a set of tasks with known processing times, due dates, weights and
family types for parallel machines. However, they consider the case of identical machines in a liquid crystal
display (LCD) manufacturing process where the setup time is longer than the processing time. Moreover,
(Schaller, Gupta, and Vakharia 2000) study the problem of scheduling a flowline manufacturing cell with
sequence dependent family setup times. The objective is to minimize the makespan. The authors show that
the problem is NP-hard in the strong sense and they develop several heuristic algorithms. In this paper,
we consider non-identical parallel machines and minimize a bi-criteria objective function where the sum
of completion times is one criterion.

3 MATHEMATICAL MODELING

3.1 Definition

Our objective is to schedule, on an horizon discretized in T periods, a set N of jobs of different families
on a set M of parallel machines. The set of job families is denoted F , and f (i) is the family of job i. We
assume that the processing times p f of all jobs in family f are equal. Machines are not qualified to process
all jobs families. The qualification of a machine may be lost at a certain point in time due to a change in the
level of confidence on the machine. A setup time s f on a machine is necessary to change from one job of a
family f to another job of family f ′, where f 6= f ′. Finally, Run-To-Run control constraints are considered
through a parameter γ f , which corresponds to the maximum time interval (called time threshold in the
sequel) between the processing of two jobs of family f on a qualified machine. Usually, if this constraint
is not satisfied, a qualification run will be required to qualify again the machine for f . In the sequel, we
consider that the machine will not be available to process any job of family f if the qualification cannot
be maintained. The objective is to optimize a scheduling criterion, the sum of the completion times, while
minimizing the number of disqualifications of families on machines, i.e. a bicriteria scheduling problem.
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We first recall in Section 3.2 the notations used in the two time indexed mathematical models introduced
in (Obeid, Dauzère-Pérès, Yugma, and Ferreira 2010). A new modified family based model is then presented
in Section 3.3. In this new model, the effect of the time horizon on the total number of qualification losses
is eliminated.

3.2 Notations

The parameters are:

T : Number of periods in the time horizon,
N: Set of jobs,
M: Set of machines,
F : Set of job families,
n f : Number of jobs in family f ,
M( f ): Set of qualified machines to process jobs in family f (M( f )⊂M),
p f : Processing time of jobs in family f ,
s f : Setup time of jobs in family f ,
γ f : Time threshold for job family f .

The decisions variables are:

xm
f ,t = 1 if a job of family f starts at period t on machine m, and 0 otherwise,

C f : Sum of the completion times of jobs in f ,
ym

f ,t = 1 if the time threshold is not satisfied for family f on machine m at period t, i.e. a
qualification run is required, and 0 otherwise,
Y m

f = 1 if the time threshold is not satisfied for family f on machine m at the end of horizon,
and 0 otherwise.

It is important to recall that, if the time threshold γ f is not satisfied for job family f on machine m
from a time instant t, we assume that the qualification run required on machine m cannot be performed
within the time horizon. In this case, we suppose that no job in family f can be processed on m after t.
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3.3 A New Mathematical Programming Model
The new model is given below. Although only Constraint (6) is new compared to the model introduced in
(Obeid, Dauzère-Pérès, Yugma, and Ferreira 2010), all other constraints are recalled.

∑
m∈M( f )

T−p f +1

∑
t=1

xm
f ,t = n f ∀ f ∈ F (1)

∑
m∈M( f )

T−p f +1

∑
t=1

t.xm
f ,t +n f (p f −1) ≤C f ∀ f ∈ F (2)

t

∑
τ=t−p f +1

xm
f ,τ ≤ 1 ∀t = 1 . . .T,∀ f ∈ F,∀m ∈M( f ) (3)

t

∑
τ=t−p f−s f ′+1

xm
f ,τ +n f .xm

f ′,t ≤ n f ∀t = 1 . . .T,∀( f , f ′) ∈ F×F (4)

s.t. f 6= f ′,∀m ∈M( f )∩M( f ′)
t

∑
τ=t−γ f +1

xm
f ,τ + ym

f ,t ≥ 1 ∀ f ∈ F,∀m ∈M( f ),∀t = γ f . . .T (5)

ym
f ,t−1−1+

1
T − (t−1)

T

∑
τ=t

∑
f ′∈F

∑
m′∈M( f ′)

xm′
f ′,τ ≤ Y m

f ∀t = 2 . . .T,∀ f ∈ F,∀m ∈M( f ) (6)

xm
f ,t ∈ {0,1} ∀t = 1 . . .T,∀ f ∈ F,∀m ∈M( f ) (7)

ym
f ,t ∈ {0,1} ∀t = 1 . . .T,∀ f ∈ F,m ∈M( f ) (8)

Y m
f ∈ {0,1} ∀ f ∈ F,m ∈M( f ) (9)

Constraint (1) guarantees that n f jobs are scheduled for family f in the scheduling horizon. Constraint
(2) is used to determine C f . Constraints (3) and (4) model the fact that only one job of a family f is
processed at a time on a machine. Constraint (3) is written for jobs of the same family, i.e. for which
setup time is not required, whereas Constraint (4) is associated to pairs of jobs of two different families for
which setup times are necessary. Constraint (5) ensures that either the time threshold is always satisfied
for a job family f qualified on machine m, or a qualification run is necessary, i.e. ym

f ,t = 1. Constraint
(6) guarantees that, if a machine is disqualified at period t, then it is also disqualified in the following
periods. It also ensures that the number of machine qualification losses at the end of time horizon T ,
i.e. ∑ f∈F ∑m∈M( f )Y m

f , is independent of the time horizon. This sum is considered as one criterion of
the objective function. In the model proposed in (Obeid, Dauzère-Pérès, Yugma, and Ferreira 2010), the
number of machine qualification losses qualifications was dependent on the time horizon. This is because,
to avoid losing a machine qualification, it was necessary to maintain this qualification on the machine from
time 0 to time T . In Constraint (6), it is no longer necessary to maintain a qualification on the machine if
no job is started on any machine in the remainder of the horizon, i.e. 1

T−(t−1) ∑
T
τ=t ∑ f ′∈F ∑m′∈M( f ′) xm′

f ′,τ = 0.
Hence, the number of machine qualification losses does not depend on T (if T is large enough). Constraints
(7), (8) and (9) ensure that variables xm

i,t , ym
f ,t and Y m

f are binary.

3.4 Objective Function

A bicriteria objective function is minimized that is a weighted sum of two types of criteria. The first type
corresponds to a scheduling criterion which is the sum of completion times of families ∑ f∈F C f . The second
type is associated to the number of machine disqualifications ∑ f∈F ∑m∈M( f )Y m

f . The objective function is
defined as follows: α ∑ f∈F C f +β ∑ f∈F ∑m∈M( f )Y m

f , where α and β are weights that model the trade-off
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between both criteria. However, in this paper, we consider a lexicographical order where the number of
qualification runs is prioritized over a pure scheduling criterion, i.e. β is chosen large enough compared
to α (α = 1, β = |N| ∗T ), so that improving the scheduling criterion is not preferable to an additional
disqualification. According to the α|β |γ notation introduced to classify scheduling problems by (Graham,
Lawler, Lenstra, and Kan 1979), this problem is noted Pm|STsi,b|∑C j.

4 COMPLEXITY

We recall that a machine is said to be qualified to process a given job family if it satisfies the necessary
conditions to process this job. Our problem consists of scheduling |N| jobs of |F | job families (where |N|
and |F | are the cardinality of the sets N and F , respectively) on |M| non-identical parallel machines (each
machine has its own set of qualifications), with s f as the setup time of family f ∈ F and p f as the associated
processing time. A time interval is associated with each family during which at least one job of this family
must be scheduled. We called this time constraint a threshold. The value of a family threshold is given
by γ f , and n f is the number of jobs in family f . Initially, we must send a job of family f to a qualified
machine m during the interval [0,γ f ]. Otherwise, the machine will no longer be available to process such a
job family (the machine is disqualified). The objective function of our problem is bi-criteria, in which the
aim is to minimize both the sum of completion times of families (∑ f∈F C f ) and the number of machine
disqualifications (∑ f∈F ∑m∈M( f )Y m

f ). Let us consider the following special case of our problem where the
setup time is set to zero for all job families (s f = 0,∀ f ∈ F). The threshold associated to each job family
defined by γ f is considered as the deadline d f of a given family. We recall that all the jobs which belong to
the same family have the same deadline (threshold), and these deadlines are considered on all the machines
to be equal to the time horizon (T ). Hence, it is no longer possible to lose the qualification of any machine.
We assume that all machines are qualified to process all job families. Hence, the qualification part in
the objective function has no effect, and the objective function becomes the classical known function of
minimizing the sum of completion times. Moreover, the machines are identical in terms of qualifications.
Therefore, the problem is reduced to the problem of scheduling n jobs on m arbitrary machines, with p f

as the processing time of job family f which is the same for all jobs in the family, and (∑ f∈F C f ) as an
objective function. (Webster 1997) proves that this problem is unary NP-hard, and therefore our problem
is also NP-hard.

5 HEURISTICS

5.1 List Heuristics

The jobs of different families on the parallel machines are scheduled by using two priority rules: Earliest
Time Threshold (ETT) and Shortest Processing Time (SPT). The Earliest Time Threshold rule first schedules
jobs of the family with the earliest threshold, i.e. the most urgent family first to keep the machine qualified.

5.2 Recursive Heuristic

The general idea of this heuristic is to schedule jobs by accepting each time one qualification loss or
more. More precisely, we consider the solution obtained by the list heuristic, and reapply the heuristic after
changing the initial qualification scheme. The perturbations in the qualification scheme are chosen from the
set of disqualified machines in the solution obtained by the list heuristic. In other words, after scheduling
the jobs using the list heuristic, we examine the resulting solution to verify whether the machines are still
capable (qualified) to execute the jobs, i.e. whether thresholds are satisfied or not. If this is not the case, we
change the data to accept some threshold violations, and reapply the list heuristic recursively to improve
the solution. Note that this iterative heuristic could also be applied on any solution obtained from other
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heuristics, such as the ones described in the next sections. These recursive versions are currently being
tested.

5.3 Scheduling-centric Heuristic

The main goal of the scheduling-centric heuristic is to minimize setup times. Recall that a setup time is
necessary when two jobs of different families are scheduled consecutively on a machine. The heuristic
starts by placing first the jobs of the family with the shortest threshold. When adding a job implies that the
threshold of another family will be violated on the machine, the heuristic shifts to a job of this other family.
Figure 2 shows the mechanism of this heuristic. Jobs of the same family are scheduled consecutively until
a time instant where it is no longer possible to schedule more jobs of the same family without losing the
qualification of another family on this machine.

Figure 2: Example of the scheduling-centric heuristic.

5.4 Qualification-centric Heuristic

The main objective of the qualification-centric heuristic is to minimize the total number of violations of the
time constraint of each family on the machines on which the family is qualified. To do this, the qualified
family which still has a job to schedule and with the shortest remaining time threshold is first selected
on a machine. A job in the family is scheduled on the machine, and its completion time is updated. The
remaining time threshold of the family is then reset on the machine. If it is no longer possible to schedule
a job of a family before its remaining time threshold, then the machine is disqualified for the family.

After scheduling all the available jobs on the qualified machines while focusing on maintaining machine
qualifications, we then try to reduce the impact of setup times between job families by scheduling when
possible jobs of the same family consecutively. To do this, we consider the last job of the sequence on a
machine, and try to schedule this job as early as possible with a job of the same family. We then check
whether the machine qualifications are still valid in the resulting schedule. If this is the case, then the
change is accepted, otherwise the new schedule is rejected. The process is repeated for all machines and for
each last job until no change is possible. Figure 3 illustrates this heuristic. Each time a job is completed,
the heuristic checks all the updated thresholds of the families, and chooses a job of the family with the
shortest current threshold.

The other phase of this heuristic is to try to shift jobs or groups of jobs of the same family (batch)
between machines (inter-machine job exchange). We start by taking the last job/batch of a certain machine
and then try to place it on another machine, besides a job of the same family so as to compensate for the
setup time.
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Figure 3: Example of qualification-centric heuristic.

6 COMPUTATIONAL EXPERIMENTS

To test the mathematical programming model and the heuristics, test instances were randomly generated.
The different parameter values to generate the instances were chosen so that the basic problem pre-requisites
are respected. The time thresholds of job families were set sufficiently large with respect to their associated
processing times. This was done to give a minimal bias to find a solution, since short thresholds may lead
to a very fast disqualification of the machines. Hence, it might not be possible to process all available jobs,
since jobs cannot be sent to disqualified machines. We considered that Max(p f ) ≤ Min(γ f ). The initial
family/machine qualification scheme was defined so that each family has at least one machine on which
it can be processed, and each machine is qualified to process at least one job family.

Setup times were not chosen too large so as the risk of disqualifying a machine due to a set-up time
insertion is acceptable. We considered that Max(s f ) ≤Min(p f ). In addition, the time horizon was taken as
the sum of all processing times, plus the setup time multiplied by the number of jobs per family. This is an
extreme case where all jobs are scheduled on one single machine and where, each time a job is scheduled,
a setup time is required.

The model was tested using a standard solver (FICO Xpress-MP), on an Intel Xeon processor of 2.50
GHz and 3 GB of RAM. Exact solutions were obtained for several types of instances that were generated
with 20, 40, 60 and 80 jobs, 2, 3, 4 and 5 families, and 2, 3, 4 and 5 machines. The heuristics were tested
on the same computer. The execution time for computing exact solutions is limited to 600 seconds.

Tables 1 and 2 present the results on various test instances. In the second column, the instance is
represented as the number of jobs, the number of families and the number of machines (|J|−|F |−|M|). The
values of the sum of losses in machine qualifications as well as the sum of completion times is provided for
each heuristic. The exact solution obtained for the bicriteria objective function with α = 1 and β = |N| ∗T
(i.e. ∑ f∈F C f + |N| ∗T ∗∑ f∈F ∑m∈M( f )Y m

f ) is in the column “Optimum”. Taking these values for α and β

means that minimizing the number of machine qualification losses is prioritized over the sum of completion
times.

Note that, for example in Instance 4, the sum of completion times obtained by the qualification-centric
heuristic is better than in the “Optimum” solution for the same instance. However, there is one qualification
loss in the solution obtained by the heuristic, and no qualification is lost in the ”Optimum” solution. Other
tests were conducted with α = 1 and β = 1, where we found that the sum of completion times is smaller
than in the previous case. For example, taking again Instance 4, the number of machine qualification losses
is increased to 2, while the sum of completion times is minimized and is equal to 206.

We also notice that the gap between the results of the sum of completion times obtained by the heuristics
and the exact method is still rather large. However, comparing the heuristics with each other, we notice
that the results of the scheduling-centric heuristic are in most cases better than those of other heuristics in
terms of the sum of completion times. On the other hand, as expected, the qualification-centric heuristic
gives better results in terms of number of machine qualification losses. Moreover, the exact solutions for
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Table 1: Heuristics applied on test instances and exact solutions (Instances 1 to 15).

Instance Recursive Sched-centric Qual-centric Optimum
(α = 1,β = |N| ∗T )

No. |J|− |F |− |M| ∑Y m
f ∑C f ∑Y m

f ∑C f ∑Y m
f ∑C f ∑Y m

f ∑C f

1 20-2-3 1 901 2 817 1 850 0 723
2 20-2-4 1 951 1 861 0 909 0 755
3 20-2-5 1 855 0 782 0 782 0 624
4 20-3-2 1 224 1 217 1 211 0 319
5 20-3-3 1 741 1 672 0 654 0 567
6 20-3-4 1 508 0 488 0 488 0 388
7 20-3-5 0 701 0 617 0 641 0 526
8 20-4-2 1 214 1 214 1 210 0 202
9 20-4-3 1 237 2 372 1 355 0 280
10 20-4-4 0 525 0 518 0 525 0 439
11 20-4-5 0 570 0 425 0 470 0 385
12 20-5-2 2 238 2 180 2 238 0 180
13 20-5-3 0 134 0 134 0 134 0 126
14 20-5-4 0 174 0 164 0 174 0 142
15 20-5-5 0 502 0 483 0 493 0 372

Average 10/15 498 10/15 462 6/15 476 0 402

Table 2: Heuristics applied on test instances and exact solutions (Instances 16 to 30).

Instance Recursive Sched-centric Qual-centric Optimum
(α = 1,β = |N| ∗T )

No. |J|− |F |− |M| ∑Y m
f ∑C f ∑Y m

f ∑C f ∑Y m
f ∑C f ∑Y m

f ∑C f

16 40-4-2 3 790 3 710 3 712 0 704
17 40-4-3 3 1657 3 1503 3 1513 0 1193
18 40-4-4 3 1418 0 1051 0 1081 0 1052
19 40-4-5 3 1458 4 1259 2 1321 0 1105
20 60-3-2 0 5040 3 2853 0 2592 0 2229
21 60-3-3 3 4604 3 4514 3 4350 0 3865
22 60-3-4 3 3031 4 2571 3 2627 0 2614
23 60-3-5 3 4682 3 4407 1 4399 0 3141
24 60-4-3 1 4824 2 4375 1 4008 0 3453
25 60-4-4 6 2587 5 2166 6 2280 0 1766
26 60-4-5 3 3030 0 2769 1 2786 - -
27 80-5-2 3 3174 3 2886 3 2880 - -
28 80-5-3 6 2752 6 2540 6 2118 0 1819
29 80-5-4 8 3582 8 2952 5 3150 - -
30 80-5-5 4 6685 3 5518 3 5743 - -

Average 52/15 3288 50/15 2805 40/15 2771 0 2086

instances 26, 27, 29 and 30 could not be found by the exact solver in the given time limits (600 seconds).
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The CPU time for each heuristic is almost the same since solutions are obtained instantaneously. This is
why CPU times are not shown in Tables 1 and 2.

7 CONCLUSION AND PERSPECTIVES

In this paper, we discussed the problem of scheduling job families on non-identical parallel machines with
time constraints. We modified a mathematical model and considered a bicriteria objective function: Sum
of completion times and number of machine qualification losses. We developed heuristics that target each
criterion of the objective function, and numerical results on randomly generated instances were presented.
These results showed, as expected, that the scheduling-centric heuristic gives better results regarding the
sum of completion times, and that the qualification-centric heuristic provides better solutions on the number
of machine qualification losses. The solutions of the heuristics are compared with the exact solutions given
by a standard solver.

An extension of this work is the development of more advanced heuristics, in particular metaheuristics.
Another perspective is to adapt exact methods in order to find optimal solutions for larger instances than
with the mathematical model.
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