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ABSTRACT 

In this paper, we analyze the impact of control plan design of defectivity inspections for tool risk man-
agement. Defectivity inspections are performed on products and can reveal the yield loss produced by 
contaminations or structural flaws. The risk considered in this paper concerns the exposure level of wafers 
on a tool between two defectivity controls. Our goal is to analyze how control plans can impact the manu-
facturing robustness from the point of view of wafer at risk on tools. A smart sampling strategy is consid-
ered for sampling lots to be measured. Actual data from the Rousset fab of STMicroelectronics are used. 
The simulation experiments are performed using the S5 Simulator developed by EMSE-CMP. Results 
show that not only the number and positions of controls operations have an important impact on tool risk  
management, but also how each control operation covers process operations. 

1 INTRODUCTION  

In order to keep pace with the constant demand for more powerful and faster devices, the technology to 
produce them is always changing. During the past two decades, the level of integration has vastly          
increased. Semiconductor integrated circuits have become more complex and expensive to produce. In 
consequence, great control challenges arise. The need to find defective products or tools before they con-
sume precious production resources is critical. Actually, the economic benefit of maintaining efficient and 
dynamic control increases with the  complexity of manufacturing processes (May and Spanos 2006). 

In semiconductor manufacturing, control methods to reduce risks are present at different levels: At 
product, process, tool and organizational levels (Bassetto and Siadat 2009). In this paper, we focus on the 
process and tool levels. In particular we concentrate on the wafer at risk (W@R), i.e., the number of wa-
fers processed between two defectivity control operations. The W@R represents a virtual risk because of 
a potential defectivity issue.  

Defectivity inspections can reveal several kinds of problems, such as contaminations or structural 
flaws. In order to ensure the high quality of finished products, regular inspections during manufacturing 
cannot be substituted (May and Spanos 2006). Since metrology capacity is limited and inspections direct-
ly affect production cycle times, efficient strategies to measure lots that provide the most relevant data are 
necessary. Previous work has been conducted in this direction. A static sampling plan usually consists of 
selecting the same number of lots to measure (Lee 2002). Adaptive Sampling varies the number of select-
ed lots according to the actual production state (Boussetta and Cross 2005). Smart Sampling is a new ap-
proach that aims at minimizing the wafer at risk on tools dynamically (Dauzère-Pérès et al. 2010). This 
approach takes measurement capacities into account. 
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The process control plan provides a summary description of the methods used to minimize process 

and product variation (Le Saux 2006). Inspections of the control plan are placed between critical opera-
tions for the product. Processes are considered critical when possible defects can cause the dice structure 
to fail and produce a killer defect (May and Spanos 2006). Control plans and sampling strategies are high-
ly related. Nevertheless, few methods link risk analyses and actual control plan strategies in a detailed 
manner (Bettayeb et al. 2010). In this paper, we aim at analyzing the impact of control plans for defectivi-
ty inspections on the wafer at risk in a fab. 

The structure of the paper is as follows. The problem is defined in Section 2. Section 3 is devoted to 
the experimental study and analysis of the results. Section 4 presents the conclusions and outlines our    
future research work. 

2 PROBLEM DESCRIPTION  

Our problem focuses on the Wafer at risk (W@R) on tools. W@R is the number of wafers processed on a 
tool since the process of the latest lot measured in defectivity (Dauzère-Pérès et al. 2010). When a lot is 
inspected at a control step, the risk on tools where the lot was processed is reduced (wafer at risk           
reduction). Thus, the W@R of a tool depends on the tool throughput and the time to get the results of the 
measurement. In this study, only the defectivity inspections are considered.  

Let us consider a group of serial machines with identical throughput. The time to go from one process 
to another is also similar. Thus, the minimum wafer at risk of the tools depends on the delay to get the   
results of the measurement, see Figure 1. If new inspection operations are added, the delay to get this 
measurement result is reduced, and the wafer at risk could thus also be reduced. In this study, we analyze 
how the configuration of new control plans can have a positive or a negative effect on wafer at risk levels. 

Figure 1: Minimal W@R representation 

This study is based on a smart sampling strategy. Sampling a lot is based on how much is gained on 
risk reduction if the lot is measured. Metrology capacity is also considered. The control plan defines the 
set of process operations that can be controlled with an inspection and after which process operations a lot 
is available to be sampled. A control plan per technology is considered.  

The original control plans have X inspections. We have created some control plans with additional 
operations (X + 20 and X + 50). Technical restrictions were not considered in the modifications of control 
plans. Figure 2 represents the strategies for adding new defectivity controls. With the so-called            
“No overlapping” strategy, the set of process operations is divided into the number of inspections. With 
the “Overlapping” strategy, the original control plan is maintained and additional inspection operations 
are included. In other words, the impact of the original inspection plan is kept.  
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Figure 2: Control plan with and without overlapping 

3 EXPERIMENTAL STUDY AND RESULTS 

Experiments are performed with the Smart Sampling Scheduling and Skipping Simulator (S5) developed 
by the Department of Manufacturing Sciences and Logistics of EMSE-CMP. Simulations were conducted 
on real data from the 200mm fab of STMicroelectronics in Rousset, France. The data set includes around 
5500 lots processed on more than 100 production tools. For confidentiality reasons, all results are normal-
ized. For comparison with the fab sampling case, all performance measures are set to 100%. The selected 
performance measure is the “max W@R average,” i.e., the average of the maximum wafer at risk for each 
process tool in the fab. Different capacity values in the defectivity area are considered. Capacity A corre-
sponds to the current capacity to conduct the defectivity controls in terms of the number of measured lots 
per hour. For the analysis of the different strategies the reduction of the wafer at risk (W@R) is consid-
ered.  

3.1 Number of Control Operations and Overlapping vs. No Overlapping 

In this section, we analyze the impact of controls with and without overlapping as illustrated in Figure 2. 
Tables 1, 2 and 3 present the experimental results for different control plans where capacity A is the    
current defectivity control capacity, and capacities A2, A3, A4 and A5 correspond to a reduced number of 
measurement machines. In order to analyze the wafer at risk reduction with additional control operations, 
two control plans are tested. X+20 and X+50 correspond to control plans with 20 and 50 new control    
operations, that cover  the same process operations as the initial control plan.  
 Table 1 presents the percentage of measured lots for each sampling capacity, i.e., number of meas-
urement machines, when smart sampling is used. The defectivity capacity is an important aspect to take 
into account when adding new inspection operations. Since we select lots with the smart sampling strate-
gy, the limited capacity at metrology is considered. That is the reason why the percentage of measured 
lots is similar for a given capacity value.  
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Table 1: Number of measured lots and control plans with and without overlapping 

Number of 
measures 

Start S.  
Capacity 

A   

Smart S. 
Capacity 

A5  

Smart S. 
Capacity 

A4  

Smart S. 
Capacity 

A3  

Smart S. 
Capacity 

A2 

Smart S. 
Capacity 

A  

Infinite 
Capacity

 X control operations  100.0% 27.4% 51.7% 68.5% 79.0% 84.0% 288.3% 

 X+20 no overlap.  100.0% 27.5% 51.6% 68.4% 79.3% 84.7% 290.3% 

 X+50 no overlap.  100.0% 27.5% 51.1% 68.2% 77.2% 82.0% 286.2% 

 X+20 with overlap.  100.0% 27.6% 51.7% 68.7% 79.1% 84.5% 290.3% 

 X+50 with overlap.  100.0% 27.6% 51.6% 69.1% 79.0% 85.0% 290.3% 
  

Table 2 presents the experimental results on the maximum W@R average. As already mentioned, all 
values are compared with the Start Sampling strategy and the control plan with X number of control      
operations. The results are presented in percentage and represent the maximum W@R average obtained        
according to the parameters: Sampling strategy, capacity in the defectivity area, number of control        
operations in the control plan and configuration of control operations. 

Table 2: Maximum W@R average and control plan with and without overlapping 

 
Let us focus on the results for capacity A and a control plan with X number of operations. The     

maximum W@R average obtained with the Smart Sampling strategy is 72.6%. Hence, with similar       
capacity at the defectivity area, the maximum W@R average can be reduced  27.4% by only changing the 
sampling strategy. The process flows in modern high-mix semiconductor manufacturing facilities are 
known to be highly complex. For that reason, when lots to be measured are selected at the beginning of 
the process, an optimal control of the tools in terms of W@R cannot be guaranteed (see Nduhura Munga 
et al. (2011) for more details). 

Results obtained when the capacity is reduced (Capacity A4 and A5) show that the maximum W@R 
average increases when using control plans with additional operations and no overlapping (155.2% and 
104.2% with X+50 controls respectively). The reason is that the capability of a control to reduce the 
W@R on tools decreases when there is no overlapping. As described in Figure 2, with the original control 
plan the control operation D0_1 validates six process operations. An additional control (D0_2) will only 
validate three process operations. Thus, the maximum W@R average has been degraded.  

Table 3 presents the difference in terms of W@R reduction between the control plan with and without 
overlapping. With the case of capacity A5, we observe that an additional reduction on W@R is obtained 
when overlapping is considered, 3.2% and 15.0% with X+20 and X+50 control operations respectively. 
Thus, when the number of control operations increase and the capacity is reduced, the influence of the 
overlapping on controls becomes more important.  

Maximum W@R  
average 

Start S.  
Capacity 

A 

Smart S. 
Capacity 

A5  

Smart S. 
Capacity 

A4  

Smart S. 
Capacity 

A3  

Smart S. 
Capacity 

A2 

Smart S. 
Capacity 

A  

Infinite 
Capacity

 X control operations  100.0% 140.3% 95.4% 78.8% 74.3% 72.6% 57.7% 

 X+20 no overlap.  100.0% 142.5% 95.1% 78.9% 73.6% 72.6% 57.0% 

 X+50 no overlap.  100.0% 155.2% 104.2% 86.5% 81.7% 80.6% 66.0% 

 X+20 with overlap.  100.0% 139.3% 92.5% 78.0% 73.4% 71.6% 56.3% 

 X+50 with overlap.  100.0% 140.1% 93.3% 77.8% 73.3% 71.8% 56.3% 
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Table 3: Difference of W@R reduction between control plan with and without overlapping 

Delta between control plan  
with and without Overlap. 

Smart S. 
Capacity

A5  

Smart S. 
Capacity 

A4  

Smart S. 
Capacity 

A3  

Smart S. 
Capacity 

A2 

Smart S. 
Capacity 

A  

Infinite 
Capacity 

X+20 control operations 3.2% 2.6% 0.9% 0.3% 1.0% 0.7% 

X+50 control operations 15.0% 10.9% 8.7% 8.3% 8.8% 9.7% 
 
 The results in Table 1, 2 and 3 show that, when overlapping is considered, the risk on tools can be   
reduced without increasing the number of sampled lots. Let us recall that these results are obtained when 
the Smart Sampling Strategy is used to choose the lots to measure. Conclusions concerning the control 
plan design could be different according to the sampling strategy. Therefore, the design of control plans 
should not be separated from the definition of the sampling strategy. 

3.2 Impact of Control Operations Position 

In this section, the position of control operations is studied. Table 4 shows the results for the control plan 
with X+20 and X+50 operations with different configurations. The throughput of some tools have been 
considered but not in an exhaustive way in Configuration 1. Let us focus on the control plan X+20. We 
observe that, with the same number of controls, different reductions on the maximum W@R average are 
obtained. In particular, in Configuration 1, some controls are placed near some tools with high     
throughput, thus leading to larger reduction on the W@R when lots are measured. When the distance    
between controls and tools with high throughput is reduced, the maximum W@R for these tools can also 
be reduced.  

Let us focus on the control plan with X+50 control operations and Configuration 2. Results show that 
the maximum W@R average is sometimes worse compared to Configuration 1 of the X+20 control plan. 
These results show that more controls do not always mean less risk. Because lots are going to be         
controlled more often, the workload of metrology tools increases, and consequently waiting times in front 
of metrology tools can also increase. Concerning the scenario with “Infinite Capacity”, it refers to the 
case where all selected lots can be measured. This scenario give us an idea of the lower bound of the    
maximum W@R average. Note that, according to the control positions, the maximum W@R average will 
not be lower than 42.0%. 

Table 4: Maximum W@R average and positions of control operations 

Maximum W@R  
average 

Smart S. 
Capacity 

A5 

Smart S. 
Capacity 

A4 

Smart S. 
Capacity 

A3 

Smart S. 
Capacity 

A2 

Smart S. 
Capacity 

A 

Infinite 
Capacity 

X control operations 100.0% 140.3% 95.4% 78.8% 74.3% 72.6% 

X+20 Configuration (1) 139.3% 92.5% 78.0% 73.4% 71.6% 56.3% 
X+20 Configuration (2) 167.5% 109.4% 86.2% 75.3% 70.1% 46.4% 
X+20 Configuration (3) 140.1% 93.4% 78.0% 73.0% 71.6% 56.3% 
X+50 Configuration (1) 140.1% 93.3% 77.8% 73.3% 71.8% 56.3% 
X+50 Configuration (2) 197.5% 128.9% 95.5% 81.1% 72.4% 42.0% 
X+50 Configuration (3) 140.1% 93.2% 77.5% 73.3% 71.9% 56.3% 
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3.3 Impact of the Coverage of Control Operations 

The impact of additional controls in the control plan with overlapping and different positions has been 
studied in the previous sections. However, the coverage of new process operations was similar to the  
original control plan. As illustrated in Figure 3, the risk on tools that were not covered has not been      
impacted with the new control operations. Since the analysis is based on the average maximum W@R, 
the impact of new control operations was limited. In this section, the coverage of new process operations 
is included in the control plan design.  

 

 

Figure 3: Coverage of control operations 

 Table 5 presents the maximum W@R average for a control plan with X+20 operations and a total 
coverage of process operations. The value of B represents the number of process operations covered by 
control. Thus, a control plan with B+6 covers more process operations than a control plan with B.  

  Table 5: Maximum W@R average with total coverage of process operations 

Maximum W@R average 
Start S. 

Capacity 
A 

Smart S. 
Capacity 

A5 

Smart S. 
Capacity 

A4 

Smart S. 
Capacity 

A3 

Smart S. 
Capacity 

A2 

Smart S. 
Capacity 

A 

Infinite 
Capacity

X control operations 100.0% 140.3% 95.4% 78.8% 74.3% 72.6% 57.7% 

X+20 without overlapping (B) 100.0% 156.7% 102.7% 74.7% 62.6% 54.3% 26.2% 

X+20 with overlapping (B+2) 100.0% 146.6% 93.1% 73.9% 59.8% 53.0% 26.2% 

X+20 with overlapping (B+4) 100.0% 143.7% 90.9% 69.9% 61.2% 52.5% 26.0% 

X+20 with overlapping (B+6) 100.0% 137.4% 89.1% 70.0% 58.7% 51.2% 25.9% 
 
Let us focus on the results with infinite capacity. We observe that, when new process operations are 

covered, the impact of the additional control operations is significant. The wafer at risk obtained decreas-
es from 57.7% with the original control plan (X control operations) to 26.2% having a control plan with 
X+20 control operations. Hence, when capacity is increased, the factor that enables the reduction of 
W@R is the number of operations. Let us focus on the results with capacity A4. The results show that, 
when the capacity is reduced, the overlapping is an important factor that helps to reduce the overall wafer 
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at risk. The maximum W@R average obtained with the original control plan is 95.4%, compared with an 
average maximum W@R of 102.7% without overlapping and 89.1% with overlapping. 

4 CONCLUDING REMARKS 

In this paper, we presented an analysis for control plan design based on the tool wafer at risk (W@R)    
reduction and a smart sampling strategy for choosing lots. We focus on how the design of control plans 
for defectivity inspections impacts the reduction of the wafer at risk at the tool level. Experiments on    
actual data have been conducted with the S5 simulator developed at EMSE. Results show that more in-
spections in the control plan do not always reduce the overall wafer at risk. The wafer at risk reduction 
highly depends on the positions of control operations and how they cover process operations. In addition, 
when metrology capacity is reduced, the overlapping of controls can enhance the wafer at risk reduction. 
When metrology capacity is increased, the number of controls is a key factor to consider. Since metrology 
capacity must be considered, decisions on the control plan design cannot be done independently of the 
sampling strategy.  

Future work will be conducted to study the optimization of the number and positions of the control       
operations in the control plan. The identified criteria are the throughput of process operations, the delay to 
get measurement results and the number of process operations covered by a control operation.  
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