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ABSTRACT 

The usual forecast method in semiconductor industry is simulation. Due to the manufacturing environ-
ment, the number of processes and the multitude of disturbing factors the development of high-fidelity 
simulation model is time-consuming and requires a huge amount of high quality basic data. The simula-
tion facilitates a detailed prediction possible, but in many cases this level of detail of the forecast infor-
mation is not required. In this paper, we present an alternative forecast method. It is considerably faster 
and the results for a subset of parameters are comparable to simulation. The solution does not need a 
complete fab model but a limited mathematical system and some fast algorithms which make the forecast 
of important parameters or characteristics possible.  The prediction is based completely on statistics ex-
tracted from historical lot data traces.  It is already implemented and tested in a real semiconductor fab 
environment and we also present some validation results. 

1 INTRODUCTION 

The manufacturing of semiconductors is one of the most complex industrial production processes. Semi-
conductor factories contain several hundred machines and products and can be classified as job shop 
manufacturing environments. The production of each product is described by a processing sequence 
called route.  This sequence includes operations with the assignment of specific machine group. As a con-
sequence of the variety of products, different processes have a specific recipe on individual tools. They 
describe the kind of process, duration and many other parameters. It is a typical manufacturing character-
istic of semiconductor manufacturing that tools within a production line are visited not only once but re-
peatedly by a product. 
 The common and feasible forecast method used for this kind of scenario is simulation (Bagchi et al. 
2008; Scholl et al. 2010). Based on the manufacturing environment, number of machines and multitude of 
disturbing factors the creation of simulation model is quite complicated (Kohn et al. 2009). First the simu-
lation expert requires a highly detailed model of several tools with all their deterministic characteristics 
such as, execution speed, process duration, and capacity. Furthermore the stochastic behavior parameters, 
such as, availability, failure rate, and period of repairs, are needed. Additionally the model configuration 
needs further information about tool assignments for all steps in each route. The dedication matrix is 
based on an enumeration of all combinations of machines, operations, process approvals and product 
types. The work pieces in semiconductor manufacturing are usually boxes with several single wafers that 
are referred to as lots. These lots are repeatedly transported between several tools. This requires a detailed 
model of the transport system. There are several stochastic factors which decrease forecast quality in sem-
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iconductor manufacturing like: manufacturing errors and their associated procedure execution by experts 
or rework. The consequence of all these influences is a major challenge in modeling which is based on an 
enormous amount of data (Kohn et al. 2009). This data volume results in time consuming database que-
ries for data collection and furthermore increases simulation durations of experiments. In real environ-
ments like factories data quality is a big challenge. Frequent issues are inconsistency, availability, format 
of some data sources and similar common data consolidation problems. Furthermore handling of a com-
plete model is not easy because every revision and the following validation is very time consuming. The 
simulation has of course several positive aspects. It allows conclusions about performance factors on ma-
chine level as well as on factory level. In many cases however, there is no need for forecast results at this 
level of detail (Powers, Goldszmidt, and Cohen 2005). Especially in the area of short-term forecasts there 
is a demand for alternative solutions. They need to work faster but the quality of results obtained from 
these methods for a subset of parameters should be comparable to those from simulation.  In comparison 
with simulation it is not necessary to model the complete fab. A limited mathematical model and an ap-
propriate algorithm are able to produce a forecast for mandatory parameters or key performance indica-
tors. 

2 PROJECT OBJECTIVES 

In cooperation with our project partner from semiconductor industry we specified project objectives and 
forecast software requirements. The forecast horizon is limited to 14 days. We focused on the daily deliv-
ery predictions and a bottleneck early warning system for several machine groups in the fab. We used a 
real medium sized logic fab with a wide product range as environment for our approach. The approach 
should support common characteristics of semiconductor manufacturing like: 

 Hold state – Lots are set to this state, if they have a processing problem or they depend on special 
production steps. Manufacturing of one or several following moves require the attendance of a 
qualified person. Almost only development products enter this rare state. 

 Sampling – Allowing lots to skip measurement operations, which only need to be done on a cer-
tain percentage of lots.  

 Rework - Remanufacturing after processing or out of spec problems. 

3 CONCEPT 

The Alternative Forecast Method – AFM – uses just one exclusive data source, even to extract detailed 
historic lot movement information. The work pieces have several characteristics and parameters which 
need to be stored implicitly. The forecast calculation is based on a statistical evaluation of the duration be-
tween start and target operations from historical data. The time interval differs for different manufactured 
products, therefore AFM uses lot grouping rules based on product characteristics. For an improved accu-
racy the method needs a second level of classification. On this level a clustering is applied which is based 
on specific predefined lot attributes like priority or tardiness. For the prediction calculation the method 
needs the current lot position on the route and its corresponding class. This allows the calculation of the 
arrival time at the target operation by adding the previously defined duration. 

3.1 Lot Classification 

The key difference of AFM compared to other analytical forecast methods in semiconductor industry is 
the adoption of a double-stage lot classification in groups called AFM-speed-classes. In the first stage, we 
classify the lots with help of product affiliation. The lots in the fab move on predetermined routes. There-
fore it is possible, that the several products on their way from operation A to operation B are manufac-
tured with a different number of operational steps. A variation of throughput times associated with recipe 
dependent process durations occur even on the same operation. The second classification stage happens in 
already identified product groups and is regulated by significant lot properties. To meet the classification 
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requirements, it is necessary to find the parameters with the most influence on the cycle time. The factors 
can be separated into two groups:  

 Basic, well-known, thus factory independent – valid for the most semiconductor factories, for ex-
ample: wafer number or priority 

 Particular, thus factory specific – bound to one factory, for example: lot-owner (lot is productive, 
development or engineering) 

We determine the influence of parameters for AFM by means of clustering algorithms using historical 
trace data. For the well-known factors, we confirmed the validity of our hypothesis about group building. 
We flag the data points with the same characteristics. Following that we evaluate grouping opportunities. 
As shown in Figure 1, the cycle time can be divided based on priority. Figure 2 illustrates the clustered 
values with regard to tardiness. It is a typical example of a factory specific property, because the dispatch-
ing rules of the examined fab apply due dates to calculate the lot position in the dispatch list. Using these 
factors we first cluster the lot cycle times and then assign a parameter to describe the set. 
 

  

      Figure 1: Clustering with the help of priority            Figure 2: Clustering with the help of tardiness  

Of course, it is possible to improve the classification with other parameters, but it is important, that 
every cluster contains a sufficient number of representatives. Otherwise the calculated average cycle time 
is not statistically relevant. A too small number of data points in some groups may force us to implement 
equivalence classes. When the calculation of the cycle time for any group is impossible, the AFM algo-
rithm searches for the value of a corresponding set and multiplies it with a constant factor describing the 
discrepancy of the time intervals between operations. The factors and equivalence classes are problem-
specific and need to be precisely defined with statistical analysis or other experiments. 

3.2 Forecast Elements 

The forecast process is split into four parts: Data collection, statistics generation, forecast calculation and 
reporting. The data collection component reads the historical information from the manufacturing execu-
tion system (MES) and transfers this information in a format compatible with an Oracle database. The an-
alytical algorithms use this data to generate or update the statistics. The statistics modification happens in 
predefined time periods. The forecast calculation module extracts the current fab state from the MES, as 
well as the prediction estimates. The reporting algorithms visualize results corresponding to customer re-
quirements and area of application.   
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3.2.1 Data Collection 

In a previous project (Kohn et al. 2009) we used the same data base for simulation and AFM scheduling 
approaches. After successful completion of the feasibility study, we decided to separate the forecast soft-
ware completely and make it autonomous. According to our concept we just use the lot trace as single da-
ta source. Thus, the separation was not too complicated.  The software extracts the required MES data and 
stores it in a separate database. The calculation of the statistics is independent from the other computa-
tions. 

3.2.2 Statistics Creation 

The basic idea of the forecast method is the projection of analytical conditioned information into the fu-
ture. The data includes the statistics about the time interval from the start operation to the target operation, 
the sampling, and the hold states. The cycle time and hold time information are affiliated with each other, 
because both of them have an influence on the prediction of the lot arrival time points. The evaluated sta-
tistical cycle time from start operation	ܣ to target operation	ܥݐܽݐݏ  ,ܤ ஺ܶ→஻ is calculated as follows: 

ܥݐܽݐݏ ஺ܶ→஻ ൌ ൜
∑ ௐ೔∗ሺ∀௫೔		ሺ௖௧ሺ௫೔ሻି௛௧ሺ௫೔ሻሻሻ೘೐೏	
೙
೔సబ

	∑ ீ೔
೙
೔సబ

൅ ܥݐܽݐݏ_ݐݏ௟௔௦௧ሺ݈ܽܩ ஺ܶ→஻	ሻൠ	/	ሺ	1 ൅    ,௟௔௦௧ሻܩ

 where 	∀݅		ሺܿݐሺݔ௜ሻ െ ௜ሻݔሺݐ݄ ൐ 0ሻ 	് ∅ 

The value ܥݐܽݐݏ ஺ܶ→஻  describes the current fab state as detailed as possible. We implemented for all 
data sets the weight	 ௜ܹ. It negatively correlates with the age of records to reduce the effect of older data, 
thereby simplifying the handling and calculation. The weights	 ௜ܹ for the intervals are fab model specific 
and should be defined by some analysis.  We use in the implemented version for our project partner three 
of these intervals: 

 Last two weeks – with weight  =  1 
 Last month – with weight =  0.5 
 Last 3 months – with weight =  0.1 

After assigning values to intervals	݅ and weights	 ௜ܹ, we start the calculation. First we need the cycle 
time	ܿݐሺݔ௜ሻ, to move lot ݔ௜ from operation	ܣ to	ܤ. From there we subtract the time ݄ݐሺݔ௜ሻ the lot was in 
the hold state between ܣ and	ܤ. Consequently we calculate processing and waiting times without abnor-
mal breakdowns. This routine will be repeated for every lot	ݔ. For each interval	݅ we estimate representa-
tive values with the help of the median function across all	ܿݐሺݔ௜ሻ െ  ௜ሻ. Then we calculate theݔሺݐ݄
weighted average over all intervals	݅. Finally we complement the formula with a valid cycle time for the 
examined route section	ሺ݈ܽܥݐܽݐݏ_ݐݏ ஺ܶ→஻	ሻ and we store it implicitly with weight	ܩ௟௔௦௧. This method is 
working well if for each time interval there is at least one representative lot	ݔ. It is very important to find 
out if the route section time for the lot is relevant. We use an outlier filter and make plausibility checks to 
protect the statistics from corruption. 
 A lot which is moving on a specified route can pause on every operation, due to special, unexpected 
processing events. This can have a variety of reasons: 

 Special processing supervised by a qualified employee – Mostly short, conditional on waiting for 
workforce 

 Process abortion due to failures or measurements outside of specifications – Duration and proba-
bility not easy to define 

 Process problem for a product – Common issue in the past 
 Product dependent unusual processing – Mostly on development routes, frequently and not 

common modeling. 
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The sum of hold durations in the process chain generates the major part of the noise and complicates 

cycle time estimation. The hold state statistics collection is different from the cycle time data collection. 
The information about hold probability and hold length are stored for every operation of each product. 
First we try to find a large number of data sets with complete information about the lot number, lot hold 
events including hold duration of an examined operation for a given product.  After the recalculation of 
the lot trace data in a given format the calculation of hold state descriptive parameters is not complicated. 
The result is the probability of holds for all lots and the representative duration over the median of sever-
al, congruent data sets. For this statistic calculation, we need to pay special attention to the correctness of 
the periodic update to prevent data corruption. All major breakdowns or problems with the complete ma-
chine group cause an abnormal accumulation of hold states. So it is very important to develop and use 
plausibility filters. The AFM implements a three-stage correction algorithm: 

 Minimum [5 min] and maximum [2 days] duration 
 Plausibility of probability 
 Plausibility of duration 

 
The plausibility checks compare the stored data values from the past. It assumes to start with an ex-

cellent initialization of the statistics. We need to find a long period of time without an abnormal disturb-
ance. This is almost impossible in a highly loaded semiconductor fab. Therefore the user needs to sanitize 
the data manually. 
 The lot delivery forecast for dedicated operations has to respect sampling regulations. The sampling 
rule defines for every product and process step a relationship between lots which should be processed and 
lots which skip the operation.  This problem occurs mostly at measurement operations. The statistics are 
calculated similarly to hold probabilities. The sampling rate information is available for a specified prod-
uct and all target operations. In productive mode, we use constant sampling rates, structured in 6 groups: 

 0% … 10%   – All lots skip the measurement operation 
 10% … 27%  – Every 4 lots, the lot must be handled 
 27% … 40%    – Every 3 lots, the lot must be handled 
 40% … 60%    – Every 2 lots, the lot must be handled 
 60% … 80%    – 3 lots out of 4 must be handled 
 Over 80%     – All lots must be handled 

The aforementioned clusters are customized to the sampling rules of the MES. Changes in the fab control 
system force the user to revise the forecast specification while the statistics are preserved. 

3.2.3 Forecast Calculation 

The forecast calculation is composed of 6 elements and one separated module which is responsible for the 
reporting.  Figure 3 depicts as starting point the snapshot of the current lot positions.  The creation of the 
snapshot is performed quickly by the MES. Therefore we receive the main information about all lots, such 
as, current operations, waiting times, process progress, and product types. In addition we identify and 
store additional lot properties which are used for reporting. In the next stage we search for a possible tar-
get step for every lot. 

The forecast concept supports numerous user-defined actions for a prediction. Every forecast scenario 
must be specified before the start of the calculation and should just include key steps or work centers.  In 
theory it is possible to make a prediction for a complete fab. For all practical purposes every update of 
statistics and even forecast calculation consumes far too much time and resources to meet the project re-
quirements. After identification of start and target operations we can estimate the required cycle time 
-ிಲ→ಳ. For that purpose we need to classify every lot into the AFM-speed-classes, to ensure that adeݐܿ
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quate values are selected from the statistics. At the same time we set values for hold time ݄ݐிಲ→ಳ for the 
step sequence from ܣ to ܤ, thus ܣ →  :The estimation is calculated with the formula .ܤ

ிಲ→ಳݐ݄ ൌ 	෍ሺሺሺܴܲ ሾܰ଴,ଵ଴଴ሿ

௡

௜ୀଵ

൑ ௜ሻ݌݄ ൌ൐ ௜ሻݐ݄	 	∪ 	ሺሺܴܲܰሾ଴,ଵ଴଴ሿ ൐ ௜ሻ݌݄ ൌ൐ 	0ሻሻ 

 

 

Figure 3: Levels of forecast process 

We use uniformly distributed random numbers ܴܲ ሾܰ଴,ଵ଴଴ሿ௜ between 0 and 100 and compare with the 
hold probability ݄݌௜. In the first case, if the random number is equal or less than the hold probability ݄݌௜ 
on operation ݅, we need to complement the normal process time with statistical hold time ݄ݐ௜. In the se-
cond case we do not need to add an additional ݄ݐ௜. Thus we set it to zero. To calculate the total hold time 
 .݊ we accumulate the estimated hold time per operation for all operations ܤ and ܣ ிಲ→ಳ between stepsݐ݄
The sampling rate of the target operation is then adopted from the sampling statistic for each product.  
 After we collect or calculate all required data, we can start the forecast. First we identify the arrival 
time stamp on a target operation for each lot in the fab. These values result from the addition of cycle 
time ܿݐிಲ→ಳ and hold time ܿݐிಲ→ಳ to the time of release into the current operation ܣ for a certain lot. This 
is the way the single lot forecast is generated. In the next step we need to convert the single lot forecast 
into a delivery forecast. The problem is the possibility of lot sampling on some of the target operations. 
The lots are not marked whether they skip the destination step or not. It makes it necessary to examine the 
affected lot groupings. The easiest way to explain the principle is with help of an example. Assuming that 
one of the products has a sampling rate of 25%, which means one lot every four lots will be measured.  
First we sort the lots by predicted arrival time points. Next we need to define the sampling counter, indi-
cating which lot needs to be processed next. With a simple random function we specify how many lots 
skip the target and we set the counter. We make a guess which item of our lot list needs to be processed 
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first and label consecutively the next significant and legal lots. We just use the lots which are significant 
for a target operation and match the forecast horizon to build daily delivery sets. 

3.2.4 Reporting 

The last module is just a simple visualization or a recalculation of the delivery data in other ways to fore-
cast. One of them is a bottleneck early warning system on key work centers. After we calculate the deliv-
ery forecast, we complement the information with an expected target process time. We can estimate the 
times from the same data source like other statistics. Once we know the capacity of the reviewed work 
center, we can estimate its utilization.   

4 IMPLEMENTATION 

The software is composed of three main modules: 
 MES data collector  
 AFM core 
 Reporting und visualization module 

 
The MES data collector is responsible for the communication with the MES Software. It reads, trans-

forms, filters and stores the lot trace and current WIP from the fab. By design, this is not an integrated 
component of the forecast software in order to be able to adapt quickly to environmental changes.  
 The main part of the prediction software is the AFM core. The module is completely implemented 
within an Oracle database.  We use Oracle, because it has one of the best opportunities to execute data-
base procedures. We compared the solution with external Java software and analog database based proce-
dures. For the calculation of the sampling statistics an Oracle database takes about a tenth of the time of 
the Java version. The statistics calculation occurs periodically after reading the trace data from the MES.  
It involves 5 stages: trace data correction, refresh of forecast target, cycle time statistics update, hold sta-
tistics update, and sampling statistics update. It is executed sequentially and takes about 20 hours. The 
forecast can run in parallel to the update and is fully independent. Therefore it does not need to wait for 
the statistics update. The prediction needs about 2 minutes for a complete run, 30 seconds for the fab 
snapshot and 40 seconds for reporting. The estimation of the lot arrivals needs less than 1 minute. Our 
measurements are designed for a part of products, machines and target steps. We want to support a com-
parison to other methods. The prediction is based on data from a fab with about 150 products with an av-
erage of 250 steps in a route. The target was specified twice per route and there are about 600 lot deliver-
ies per day on all destination operations. The database table size is extremely large for all calculations. 
For this reason we implemented several advanced cleaning algorithms. 

5 VALIDATION AND RESULTS 

For validation we use about 90 predictions. They were executed daily over a three-month period. The 
forecast horizon is limited to 14 days. We consider the wafer out of the last operation in every route, i.e., 
the fab wafer out. This operation at the end of the route has of course no sampling. But during the two 
weeks before the lot leaves the fab, there are a large number of disturbances like hold that can affect the 
lot. As a sampling afflicted step we use a typical measurement operation almost in the middle of the route. 
We separate two kinds of validations: 

 Single lot validation – Comparison to the real lot arrival at an operation. The test parameter is the 
absolute time deviation of the lot arrival between the real and the forecasted values 

 Delivery set validation – Comparison of the sum of lots, which arrived per day in the fab and in 
the forecast. The test parameter is based on the absolute deviation between the real and the fore-
casted numbers of lots.  
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At the beginning we present the validation results of lot arrival times at the target operations.  For the 

comparison we take all predicted delivery information, i.e., every lot at each target. We compare the abso-
lute time deviation. The green curve “AFM - new classification”, depicted in Figure 4, represents the val-
idation values with good corresponding AFM-speed-classification to the current fab state. 

 

Figure 4: Validation of lot arrival times 

The output was created when the factory was highly loaded. The red curve demonstrates the same 
forecasts with the old classification for the fab capacity utilization of about 60%. In this example we see 
the importance of the statistics preparation to configure the definition of the AFM-speed-classes accurate-
ly.  For the first forecast week, the accuracy of the AFM is quite good, because the average time deviation 
is always below 20 hours. For the second week the deviation values increase considerably faster. On the 
12th predicted day we have a discrepancy of almost 2 days in the average lot arrival. This difference 
makes a single lot forecast invalid. But it is still possible to properly forecast delivery trends.  
 For the validation of the delivery forecast, we use the real lot arrival stream. We compare the total 
number of incoming lots to the predefined operation or we use some characteristics to limit the arriving 
lot streams. Figure 5 shows the probability of matching the real delivery with the help of the forecast. The 
probability ܾ݌ is calculated by the formula:  

ܾ݌ ൌ 	 ൝
ܳ௥௘௔௟ ൐ ൫ܳ௥௘௔௟ݏܾܽ െ ܳ௙௢௥௘௖௔௦௧൯ 	 	⇒ 100 െ ሺ1ݏܾܽ െ ܳ௙௢௥௘௖௔௦௧ ܳ௥௘௔௟⁄ ሻ∗ 100	

ܳ௥௘௔௟ 	൑ ൫ܳ௥௘௔௟ݏܾܽ െ ܳ௙௢௥௘௖௔௦௧൯ 	 	⇒ 	0																																																																						
 

where ܳ௥௘௔௟  is the real quantity and ܳ௙௢௥௘௖௔௦௧   stands for the forecasted quantity. On this diagram we see 
that the green curve for the delivery on the main steps without sampling provides better results than the 
red one. The explanation is the use of further statistics, i.e., the sampling statistics. Apart from the sam-
pling operations, the charts represent completely different operations in the route. Therefore it is not easy 
to explain the probability differences in this case.   

In general we observe over 90% forecast probability for lot delivery in the first 3 days. In the first 
predicted week, the average probability is about 88%. For the second week, in the normal case, just a fu-
ture trend prediction is possible, because the quality of the prediction results deviates between 75% and 
87%. 
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Figure 5: Forecast probability of number of incoming lots  

 The validation phase exposed strengths and weaknesses of AFM. The advantages are short and stable 
forecast calculation times, good accuracy in the first predicted days and high accuracy for prioritized lots. 
We achieve better forecast results for bulk products. Problematic are the products manufactured in small 
batch series, development products or completely new products. For this kind of products, we usually do 
not have enough samples to generate statistically significant values. But the forecast generated with our 
parameters was nevertheless better than the forecast calculated with planning times (Powers, Goldszmidt, 
and Cohen 2005). The major disadvantage of AFM is the missing reaction to machine downs or bottle-
neck situations, immediately before target operations. If there is no common incident, then it has no influ-
ence on the statistics, and the algorithms works with default data. 

6 CONCLUSIONS 

In this paper we introduce a forecast method that is applicable for the performance prediction in semicon-
ductor manufacturing. We implemented a software prototype, based on the method and tested it in a real 
manufacturing environment. We demonstrate that the method produces useful forecasts for the provided 
time period. 

The research project shows that it is not straightforward to implement this kind of methods in a real 
factory. The environment complexity and amount of required data is huge. The software engineering part 
and implementation is extremely important to create an acceptable forecast. Furthermore the hardware re-
quirements to predict target values in almost real time are critical. The forecast calculation for all products 
and for all operations in a route is nearly impossible within the targeted time frame. The method is very 
useful for several fab applications. The biggest advantage is the small maintenance effort after implemen-
tation. The reason for this is the minimal required amount of basic data to solve the described problem. 

The next steps involve extending the AFM approach with self-validation modules. The algorithm is 
still based on the same data source. It checks and compares every forecast data set with the reality in real-
time. The intention is to further include the changes of equipment availability to improve the forecast. 
Further improvement of the AFM can be achieved by introducing additional data sources which provide 
data about current tool conditions as well as failure and maintenance statistics. In an additional future val-
idation part we want to compare detailed results from the AFM method with a complex online simulation 
solution. 
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