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ABSTRACT

Police departments in the United States strive to schedule officers so that a number of benchmarks are met.
The police administration is often asked to justify to local governing bodies the size of the police force.
To assess the effects of force size and scheduling strategies on the ability to meet the benchmark goals, we
develop a discrete-event simulation for the calls for service (CFS). Using actual call data from an urban
police department in the United States, we fit distributions for call rates and service times for input to the
simulation. The output of the model includes statistics related to the response delay, cross-sector calls, and
officer utilization. The simulation model verifies intuitive notions about policing and reveals interesting
properties in the system.

1 INTRODUCTION

A recent trend in policing urban areas in the United States has been to partition the precincts into smaller
subregions called sectors. The local focus afforded by the sectors helps the departments meet and assess
benchmarks for the policing system (Braga, Kennedy, Elin, and Peihl 2001, MacDonald 2002, Klein 2009,
McGarrell, Corsaro, Hipple, and Bynum 2010). These goals include minimizing the response time to
calls for service, providing for an equal workload for officers in different sectors, minimize the amount of
overtime, and ensure that at least 40% of an officer’s time is proactive time. Proactive time is the time
spent patrolling the sector, engaging with the community, and servicing self-initiated events (e.g., when an
officer observes a crime).

Operations research (OR) and emergency services such as policing have a long history, as described
in the reviews by Green and Kolesar (Green and Kolesar 2004) and Simpson and Hancock (Simpson and
Hancock 2009). As noted in both articles, publications in the area dropped sharply after 1989. Since that
time, increases in computing power have enabled more in-depth analyses, but these are either not being
reported in the literature or are not conducted.

In the early 1970s, several articles on policing, including analyses of travel time and allocation of
officers to precincts, were published (Larson 1974, Chaiken and Dormont 1978, Larson 2002, Green and
Kolesar 2004). In 1989, Taylor and Huxley (Taylor and Huxley 1989) won the Franz Edelman Prize
recognizing excellence in the practice of OR for the development and implementation of a system for
scheduling officers. Fazlollahi and Gordon (Fazlollahi and Gordon 1993) developed data-based approaches
to solving crimes. More recently, Singer and Donoso (Singer and Donoso 2008) develop a queuing model
for ambulance service which is applicable to police patrol cars. Curtin et al. (Curtin, Hayslett-McCall, and
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Qiu 2010) describe methods for locating officers within precincts to facilitate faster response times. Much
of the previous quantitative work analyzing policing is comprised of either deterministic math programming
models for scheduling or queuing models that require unrealistic steady state assumptions. Our approach
here is to depart from these frameworks and develop a simulation to characterize the system dynamics and
learn more about how the policing system works under various conditions.

In this paper, we describe a discrete-event simulation for a police workforce assessment. We use actual
data from the computer aided dispatch (CAD) system of a police department in a U.S. city to fit distributions
for the interarrival times and service times of calls based on the time of day, the sector from which a
call originates, and the priority level. The distributions are used as an input to the simulation, as well as
a scheduling plan for officers. The simulation can be used to assess current practices and can forecast
the effects of alternate scheduling strategies. The output of the simulation includes statistics concerning
response times, cross-sector calls, and officer utilization.

The remainder of the paper is organized as follows. In Section 2, the raw data is described with the
distributions that are fit and the benchmark goals for the police department. In Section 3, a discrete-event
simulation is presented for analysis of the responses to calls for service. Section 4 contains results of the
simulation analysis, including properties of the system that are revealed by the model. Section 5 synthesizes
the results, highlights limitations of the simulation model, and describes future directions for this research.

2 DATA, DISTRIBUTIONS, AND BENCHMARKS

The data source for the workforce assessment simulation is a CAD system that is currently implemented
to aid dispatchers in assigning calls to officers. The data can be interpreted in terms of the life cycle of a
call for service (CFS):

1. Call is received by dispatcher.
2. Call is recorded.
3. Call is dispatched.
4. Officer arrives at scene.
5. Officer completes service, and is available for another call.

Each 24 hour day is split into six four-hour time periods. Calls are classified into one of three priority
levels where the first level is assigned to the most urgent calls. Distributions of interarrival times and
service times for calls are fit for each time period, priority, and sector of origin.

The interarrival time is the difference between the times that successive calls are received by the
dispatcher. The service time is the time from when a call is dispatched to when the responding officer
completes service, and is comprised of travel time plus at scene time. Distributions are fit for the at scene
time, while estimates of travel time based on sector geography are used.

Distributions for the interarrival times and service times are selected based on Akaike’s Information
Criterion (see (Pawitan 2004)). Candidate distributions are exponential, Weibull, gamma, normal, and
log-normal; the Weibull and log-normal distributions were dominant. Distributions are fit using the fitdist()
function in the package fitdistrplus (Delignette-Muller, Pouillot, Denis, and Dutang 2010) for the R language
for statistical computing (R Development Core Team ).
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Figure 1: Flowchart of discrete-event simulation for calls for service.

Benchmark goals for the particular police department under consideration include:

1. Response times for priority 1 calls should be less than 7 minutes.
2. Calls should be serviced by officers from the originating sector; i.e., minimize cross-sector calls.
3. On average, officers should have 40% of their working hours as proactive time.
4. Minimize overtime hours.
5. The utilization of officers from different sectors should be approximately equal.

The response time is defined as the difference in time between when the dispatcher receives the call and
when the first officer arrives at the scene. This time includes the time until an officer is available to take a
call plus the travel time.

3 DISCRETE-EVENT SIMULATION OF CALLS FOR SERVICE

Figure 1 contains a flowchart that illustrates the discrete-event simulation for calls for service. The input
information is comprised of distributions for interarrival times and at scene times for calls and a scheduling
strategy for officers. The scheduling strategy specifies the number of officers working in each sector during
each four hour time period of a day.

There are two types of events and a pseudoevent. Events are call arrivals and service completions, and
the pseudoevent is the advancement of a time period. When the time period is advanced, the number of
officers working is updated to reflect the schedule. Processing a call arrival involves assigning the call to
an officer if one is available, or placing the call in the queue. If possible, a call is assigned to an officer in
the originating sector. If not, then the call is assigned to an officer in another sector, with preference given
to officers in sectors that are geographically nearby. The preference is determined by a predetermined
ranking of the sectors for each originating sector based on proximity. If multiple officers are available in the
selected sector, then the officer is chosen at random. Processing a service completion involves determining
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if the officer is scheduled to continue working or if completing the current call required time past the
scheduled shift. If the officer is still working and a call is in the queue, then a new call is assigned. Calls
from that officer’s home sector are assigned if possible; otherwise, the queues from other sectors based
on the predetermined sector ranking are checked. The event calendar maintains the status of each officer
(available/unavailable) and the time of the next service completion as well as the time of the next call
arrival for each sector and priority.

The simulation is implemented using the C programming language. The random number generator of
L’Ecuyer (L’Ecuyer 1999), implemented by Law (Law 2007) is used with a different stream assigned to
each source of system randomness. For each configuration (officer scheduling strategy), the same streams
are assigned to the same source of system randomness. Probability distributions are sampled by using a
modified version of code distributed with the book by Leemis and Park (Leemis and Park 2006). The
simulation is run for 30 simulated days for a warm-up period, and statistics are collected on a subsequent
7 simulated days. Statistics are collected over 35 replications.

4 RESULTS

To gain an understanding of how the policing system changes based on different scheduling strategies, the
number of officers working in each sector during each time period is varied. For the results reported here,
the number of officers working is the same across each time period and each sector. The number of officers
per sector per time period is varied from 10 to 40.

The statistics collected include the average response delay for priority 1 calls for each sector and time
period. The response delay is the time until an officer is available to respond to a call, and does not include
travel time. The response delay serves as a lower bound on the response time, which is the subject of the
first benchmark goal. The average number of cross-sector calls for each time period is also recorded for
each combination of originating and serving sector. Finally, the percentage of four-hour periods for which
utilization is less than 60% is calculated. Utilization is the proportion of time spent servicing calls, and so
the percentage that we measure is a lower bound on the probability that the proactive time benchmark is
met for a time period and sector.

Figure 2 contains a graph of the response delay for two sectors as a function of the number of officers
per sector for each four-hour time period. The sectors, labeled Sector F and Sector K, are selected because
they are the sectors with the most and least number of calls per service. In the figure, we see for the hours
between 8am and 8pm, the average response delay is less than 10 seconds which agrees with the lower call
rate during the day. For both sectors, the 12am to 4pm time interval has the highest response delays. The
average response delay with 10 officers per sector is approximately 8 minutes for Sector F and 3 minutes
for Sector K. As the number of officers per sector is increased, the average response delay drops rapidly,
indicating that the only factor in determining response time under these conditions is travel time.

Figure 3 depicts perhaps the most interesting results from our simulation study. The figure contains
three heatmaps for cross-sector calls for low (10), medium (20), and high (40) numbers of officers per
sector. In Figure 3(a), most of the non-zero entries are along the diagonal, indicating that most calls are
serviced by the originating sector. With only 10 officers per sector, most calls are queued, and when an
officer becomes available, there is likely a call within his or her home sector waiting. In Figure 3(b), the
system appears to reach a tipping point as cross-sector calls increase dramatically. With 20 officers per
sector, there are just enough officers to cover the calls, as indicated by the low response delay times in
Figure 2, but when an officer becomes available, there is a significant chance that all calls in the home
sector are covered, and that the next call arrives in another sector. At this point, we see that the calls
are likely properly covered, but system resources are poorly managed by sending units across the city to
respond to calls. In Figure 3(c), all calls are answered by officers from the originating sector. With 40
officers per sector, notice that more calls are handled per time period on average than with 10 or 20 officers
per sector. When an officer becomes available, there are usually no calls waiting, and when a call arrives,
there is likely an officer available in the originating sector to respond.
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(a) (b)

Figure 2: Response delay in seconds for priority one calls for (a) Sector F and (b) Sector K versus the
number of officers per sector. A curve is plotted for each four-hour time period.

(a)

(b) (c)

Figure 3: Heatmaps of cross-sector calls for (a) 10, (b) 20, and (c) 40 officers per sector for the 12am to
4pm time period. The number in each cell is the average number of calls originating in the call sector and
answered by the serving sector.
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(a) (b)

Figure 4: The probability that officers spend less than 60% of each time period servicing calls for (a)
Sector F and (b) Sector K versus the number of officers per sector. A curve is plotted for each four-hour
time period.

Figure 4 contains plots of the probability that officers have less than 60% utilization in time period
servicing calls for Sector F and Sector K as a function of the number of officers per sector. As expected
based on the plots of response delay, the probability that officers have less than 60% utilization increases
with officers per sector fastest for the time periods covering 8am to 8pm. Achieving the desired utilization
in Sector F requires more officers than Sector K because of the increased volume of calls. For both
sectors with 20 to 35 officers per sector, the probability of meeting the desired utilization is not monotone
increasing, but is highly variable. This behavior is likely due to the effects of cross-sector calls which can
affect utilization because of the additional travel time required.

5 CONCLUSIONS

We have presented results of a discrete-event simulation model of calls for service for an urban police
department based on actual call data. The model is useful for revealing important properties about the
policing system and it gives us insight into which benchmark goals are most difficult to meet. From the
model described here, we can draw conclusions about the response time, the cross-sector call, and the
proactive time benchmarks. It appears from our analysis that meeting the response time benchmark requires
the fewest numbers of officers, followed by the cross-sector call benchmark and then the proactive time
benchmark. If the number of officers per sector is just enough to meet call demand across the city, we
observe a large increase in the number of cross-sector calls.

Several tasks remain before the workforce assessment can be completed. The model still needs to be
properly validated against the raw data and summaries of the calls for service to ensure that anomalies
in the data are not adversely affecting the distributions that are used in the simulation. In our model, we
assume that one officer responds to each call, so that “officer” actually implies “unit”. The model needs
to be updated to model the number of officers responding to each call. The geography represented in the
model is at the sector level. The actual location of officers within a sector is not modeled, which hinders
the ability to accurately capture the effects of travel time.

Future directions include using the simulation to forecast the number of officers needed in each sector
during each four-hour time period in order to meet benchmark goals. A designed experiment and response
surface methodology can help to determine the optimal configuration of officers. Once the best configuration
is determined, an integer program can aid the scheduling of officers over two- and four-week horizons.
Shift relief factors, based on actual data, will be used to estimate overtime hours and the size of the force
needed to meet goals.
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