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ABSTRACT 

Sustaining modern, high-technology, system of systems requires a sophisticated coordination of logistics, 
maintenance policies and operations.  Stochastic Petri Nets provide a unique means for simulating the 
complicated interactions among the individual entities of such systems, and allow leveraging the strengths 
of both analytical and simulation models against these challenging coordination tasks.  The advantages of 
this modeling approach are demonstrated for a deep-ocean tsunami warning system but are equally appli-
cable to a wide variety of complex system of systems. 

1 INTRODUCTION 

Humans have relied upon technology for survival across the millennia.  As technology became more so-
phisticated, so too has this reliance.  So deeply rooted is this interrelationship, that the reliability and per-
formance of modern, high-technology, system of systems are almost taken for granted – that is, until 
something cataclysmic occurs.  At that point, we are led to take a step back and ask questions, questions 
about the world around us and the complex systems that we have developed to better control (or at least 
cope with) our environment. 

An unfortunate illustration of the need for this retrospection are the recent events which so tragically 
unfolded in Japan.  Starting with one of the largest undersea earthquakes in recent history, followed by a 
very large tsunami wrecking death and destruction across a broad swath of eastern Japan, the long-lasting 
nuclear energy crisis that arose illustrates how our dependence upon reliable systems has never been 
greater. 

This paper seeks to better understand the reliability of one small, but vital, high-technology system of 
systems – the Deep-ocean Assessment and Reporting of Tsunamis (DART®) system operated by the Na-
tional Oceanic and Atmospheric Administration (NOAA).  To better understand and model the DART 
system we will employ a system of systems framework. 

2 BACKGROUND 

2.1 Systems 

For the purposes of this paper, we view a system as a “set of objects together with relationships between 
the objects and between their attributes connected … to each other and to their environment in such a 
manner as to form an entity or whole. (Schoderbek et al. 1980)”  Taking this basic definition a step fur-
ther, a system of systems is “a collection of task-oriented or dedicated systems that pool their resources 
and capabilities together to obtain a new, more complex, 'meta-system' which offers more functionality 
and performance than simply the sum of the constituent systems. (Popper et al. 2004)”  Interestingly, 
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Popper goes on to note “Currently, systems of systems is a critical research discipline for which frames of 
reference, thought processes, quantitative analysis, tools, and design methods are incomplete.”   

One aspect of the system of systems framework which is incomplete is the ability to link the overall 
system’s reliability to the logistics infrastructure’s performance which supports the system.  Blanchard 
(1981) expands upon the importance of considering logistics, saying “The elements of a system include 
all equipment, related facilities, material, software, data, services, and personnel required for its operation 
and support … in its intended operational environment, throughout its planned life cycle.”  To that end, 
this paper demonstrates how an analytically-based logistics optimization model may be coupled with a 
Monte Carlo reliability and maintainability simulation to gain richer and deeper insights into the reliabil-
ity of a system of systems. 

2.2 The DART II System of Systems 

The system of systems under consideration in this paper is the DART system operated by NOAA.  “Orig-
inally developed by NOAA, as part of the U.S. National Tsunami Hazard Mitigation Program … the 
DART® Project was an effort to maintain and improve the capability for the early detection and real-time 
reporting of tsunamis in the open ocean. (NDBC 2011a)”  Since 2008, the National Data Buoy Center 
(NDBC) has operated 39 DART II buoys, primarily around the Pacific rim and along the U.S. eastern 
seaboard.  A DART II system (Figure 1) “consists of two physical components: a tsunameter on the ocean 
floor and a surface buoy with satellite telecommunications capability.  The DART II systems have bi-
directional communication links and are thus able to send and receive data from the Tsunami Warning 
Center and others via the Internet.” (Meinig 2005)   

The bottom pressure recorder (BPR) collects temperature and pressure data which are converted to an 
estimated sea-surface height which is collected every 15 minutes while the system is operating in standard 
mode reporting. (NDBC 2011)  Using this data, the “Tsunami Detection Algorithm works by first esti-
mating the amplitudes of the pressure fluctuations within the tsunami frequency band, and then testing 
these amplitudes against a threshold value ….  If the amplitudes exceed the threshold, the tsunameter goes 
into Event Mode to provide detailed information about the tsunami.”  (Meinig 2005)  Once the BPR en-
ters the event mode, “15-second values are transmitted during the initial few minutes, followed by 1-
minute averages.  Event mode messages also contain the time of the initial occurrence of the event.” 
(NDBC 2011a)   

Figure 2 is a graph from the DART II buoy nearest the Japanese coastline (450 nautical miles NE of 
Tokyo, Japan).  The red vertical lines indicate the BPR capturing the earthquake’s initial shockwave at 
5:49 GMT (approximately 3 minutes after the actual earthquake).  The green vertical lines indicate the 
east-bound tsunami wave reaching the buoy (approximately 33 minutes after the earthquake) as the wave 
crosses the Pacific Ocean.   

Unfortunately, because of the relative distances involved as the tsunami wave propagated from the 
earthquake epicenter, people on the eastern seaboard of Japan had to rely on other warning systems (with 
a corresponding minimal warning time leading to the ultimate tragedy).  Nonetheless, the DART II sys-
tem clearly worked and did provide warnings to other coastal locations around the Pacific Rim, illustrat-
ing the value of such a complex, highly-reliable system.   

2.3 Reliability Modeling 

As Blanchard (1981) notes, reliability is “the probability that a system or product will perform in a satis-
factory manner for a given period of time when used under specified operating conditions.”  For example, 
the DART II system reliability and data return goal is 80%. (Meinig 2005)  In this paper we are using 
Stochastic Petri Nets (SPN) to model the DART II system of systems and its operating environment.  
SPN structures are state-space based, so the dynamics of a system can be fully captured.  However, unlike  
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Figure 2: The DART II System - A System of Systems (Source: NOAA Center for Tsunami Research, 
2011) 
 

 
 

 

 

 

 

 

Figure 3: Sea-Surface Height, DART II Buoy Station 21418, March 2011  (Source: NDBC, 2011b) 
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Markov chains, where each state represents the system as a whole, in SPN the states of individual compo-
nents are described, and the state of the system inferred from the states of its components.  This “local” 
view facilitates modeling system aging and often mitigates the state-explosion problem as well.  Solutions 
to SPN can be obtained either by converting the problem to a Markov chain (in the case of systems with 
constant transition rates) or via Monte Carlo simulation. 

SPN models a system in terms of its static (structural) and dynamic (entities) components.  In SPN, 
entities are represented as tokens and places represent the possible states of those entities. (Volovoi 2004)  
The places that tokens occupy define a particular state of the system, and tokens move between places, 
simulating changes in the system state.  Transitions between places are described by rules for token 
movements, and transitions only fire when they are enabled (i.e., if certain conditions are satisfied).  

SPN models offer distinct advantages for reliability and maintainability (R&M) modeling.  They pro-
vide a visual means for dynamic changes in system configuration (i.e., moving tokens).  They can model 
concurrent events and a token can have associated with it continuous counters, which allow keeping track 
of the token’s age.  Representing aging effects is a natural extension of colored Petri nets (labels can 
change discretely upon a token’s transition or continuously if a token stays at the same place).  In terms of 
modeling disadvantages, given that SPN models are graphical in nature, they are subject to visualization 
limits when trying to model complex systems.  In addition, their apparent simplicity belies the degree of 
sophistication required on the part of the R&M modeler when portraying complex models with multiple 
interrelationships (e.g., modeling a system of systems). 

2.4 Logistical Modeling 

A key component of a system achieving its design reliability is adequate logistical support.  For example, 
managers are often required to estimate the spare parts needed to sustain a system or a network of special-
ized equipment (e.g., the DART II system).  Such systems are typically composed of many different yet 
essential components (structural elements, sensors, communications, electronics, power sources, etc.). 
When those components fail, they must be replaced or repaired with spare parts before the system can re-
sume operations. 

The Aircraft Sustainability Model® (ASM®) sparing model1 is a system-oriented approach to spares 
management, which was designed to answer a fundamental inventory management question: What mix of 
spare parts is required to keep the system at some desired level of operational availability for a specific 
scenario? (Kline 2001)  The ASM sparing model employs a systems approach that combines probability 
theory and mathematical modeling to produce an optimal sparing solution.  This means a solution in 
which no other mix of spares can provide greater, system-wide availability for the same cost, or, con-
versely, the same system availability for less cost (within the scope of the model assumptions and data). 
In fact, the systems approach, as implemented in the ASM, does not produce merely one solution, but an 
entire range of feasible sparing solutions over a series of possible inventory budgets.  

An important aspect of the ASM sparing model’s systems approach is the extension of the usual 
measures of inventory performance to measures that more directly relate to a particular system.  For in-
ventory performance, that measure is the number of backorders or unfilled demands for spare parts.  Alt-
hough backorders can exist and be measured at any location in the supply system, the most important 
place to measure them is with the end user at the operating storage site.  However, the ASM explicitly 
considers the effect of backorders on the system.  To some extent, this depends on the system’s complexi-
ty, how dispersed the sites are, what policy and procedures exist for cannibalization, what subsystems 
have redundancy, as well as many other factors that must be taken into account.  From these item-level 
expected backorder projections, the ASM derives their probable effect upon the system’s availability. 

Using the requirements computation capability of the ASM sparing model, the user enters a target 
(cost or availability) and the model calculates the optimal spares mix required to meet that target.  From 
this recommended spares mix and system availability target, a corresponding fill rate and logistics delay 
time (the time from when the need for a repair part was identified until the part was delivered to the 
maintenance technician) may be estimated.   
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3 METHODOLOGY 

3.1 Model Roles 

In this paper, we develop a method to apply spares optimization to complex networks of high reliability, 
high redundancy, and high availability equipment.  The results of previous research efforts indicate that 
using the SPN@ Monte Carlo simulation in conjunction with the ASM sparing model can more accurate-
ly represent operational availability in systems with complex configurations (such as a system of systems, 
which may also incorporate redundancy, multi-phased operational mission profiles, and a variety of 
scheduled and unscheduled maintenance practices).  

Reliability models can represent complex redundancies, degraded operations as well as operational or 
non-operational systems, but they do not optimize spares in terms of minimizing mass, volume or cost. 
The ASM, with its analytical optimization, rapidly provides a solution equivalent to finding the lowest-
resource spares mix from millions of simulation trials, but can only model a limited range of redundancy 
structures.  Our goal is to develop an iterative process using SPN@ and the ASM, in tandem, applying the 
strengths of each model.  Together, they provide a more accurate and robust performance measure of the 
total system (e.g., availability or mission success) which also results in a spares mix that is better balanced 
across the disparate systems. 

3.2 Model Scenario 

The initial DART II system of systems modeling scenario that we developed required specifying a num-
ber of characteristics and assumptions, including: 

• Several stations are engaged in detecting the wave 
• For modeling purposes, the stations are arranged in order of their proximity to the event source 
• If a station is operational, the event signal is sent 
• If a station is down, an event signal is not sent.  If a spare part is available, the replacement part is 

installed and the station is repaired (after a maintenance cruise to the buoy location)   
• Statistics are collected on the delay of the tsunami warning response  
• The initial research question is: 

– Probabilistically assess how quickly the tsunami warning system responds to an event. 

3.3 Model Parameterization 

Given the above modeling scenario, the following model parameters (Table 1) were developed from 
NDBC statistics of the 11 Mar 2011 Japanese earthquake and subsequent tsunami (Table 2). (NDBC 
2011b)  These event parameters were supplemented by DART II system parameters as described in 
Meinig (2005). 
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Table 1: Model Parameters 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Developing Mileage and Wave Timing Estimates 
GMT LOCATION DESCRIPTION DISTANCE FROM 

EPICENTER (MILES) 

5:46 EARTHQUATE EPICENTER 0 

6:19 DART II STATION 21418 333 

7:03 DART II STATION 21413 626 

7:16 DART II STATION 21419 817 

 

4 DISCUSSION 

4.1 The SPN@ Buoy Model 

Figure 3 depicts the top portion of an SPN model that represents the tsunami wave propagation from the 
source of the earthquake and the subsequent generation of a tsunami warning.  In SPN’s symbology, the 
small colored circles (tokens) represent relevant entities of the system (e.g., the tsunami, a warning signal, 
etc).  The larger circles are places and represent possible states of these entities (e.g., a buoy station).  To-
kens move between these places, simulating changes in the system state, and the combination of all the 
tokens’ locations (so-called marking) uniquely characterizes the modeled system.  The blue rectangles are 
timed transitions which describe the roles for tokens moving between places.  Tokens are “fired” from 
one place to another via transitions (once certain conditions are satisfied).  The black lines ending in solid 
black circles are “enablers.”  That is, as long as a token is in the enabler’s place of origination, the transi-

N Transition Description Type Values Comments
1 Tsunami initiation Fixed/Uniform varies Controls the timing of Tsunami

2 Tsunami traveling time to first station Lognormal 37 min
First station 21418 - mean value 37 
minutes; standard deviation 0.02

3
Tsunami travel between first and 
second Lognormal 44 min

The difference in Tsunami arrival time 
between the first and the second closest 
stations (21413) - mean value is 44 min; 
standard deviation 0.02

4,6,8 Time to process the signal Lognormal 8 min 8 minutes; standard deviation 0.1

5
Tsunami travel between second and 
third Lognormal 13 min

The difference in Tsunami arrival time 
between the second and the third closest 
stations - mean value 13 min; standard 
deviation 0.02

7
Tsunami travel time between the last 
station and the cost Lognormal 8 hours

Varies  depending on the coast (note that 
Japan cost was reached in a matter of an 
hour)

9,10,11 Failures for each station Exp 1.00E-03

All failures are combined for now, failure 
rate is based on the available  statistics on 
availability. MTTF 1000 days

12, 13, 14 Repairs of each station Lognormal 1 day  1 day - when the boat arrives

15 Clock for starting the boat trip Fixed 365 days Clock indicating the beginning of a new year

27
Delay of the boat trip in reference to 
the beginning of the year Lognormal 90 days

Boat gets there in Spring (so  90 days from 
the beginning of the year). Standard 
deviaion 0.1

24,25,26, 
29, 31, 
33, 37

Service boats travel time between 
the stations (and return to the port) 
without repair Lognormal 7 days Mean 7 days, standard deviation 0.1

17,18,20,
22

Service boats travel time between 
the stations (and return to the port) 
with repair Lognormal 8 days Mean 8 days, standard deviation 0.1. 

19,21,23 Odds corresponding to fill rate Exp vary
Fast exponential distribution  is chosen to 
compete  with transtions 30, 32, 34

30,32,34 Odds complementary to 19,21,23 Exp vary
16, 28, 
36, 38 Immediate transition Fixed Small Small fixed value (value is not important)
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tion where it terminates is enabled.  However, once the place of its origination is empty of tokens, the 
transition is disabled and that portion of the model is deactivated (e.g., a station is disabled). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Top Portion of SPN Model: Wave Propagation and Warning 

 
 The tsunami is initiated with an earthquake which corresponds to the red token moving to the place 
“Tsunami starts.”  The red token moves horizontally from the left to the right reaching Station 1 first.  If 
the station is operational, a corresponding token occupies the “Up” place (i.e., the green tokens), which 
enables transition number 4, so that a Tsunami warning is generated after an appropriate delay (which 
represents signal transmission and processing).  This is achieved by specifying an enabler (an arc that 
originates in the place “Up” and terminates with a solid circle at transition 4.  In the considered version of 
SPN, enablers provide a succinct mechanism of describing a coupling between two different portions of 
the system (and the corresponding token movements).  Enablers require a token to be present in the origi-
nating place in order for the terminating transition to be enabled.  If the station is not operational (and the 
corresponding token is in a “Down” place (the yellow token), then no warning is issued until the wave 
reaches the next station.  This process is repeated until the first operational station is reached by the wave 
(represented by the red token reaching Station 2).  

The failure and repair processes for an individual station are coupled in the simulation, but here are 
depicted separately for the sake of clarity (Figure 4).  In the depicted simple scenario, station repairs oc-
cur when the maintenance boat (represented by a blue token) reaches the station.  Similarly to the top-
level model, enablers are used to represent the coupling behavior.   

Figure 5 depicts a model that corresponds to a more realistic scenario with logistics considerations 
taken into account.  As the boat arrives at Station 3, and this station is down, then transitions 23 and 34 
are enabled.  The speed of those transitions is selected based on the fill rate (that is, the chances that the 
boat has the spare parts needed to repair the station – corresponding to transition 23 and the complemen-
tary chances given to transition 34).  If transition 34 fires, the color of the boat token changes (the corre-
sponding integer is increased by one).  If the station is operational, the boat token is fired through transi-
tion 26 instead.  Similar events occur at the other stations.  If the starting color of the boat was 0, then 
after it visited all three stations the boat token’s color will indicate the number of unfilled repairs.  If that 
number is greater than zero, then transition 35 fires indicating the need for the boat to return (otherwise 
transition 36 fires).  Finally, transitions 17 and 24  are invoked for the colors that are larger than zero (that 
is for the boat on its second trip), and the token’s color is restored to zero. 
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Figure 4: Simple Logistics Portion of the SPN model 
 

 

 
 

Figure 5: Repair Model Including Logistics 
 

4.2 Initial Results  

The ASM sparing model requires four types of input data.  For system configuration data, Figure 1 was 
used to define the first indenture surface and sub-surface components of the DART II buoy system (e.g., 
the transducers, batteries, antennas, etc.) modeled.  Unfortunately, component-level reliability data was 
unavailable, however, the surface and subsurface components have a design maintenance interval of ap-
proximately 2 and 4 years (respectively) (Meinig 2005).  So, illustrative MTBFs were created for the 
components, ranging from 1.5 to 3 years, with electronic components being assigned relatively longer 
MTBFs than structural components.  Similarly, while the purchase cost of each component was not avail-
able, a DART II buoy’s overall cost was given as $250,000 (Kong 2002).  Thus, illustrative component-
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level costs were developed ranging from $500 (for simpler items such as batteries) to $25,000 (for the 
electronic and sensor systems).  Finally, illustrative logistics times were developed.  A 1 year order and 
ship time was assumed, along with component repair times and purchase lead times ranging between 1 to 
12 months (proportionate to component complexity).   The ASM results are summarized in Table 3.    
 

Table 3: ASM Sparing Model Results 
 
 
 

 
 
 

  
 
 Multiple SPN@ simulations were run to find individual station availability, as a function of time 
(Figures 6, 7, 8) for the fill rates and logistics delay times (LDT) from three ASM runs (for targeted avail-
ability 75%, 85%, and 95%).  The simulation starts on January 1, 2010 and runs for two years.  While the 
time-averaged availability is about 84% (NOAA’s target), before the repair crew’s visit the availability 
can be significantly lower (at the time of the earthquake it is about 72%).  One can observe that as the tar-
geted availability increases the second “bump” in the availability curve (the supplementary repair cruise) 
vanishes.  Note also a slight time displacement for each station’s availability curve due to the particular 
order in which the repair crew visits individual stations.  
 

 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 6: Availability of Individual Stations as a Function of Time. Parameters correspond to ASM case 
with targeted 75%. 
 
 
 
 
 

Input Ao Output Ao Buy Cost Fill Rate LDT
75 75.3 508,000$ 93.6% 146.96
80 80.3 535,000$ 94.7% 138.10
85 87.3 585,000$ 96.4% 115.75
90 91.4 627,000$ 97.5% 111.96
95 95.6 694,000$ 98.6% 73.94
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Figure 7: Availability of Individual Stations as a Function of Time. Parameters correspond to ASM case 
with targeted 85%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Availability of Individual Stations as a Function of Time. Parameters correspond to ASM case 
with targeted 95%. 
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Figure 9 depicts the cumulative probability function of the system generating a tsunami warning (each 
step represents the warning generated by a respective station) .  Within the chart’s precision, logistics de-
lay does not affect the system’s performance for the considered date. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5: Probability of Warning Generated as a Function of Time (minutes after the earthquake) 

5 SUMMARY 

The initial results above show the potential benefits available from modeling a system of systems using a 
combination of simulation and analytical models.  The examples show the feasibility of modeling a com-
plex, highly reliable system, thus providing a means to relate system sustainment resourcing to overall 
system performance.  Once all of the DART II system and its support network are modeled, we anticipate 
providing national and international governmental agencies with significant analytical capabilities to 
evaluate their resourcing of the tsunami warning system.   
 For the near term, these initial results are strictly intended to be illustrative of how quantifiable bene-
fit projections may be generated by coupling analytical and simulation models.  We will continue to re-
fine our models and approach as we learn more about the DART II system and its performance.  In the 
virtual simulation environment enabled by SPN, we will provide decision makers a means to efficiently 
evaluate any number of resourcing and funding alternatives for any desired level of tsunami warning sys-
tem reliability.    
 While our model of the DART II system and its support infrastructure remains under development, 
this initial research still provides several generalizable insights: 

• The value of system of systems modeling – a common platform for depicting the dynamic 
behavior of a system of systems is described.  This approach allows for hierarchically con-
structing models, thus keeping the complexity of individual models tractable. 

• A framework to achieve final objective – along with the intermediate results (such as the 
time-dependent availability of individual stations),  the success of achieving final objectives 
(e.g., issuing timely tsunami warnings) can be evaluated quantitatively using a combination 
of modeling approaches. 
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• SPN provides a modeling environment ideally suited to the compact representation of system 
of systems. 

• Managerial insights for evaluating resource requirements vs. system performance/reliability –  
using this approach, level-field trade-offs can be conducted to develop an optimal path to im-
prove the likelihood of achieving a desired final objective. 
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