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ABSTRACT

This paper investigates how the conditional value-at-risk (CVaR) can be used to mitigate risk in hazardous
materials (hazmat) transportation. Routing hazmat must consider accident probabilities and accident
consequences that depend on the hazmat types and route choices. This paper proposes a new method for
mitigating risk based on CVaR measure. While the CVaR model is popularly used in financial portfolio
optimization problems, its application in hazmat transportation is new. A computational method for
determining the optimal CVaR route is proposed and illustrated by a case study in the road network
surrounding Albany, NY.

1 INTRODUCTION

Accidents involving hazardous materials (hazmat) are well known low-probability, high-consequence in-
cidents. While the probability of hazmat accidents is very low, the consequence can be catastrophic. The
U.S. had about 15,000 hazmat accidents in the year 1998 of which 429 were classified as serious accidents
(Kara and Verter 2004).

We develop a new routing method to determine the safest route for hazmat transportation. Recently
proposed value-at-risk (VaR) models for hazmat (Kang, Batta, and Kwon 2011b, Kang, Batta, and Kwon
2011a) provide a flexible decision making framework for routing hazmat. This paper extends the framework
to conditional value-at-risk (CVaR) models.

In this paper, we assume that link accident probabilities are known constants, although in real settings
the accident probabilities may be random and follow probabilistic distributions. At the same time, however,
the data to compute theses probabilities is very limited as hazmat accidents are rare events. Therefore
it is best to assume that the accident probabilities are constant. Such an assumption brings a unique
feature to the hazmat VaR/CVaR problem which is different from VaR/CVaR in other applications including
financial portfolio management. While the risk measure in finance VaR/CVaR problem is normally assumed
continuous, the risk measure (accident consequence) in the hazmat VaR/CVaR problem is a discrete random
variable.

VaR has been criticized (Nocera 2009, Einhorn 2008), especially after the recent financial crisis in
2007-2008. One criticism is that VaR cuts off and ignores what would happen in the tail. The same
argument applies to the use of VaR in hazmat transportation. A road segment with very small accident
probability but very large accident consequence can be cut off in VaR computations. CVaR however has
better behavior in long tail accounting for losses exceeding VaR (Sarykalin, Serraino, and Uryasev 2008).
This provides a motivation for this paper.

However, for avoiding the most catastrophic accident consequence, government interventions such as
curfews and road bans may be better approaches. Suppose that the accident probability when traversing
Wall Street in New York City is very small; a hazmat accident consequence on this same street segment
is undoubtedly large. It is quite obvious that we do not want hazmat trucks traveling frequently on Wall
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Street. Therefore restrictions are better than any other routing methods in such cases. Before determining
the hazmat route, we should exclude such road segments with the highest consequences. It is noted,
however, that the CVaR models can avoid the use of large-consequence links by choosing a sufficiently
large confidence level that represents extreme risk-averse attitude.

Compared to VaR, CVaR has better mathematical and computational properties, in addition to the
better behavior in long tail. CVaR optimization problems are in general easier to solve, as CVaR problems
are convex (Rockafellar and Uryasev 2000). This is also true for hazmat applications of CVaR, while
additional computational complexity is added: CVaR optimization in hazmat transportation is a convex
discrete optimization.

The rest of this paper is organized as follows. We provide the CVaR model in Section 2, and a
computational method in Section 3. A numerical example in Albany, NY is provided in Section 4. We
conclude this paper in Section 5.

2 CONDITIONAL VALUE-AT-RISK MODEL

We consider a graph G(N ,A ) and an origin-destination pair. Suppose that we have some estimates of
hazmat accident probability and accident consequence, denoted by pi j and ci j, respectively, in each road
segment (i, j). The expected consequence of a hazmat truck traveling along path l is as follows (Alp 1995):

Rl = ∑
(ik, jk)∈Al

∏
(ih, jh)∈Al ,h<k

(1− pi j)pi jCi j (1)

where Al is the set of all arcs in path l, and (ik, jk) is the k-th arc in path l. The expression (1) assumes
that the shipment terminates once an accident happens in any road segment. It is noted that accident
probabilities pi j are extremely small, usually in the range of 10−8 to 10−6 per mile traveled (Abkowitz
and Cheng 1988). Therefore we can approximate as

∏
(ih, jh)∈Al ,h<k

(1− pi j)≈ 1

Consequently, we obtain the following approximation (Jin and Batta 1997):

Rl ≈ ∑
(i, j)∈Al

pi jCi j

Each path l consists of a set of arcs Al . Let Cl
(k) denote the k-th smallest value in the set {Ci j : (i, j)∈Al},

and pl
(k) the corresponding arc accident probability. Then the risk measure Rl has the following probabilistic

values:

Rl =



0, w.p. 1−
ml

∑
i=1

pl
(i)

Cl
(1), w.p. pl

(1)
...
Cl
(ml)

, w.p. pl
(ml)
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where ml denotes the cardinality of the set Al and w.p. stands for “with probability”. Given Rl as above,
the cumulative distribution function (CDF) of Rl can be derived as follows:

FRl (r) = Pr(Rl ≤ r) =



1−
ml

∑
i=1

pl
(i), if r ≤ 0

1−
ml

∑
i=2

pl
(i), if 0 < r ≤Cl

(1)

...

1−
ml

∑
i=k+1

pl
(i), if Cl

(k−1) < r ≤Cl
(k)

...
1, if Cl

(ml)
< r

We denote the set of all paths in the network by P . The VaR for path l ∈P , with the confidence
level α , is defined as:

VaRl
α = min{r : Pr(Rl ≤ r)≥ α}

For a path l ∈P at the confidence level α , the CVaR is defined as:

CVaRl
α =

1
α

∫
α

0
VaRl

β
dβ (2)

which is in the form of the expected shortfall (Acerbi 2002). For continuous random variables, CVaR
equals the conditional expectation of risk that exceeds VaR. However, for discrete random variables as in
this paper, a more general definition such as (2) must be used (Sarykalin, Serraino, and Uryasev 2008).

CVaR in the form (2) is hard to be considered in an optimization problem format because VaRl
β

and
its integration are not available in analytical form. Following Rockafellar and Uraysev(2000), we consider
the following function:

Φ
l
α(v) = v+

1
1−α

E[Rl− v]+

≈ v+
1

1−α
∑

(i, j)∈A l

pi j[Ci j− v]+

where we denote [x]+ =max(x,0). Then, we can show that the CVaR minimization is equivalent to minimize
Φl

α by choosing a path l ∈P at the confidence level α . That is,

min
l∈P

CVaRl
α = min

l∈P,v∈R+
Φ

l
α(v)

We can write

min
l∈P,v∈R+

Φ
l
α(v) = min

v∈R+
min
l∈P

Φ
l
α(v)

= min
v∈R+

(
v+

1
1−α

min
l∈P ∑

(i, j)∈A l

pi j[Ci j− v]+
)

= min
v∈R+

(
v+

1
1−α

min
l∈P ∑

(i, j)∈A l

mi j(v)

)
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where we defined
mi j(v)≡ pi j[Ci j− v]+

We note that the inner minimization problem is a shortest-path problem with arc travel cost mi j(v). Therefore
we can write

min
v∈R+

(
v+

1
1−α

min
x∈Ω

∑
(i, j)∈A

mi j(v)xi j

)
(3)

where we defined

Ω≡
{

x : ∑
i=O, j∈N

xi j = 1, ∑
i∈N , j=D

xi j = 1,

∑
j∈N

xi j = ∑
k∈N

xki ∀i ∈N , and xi j ∈ {0,1} ∀(i, j) ∈A
}

3 ALGORITHM

In this section, we propose an algorithm for solving the problem (3). Let us define

zα(v)≡min
x∈Ω

∑
(i, j)∈A

mi j(v)xi j =
1

1−α
∑

(i, j)∈A
pi j[Ci j− v]+xi j

Then, the problem (3) is written as
min
v∈R+

Zα(v) = (v+ zα(v)) (4)

We observe that z(v) is a monotonically non-increasing function of v. That is

(v1− v2)[zα(v1)− zα(v2)]≤ 0

for all v1,v2 ≥ 0.
We also note that zα(v) decreases linearly as v increases within each interval of [C(k),C(k+1)] for all

(k) ∈ A . The rate of linear decrease becomes slower (eventually zero), since the number of arcs with
nonzero cost decreases (eventually zero). Therefore the shape of zα(v) is piecewise linear and convex.
Consequently, we conclude that Zα(v) = v+ zα(v) is a convex function of v.

The problem (4) is an one-dimensional convex optimization problem with the non-negativity constraint.
Therefore, the problem can be solved by any line-search technique, with an efficient shortest-path algorithm
like Dijkstra’s algorithm for the evaluations of zα(v).

We propose the following Dichotomous Search Method (Bazaraa, Sherali, and Shetty 2006).

Step 0. Choose two small constants ε > 0 and L > 0. Let [a1,b1] = [0,max(Ci j : (i, j) ∈A )]. Set k = 1.
Step 1. If bk−ak < L, stop; the minimum point v∗ is obtained in the interval [ak,bk]. Otherwise compute

λk =
ak +bk

2
− ε, µk =

ak +bk

2
+ ε

For each v = λk and µ = bk, solve the shortest path problem

zα(v) = min
x∈Ω

∑
(i, j)∈A

mi j(v)xi j

using Dijkstra’s algorithm (or any other efficient algorithm) to obtain zα(λk) and zα(µk).
Step 2. If Zα(λk) < Zα(µk), let [ak+1,bk+1] = [ak,µk]. Otherwise let [ak+1,bk+1] = [λk,bk]. Update k

by k+1, and go to Step 1.
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When the algorithm is terminated, we declare the optimal solution is

v∗ =
ak +bk

2
and the corresponding CVaR value and path are

CVaR∗α = v∗+ zα(v∗)

x∗ = argmin
x∈Ω

∑
(i, j)∈A

mi j(v∗)xi j

respectively

4 NUMERICAL EXAMPLE

In this section, we provide a numerical example of the proposed algorithms in Albany, New York, USA
and its nearby highway network. The transportation network considered consists of 46 nodes and 70 arcs
as presented in Figure 1 (Kang, Batta, and Kwon 2011b).
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Figure 1: Albany Area Highway Network.

The nominal accident probabilities are computed by pi j = 10−6× (length of arc (i, j)) (Abkowitz and
Cheng 1988). The nominal accident consequencesCi j are computed using the λ -neighborhood concept (Batta
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and Chiu 1988). The road length and population statistics are obtained from Department of Transportation
and Department of Commerce websites.

In Table 1, for various confidence levels, we provide the corresponding optimal CVaR paths obtained
by using the algorithm presented in Section 3. We note that each optimal CVaR path remains optimal
within a certain interval of α , while only a few distinct examples are provided in Table 1. The CVaR
problem for each α is solved within 1 second in a generic personal computer.

Table 1: Example Optimal CVaR Paths.

α Optimal CVaR Path
0.999985 {1,28,29,30,31,32,33,34,26,37,36,10,35,11,12}
0.999993 {1,2,3,30,31,32,33,34,26,37,36,10,11,12}
0.999999 {1,2,3,4,5,6,32,33,34,26,37,36,10,11,12}

5 CONCLUDING REMARKS

We have provided a routing method for hazmat transportation applying the CVaR risk measure. Unlike the
VaR optimization model for hazmat transportation, the CVaR model is easier to optimize and the derivation
of a numerical algorithm is more straightforward. While the definition of VaR model is intuitively easier
to understand its meaning, CVaR better accounts the risk in the long tail.

In this paper, we have assumed that the accident probabilities and accident consequences are known
constants. However, in real situations, such data are usually unavailable, which makes the route decision
more difficult. In the future research, we intend to study how we may determine a safe route under data
uncertainty using robust optimization methods.
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