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ABSTRACT

Traditional routing algorithms for real world AGV systems in warehouses compute static paths, which can
only be adjusted to a limited degree in the event of unplanned disturbances. In our approach, we aim
for a higher reactivity in such events and plan small steps of a path incrementally. The current traffic
situation and also up to date time constraints for each AGV can then be considered. We compute each
step in real time based on empirical data stored in a knowledge base. It contains information covering a
broad temporal horizon of the system to prevent costly decisions that may occur when only considering
short term consequences. The knowledge is gathered through machine learning from the results of multiple
experiments in a discrete event simulation during preprocessing. We implemented and experimentally
evaluated the algorithm in a test scenario and achieve a natural robustness against delays and failures.

1 INTRODUCTION

Mobile robots used to transport materials are called AGVs (automated guided vehicles). They increase
efficiency and reduce costs across a wide area of applications, including distribution logistics. Operational
control of AGVs in a distribution warehouse encompasses the task of routing the vehicles, i.e., navigating
them through the warehouse, efficiently to optimize storage and retrieval processes.

The algorithms for routing AGVs in a real world warehouse have many requirements. We consider the
vehicles to operate in a dynamic, lively environment where many unplanned changes happen constantly.
There are obstacles in motion, like other vehicles, which may not move exactly predictably, failures may
occur and also external influences like early arrivals of delivery trucks affect the system. There is no fixed
set of tasks that need to be fulfilled, as jobs are continuously added and may be modified.

Most existing algorithms assume a controlled environment however. Paths for an AGV to a given target
are pre-computed and cannot, or only to a limited degree, be adjusted once vehicles are underway, should
the need arise due to one of the above mentioned changes (Qiu et al. 2002).

In order to improve the ability to deal with such dynamics, we present a routing algorithm that plans
small, incremental steps of the path. In each step, the current traffic situation is considered. This way, any
unplanned events can naturally be dealt with as no path is pre-computed.

However, contemplating only a local horizon does have its drawbacks, as we illustrate in Figure 1 with
a simple example. Two vehicles opposite of each other seek targets that lie behind a narrow corridor from
their point of view. When only a small step is planned in advance, both vehicles would move straight into
the corridor, as this would reduce their respective distance to the target the most, and therefore is the most
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Figure 1: Incremental planning considers only a local horizon, which may lead to bad results.

beneficial action in the short term. This leads to a head-on conflict however, and turns out to be a costly
decision in the long term. The conflict can be avoided by pre-computing complete paths, which means
planning over a global horizon.

Existing routing algorithms that plan incrementally often use a simple heuristic, such as historic
utilization of a floor area (Taghaboni-Dutta and Tanchoco 1995), to estimate future effects, but they can
only consider a very limited amount of information.

By combining material flow simulation and its experimental results with machine learning, we have
developed a novel incremental routing algorithm without the above mentioned drawbacks.

• Our core contribution is the development of a routing algorithm which is able to react well to
dynamic changes in the warehouse, while making more informed decisions than other incremental
planning algorithms, and still computing each step suitably fast for real time operation.
We achieve this result by basing the route computation step not on a simple heuristic, but on a huge
amount of processed empirical data. The data includes knowledge about long term consequences of
each alternative next step and is gathered in a forward simulation of the system. We therefore use
simulation of the system as a source of knowledge for the algorithm. By storing offline simulation
results in a knowledge base that is queried during online operation, we reach the required low
computation times even though a lot of information goes into each decision.

• The vehicles move freely in 2D space and are not bound to predetermined routes. This means that
all available floor space can be used by the vehicles.

• No fixed path or zone definition is required. Given the warehouse floor layout, all computation is
done automatically without requiring any adjustment or manual work.

• In addition to routing each AGV to its target as quickly as possible, deadlines for the AGVs to
reach the target can be considered. AGVs that may miss their deadline can be given priority over
other AGVs, for example.

The algorithm is presented in detail in Section 3, which also includes a proof of termination, i.e.,
iterated steps will result in a deadlock-free path to the target for all vehicles. In Section 2, we present
motion planning and AGV routing theory and classify our approach. We implemented the algorithm in a
discrete event simulator to demonstrate its functionality and experimentally evaluate its performance. We
created a model of a distribution warehouse and compared our approach under sample load scenarios to
appropriate alternative configurations in respect to several key performance measures, such as average task
processing time. Details of the implementation and evaluation results are given in Section 4.

2 RELATED WORK

Much research has been done in the field of AGV routing and various solutions have been developed for
a wide variety of different routing problems. They are uniquely characterized by parameters such as the
application the AGVs are used for, vehicle capabilities and details of the physical space they move in. The
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generic models created in the field of Motion Planning theory (Latombe 1991, LaValle 2006) are useful
to understand and classify each AGV routing problem.

We consider vehicle movement without rotations on a 2D floor with obstacles, which is also known as
the Piano Mover’s Problem. One of the most advanced and fastest algorithms for the problem of finding the
shortest path between two points in 2D space is the so called framed quadtree method (Chen, Szczerba, and
Uhran 1997). However, as we control multiple vehicles simultaneously, the method shall only be called as a
subroutine. As centralized path computation for all vehicles has been shown to have exponential runtime in
respect to the number of vehicles (Latombe 1991), all practical algorithms implement decoupled planning
(LaValle 2006), i.e., independent path computation for each vehicle with some coordination mechanism
that allows vehicles to consider each other as moving obstacles and avoid conflicts. A wide variety of
such mechanisms have been employed (for an overview, see Qiu et al. (2002); Krishnamurthy, Batta, and
Karwan (1993) detail a method that has been improved on in Oboth, Batta, and Karwan (1999)). One
popular mechanism are time windows (Kim and Tanchoco 1991; Desrosiers et al. 1986; Möhring et al.
2004), which are particularly efficient.

Time window based methods are static solutions to the routing problem, referring to the time point at
which path computation occurs. Given a problem instance (a target position for each AGV to reach from
its current position), paths are computed once before the vehicles start moving and are not changed during
operation, hence remain static. While this allows the computation to find a globally optimal path to the
target, changes in the system cannot be considered (Maza and Castagna 2005). It is assumed that all vehicles
follow the path as planned. Unplanned disturbances can only be handled under specific circumstances that
the plan can be adjusted to (Stenzel 2008, ter Mors and Witteveen 2009).

Dynamic, or incremental methods perpetually compute successive small steps towards a target instead
of the whole path. Once a vehicle reaches the end of the current step, the next step is determined. The
current system state can be considered in the computation and dynamic routing algorithms are generally
well suited to react to changes and interruptions (Maza and Castagna 2005). To avoid conflicts between
vehicles, AGVs are typically re-routed in a step (Narasimhan 1999). A major drawback is that the global
optimality of the complete path cannot be guaranteed as only local optimization is done. Taghaboni-Dutta
and Tanchoco (1995), Sakakibara, Fukui, and Nishikawa (2008) and Fanti et al. (1997) detail further
examples of dynamic routing algorithms.

The information that goes into the computation of an incremental step is a distinct feature of a dynamic
routing algorithm. Heuristics such as historic utilization have been used to evaluate different alternative
next steps and determine a solution that is not only locally beneficial, but leads to a globally valuable path
(Taghaboni-Dutta and Tanchoco 1995). So far, only relatively simple heuristics that only include a small
fraction of the relevant available information about the system state have been used. Artificial intelligence
methods have been applied to the problem in Sakakibara, Fukui, and Nishikawa (2008) and Jeon, Kim,
and Kopfer (2011) (the latter method using static paths however) by examining a large number of traffic
situations in a simulation and processing the analysis results. In the related field of job scheduling, similar
ideas involving the use simulation and artificial intelligence methods have been applied (Aufenanger et al.
2008).

For our application, we propose a dynamic routing algorithm that bases the computation of each step
on extensive information about encountered system states. We aim to combine the advantages of dynamic
methods (reactivity and robustness) with those of static methods (global optimality) through the use of
artificial intelligence.

3 DYNAMIC KNOWLEDGE-BASED ROUTING

We present a solution to the problem of routing multiple AGVs within a distribution warehouse between
pickup and drop off points under consideration of a dynamic environment. We first provide an overview
of how our algorithm operates in Section 3.1 and break down its individual components in Section 3.2 and
Section 3.3.
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Figure 2: Example illustrating the principal operation of the routing algorithm.

3.1 Principal Operation

Given an initial position and goal for each AGV, the algorithm incrementally computes path segments
for the vehicles to follow. The computation consists of three steps as described below and illustrated
conceptually in Figure 2:

1. a) For each AGV, compute the euclidean shortest path from its current position to its goal using
the framed quadtree method (Chen, Szczerba, and Uhran 1997). Each path is cut off just at the
point where it would first cross another AGV’s path and a collision would occur (highlighted by
a lighting bolt in Figure 2). b) The AGVs move along this path with constant velocity until they
reach their cut off point, minus an offset.

2. The collision is avoided by re-routing the AGVs according to one of a limited set of defined
re-routing rules. In Figure 2, AGV1 seeks an evasion point so that AGV2 can continue following
its shortest path. Which rule to use is determined based on the current system state by accessing
the knowledge base. It contains information about situations previously encountered in the offline
simulation and for which the optimal rule is given.

3. After successful re-routing, go to step 1, i.e., compute the shortest paths to the targets from the
AGVs’ new positions. In Figure 2, the paths of AGV1 and AGV3 cross and the process is repeated.

Once all AGVs have reached their goals, the algorithm terminates.

Our algorithm is dynamic, as only incremental steps (until the next predicted conflict) are planned
and therefore, the re-routing procedure can be based on the current system state. Dynamic processes like
additions or modifications to the task set, delays in AGV motion or failures can naturally be handled. We
simulate the system a priori and solve conflicts between AGVs by evaluating the effects of applying each
different re-routing rule. We are able to consider not only local implications of the re-routing step (i.e., the
situation of the two involved AGVs directly after the diversion), but rather global and long term effects as
we look ahead in the simulation by a significant amount of time.

The knowledge gathered allows the algorithm to determine the action to take when encountering a
new situation, based on what proved to be a good action in previous, similar situations. It is therefore
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necessary to provide the system with an appropriate amount of relevant example situations. The exact
number required can be determined by measuring the performance with increasing quantity, until no further
improvement can be seen. We store these situations, along with the corresponding optimal rule to apply,
and build up a knowledge base by learning from these experiences using methods of artificial intelligence,
specifically inductive learning algorithms. Further details concerning the knowledge base are laid out in
Section 3.3.

Figure 3 gives a broad overview of how the different components of the system are interconnected. The
central AGV Routing component manages the vehiclesAi and repeatedly calls the Shortest Path Search, i.e.,
the framed quadtree method, to compute paths between two points, like between an AGV’s current position
and its target, or an evasion point. When vehicles reach the cut off points, calculated by the integrated
collision detection algorithm, it accesses the knowledge base in step 2 of the algorithm to determine the
rule to re-route the vehicles. The knowledge base contains the processed data from the forward simulation.

Access to the knowledge base during online operation takes very little computation time, which is
crucial for the use of the algorithm in a real-time system, as running the forward simulation in each instance
would not be feasible. The re-routing rule must be determined quickly enough so that vehicle motion is
not interrupted. The computation time of each round of the algorithm also includes the time needed by
the framed quadtree algorithm (step 1), determining collision points and applying the re-routing rule.

We are able to show that iteratively executing the algorithm will result in all vehicles reaching their
targets, i.e., the algorithm terminates and deadlocks are avoided, for two vehicles (N ≤ 2) as each conflict
between two vehicles is treated independently. We have implemented some measures to resolve conflicts
between more than two vehicles, for example in some cases one vehicle waits for the other two to resolve
their conflict. These cases have been found to occur very rarely and do not impede the algorithm’s
functionality in practice.

We design each re-routing rule to fulfill the following requirement: at the end of the re-routing step, at
time point x+1, the distance of at least one vehicle i to its target, di,x+1, has been reduced by at least some
constant ε, while the distances for all other vehicles do not increase. Therefore, the sum of all distances
decreases between each time point:

N∑
i=1

di,x >

N∑
i=1

di,x+1 + ε for some constant ε (1)

Due to the decrease in each time step, expressed in (1), the sum of all distances converges with
increasing time x and will become zero:

lim
x→∞

(

N∑
i=1

di,x) = 0⇒ ∃x : di,x = 0 ∀ i (2)

If at each time point x, a re-routing rule can successfully be applied with the specified requirement,
this succession of applying re-routing rules will lead all vehicles to their target, as (2) shows due to the
distances all becoming zero. The ability to execute the re-routing procedure and fulfill the requirement
will be analyzed for each rule in the following section along with a detailed presentation.

3.2 Rules for Re-routing

The re-routing rules represent high level choices made by the algorithm and they must specify how both
vehicles (AGV1 and AGV2) involved in a conflict continue their path computation and resolve the situation.
We follow an idea from (Sakakibara, Fukui, and Nishikawa 2008) and provide three rules corresponding
to different degrees of prioritization, adapted to free vehicle motion in 2D. For each rule, we examine the
computation cost and how to fulfill the requirement that the sum of the distances decreases, as mentioned
in Section 3.1.
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Figure 3: A broad overview of the algorithm.
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Figure 4: Application of Rule 2: AGV2 is given priority, AGV1 computes a point to evade to (indicated
by a star). AGV2 continues on its original path, while AGV1 evades and then resumes moving towards its
target.

Rule 1: AGV1 simply remains stationary for a certain amount of time, while AGV2 considers it a static
obstacle and resumes moving, if AGV1 does not block its path. AGV1 waits as long as its future path,
after starting up again, does not cross AGV2’s path. As AGV1 keeps its distance to its goal and does not
interfere with AGV2, the sum of the distances is reduced. Rule 1 can be applied with reversed roles of
the vehicles as well. The rule is realized by adding a bounding box of AGV1 to the set of static obstacles,
creating a new framed quadtree from it, and perform a search on it.

Rule 2: AGV1 evades by seeking an evasion point so that AGV2 can simply follow its shortest path to
its target (see Figure 4). The evasion point is only accepted if AGV1 is able to move to it, and from there
to its target(perhaps after waiting at the point) without again conflicting with AGV2 before having reduced
its distance to its target. This shows that Rule 2 fulfills the requirement for re-routing rules. As checking
an evasion point involves multiple calls to the framed quadtree algorithm, we define a search strategy for
evasion points. As shown in Figure 4, points in varying distance of AGV1 on a line perpendicular to
AGV2’s path are evaluated, which correspond to a natural sidestep motion. If they are not accepted, other
points on radial rays are checked.

Rule 3: Both vehicles evade each other (see Figure 5). They try to find paths to their targets without
conflicting before having reduced their distances to the targets. The rule is implemented by first searching
in a new framed quadtree that treats the respective other vehicle as static obstacles, similar to Rule 1. If
this fails, a search pattern on radial rays, similar to Rule 2 is applied, and both vehicles search for valid
evasion points in parallel. The strategy is to construct the rays in a way that the vehicles move away from
each other. As no vehicle is given priority, only one instance of Rule 3 exists.

It is noted that Rule 2 displays the highest priority for the respective prioritized vehicle, as it is
guaranteed to follow its shortest path. Rule 1 corresponds to modest prioritization, while Rule 3 fairly
resolves the conflict.
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Figure 5: Application of Rule 3: Both AGVs evade each other by treating each other as obstacles at first,
which fails in this case, and then computing evade points in parallel.

It is now clear that the routing algorithm chooses between five discrete instances of the three re-routing
rules to resolve each conflict, while every instance specifies the exact path for the two involved AGVs.
The knowledge base must then map every situation to one of these instances.

3.3 Knowledge Base and Information Acquisition Through Simulation

In step 2 of the routing algorithm, we need to determine the “best” rule in respect to long term benefit,
depending on the current traffic situation. Key issues in the design of the knowledge base are defining a
situation, how to measure the long term benefit, and how to gather and store all accumulated knowledge.

A situation definition needs to contain all system parameters relevant to making the decision of which
re-routing rule to apply. We therefore include the following attributes:

• The positions (p1x , p1y), (p2x , p2y) of both vehicles involved in the conflict. They are in absolute
coordinates as the location within the warehouse (as neighboring obstacles have an effect on how
to resolute the conflict) is expected to be relevant.

• Target positions (z1x , z1y), (z2x , z2y) of both vehicles.
• Deadlines d1, d2 of both vehicles, which are needed to prioritize a vehicle with a deadline in the

near future, should this be beneficial.
• The positions (pix , piy) of all other vehicles in the warehouse. This information allows to take

future collisions with nearby AGVs into account.

A situation is then defined by the product of all attributes.
During preprocessing, we generate the example situations, based on application load scenarios. We

measure the long term benefit of each possible action by simulating the system forward, in order to determine
the best one. The module that computes the best action to a situation is called the Rule Expert, as depicted
in Figure 3.

We simulate the different scenarios after applying each of the five rule instances, described in Section
3.2. At each consecutive conflict, all five rules are applied again, so that all possible “futures” are explored.
The problem can be seen as a graph search (we specifically use uniform cost search (Russell and Norvig
2009)), with each node corresponding to a situation. To reduce the computation time of the exploration,
we employ a heuristic to determine which subtrees in the graph can safely be disregarded.

In any graph search, the nodes are explored until a goal node is found, which we define as a situation
where each AGV is at its target position. We define a cost for each node as the time needed to get to that
state from the root node, and add a penalty for each vehicle that missed its deadline in that situation.

Looking back at the original situation, we then evaluate each of the five rule instances by looking at
the long term consequences. Once a goal node has been found, we can look at which rule is the first on the
path to that goal node, i.e., which rule lead to the situation. A rule that results in late arrivals is deemed
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to be bad, and the rule that leads to the goal node with the fewest cost is determined to be the best one in
that situation.

By storing the results to the so called training set, we will later, during online routing, base the decision
for new situations on them. We exploit the natural observation that an action, which proved to perform well
in a similar situation, will typically also be good in the new one. The training set is processed by a learning
algorithm that is designed to extract patterns and knowledge from the data, and outputs a trained knowledge
base. The process is also known as inductive learning (Russell and Norvig 2009). New situations can
then classified, or assigned to a group of known situations using a measure of similarity. Each learning
algorithm employs different approaches to measuring similarity however.

In addition to learning from the preprocessed training set, we are also able to learn from decisions
made online in the real system, as they constitute further examples and can simply be added to the training
set.

We use two different learning algorithms that have found wide spread application. The first is called
C4.5 and builds up a “decision tree” (Mitchell 1997). The second outputs a trained “artificial neural
network”, it is called the back propagation algorithm (Hassoun 1995). Both can be queried, i.e., determine
a rule given a situation, very quickly. Specifically, the computation time is independent of the amount of
training examples, it only depends on the fixed amount of attributes in the situation definition.

The knowledge stored in the trained models is based on what the Rule Expert computes. Through
forward simulation, it is able to evaluate a rule based on its long term effects, and involves expensive
computations of different scenarios. Yet the computation results can quickly be accessed during online
decision making.

4 EVALUATION

We have implemented our routing algorithm in the discrete event simulator d3fact (Dangelmaier and Laroque
2007) as a means to validate and evaluate our approach. We used the artificial intelligence library “Weka
3.6” (Witten and Frank 2005) as it contains suitable implementations for the knowledge base and learning
algorithm (as in Figure 3). During preprocessing, d3fact outputs the generated training set to a file that
Weka processes, and the resulting trained models are then saved to hard disk. During simulation of the
online system, the trained models can easily be accessed from d3fact through Weka interfaces, as both are
written in the Java programming language.

We created a model of an exemplary distribution warehouse as a test setting for the algorithm. As
illustrated in Figure 6, it consists of different types of rectangular storage racks, which are static obstacles for
the AGVs. The racks form hierarchical zones that resemble the structure of typical real world warehouses.
From the input load ramps, goods are first transported to a nearby commissioning zone, from there to a
block storage area for temporary buffering, and later to a high capacity pallet rack for long term storage.
The same process happens in reversed order for retrieval of goods to fulfill request at the output loading
ramps. An additional mechanism is needed to avoid overcrowded loading ramps: we allow only one AGV
to work at the same ramp simultaneously. The remaining vehicles may process tasks in other zones.

The AGVs are assigned tasks to move materials between defined pick up and delivery points in the
lanes between the racks of the different zones. AGVs move to the points to access or place goods in the
racks as forklift trucks would. We model the process of accessing the racks and pickup up or dropping off
goods by a time delay. The space between two pallet racks is wide enough for just one vehicle, which has
a diameter of 2, 50m. We assumed the standardized base area of a pallet (1, 20m × 0, 80m) and typical
warehouse capacities when creating the model, which has an area of 32, 61m× 46, 60m.

Given a random initial inventory in the warehouse, we simulate the dynamic processes. Delivery trucks
arrive at a loading ramp and deliver or retrieve a set of goods (here 17 out of 9 categories of materials),
which implies a set of tasks for the AGVs, of which there are three in the setting. They are required
to transport the delivered goods to the storage racks, or transport requested goods to the output loading

1680



Klaas, Laroque, Fischer, and Dangelmaier

Figure 6: Layout of the test case warehouse. There are distinct, hierarchical zones for storage and retrieval
of goods that define a direction of material flow.

ramp. We use simple strategies to determine how tasks are assigned to vehicles, as we aim for an isolated
evaluation of the routing algorithm.

We use the simulation for two purposes: As a benchmark for the routing algorithm, and also to generate
the training set during preprocessing. We run the simulation repeatedly with a load configuration that we
anticipate for later operation: 80 to 140 trucks, evenly distributed over a time period of 1.5 million time
units. We save any encountered situations, of which we generated approximately 45000, along with the
result of the Rule Expert search (see Section 3.3).

For the application, the primary optimization goal of the routing algorithm is to serve the set of delivery
and retrieval tasks within a specified time that the delivery trucks demands from the warehouse. Following
this thought, we measure two metrics in an experimental simulation run to quantify the routing algorithm’s
performance:

1. Average task completion time for critical tasks, which are tasks to move goods from or to loading
ramps that directly affect the delivery truck’s waiting time. The task completion time is considered
relative to the task’s deadline.

2. The average delay per delivery truck, which is the latest completion point each truck’s demands.

We are not able to quantify the benefit that our approach has compared to other AGV routing algorithms,
as no known one exists that exactly fulfills our requirements (e.g., dynamic task set, free roaming vehicles)
or that could be easily adapted to suit our specific application. We rather demonstrate the algorithm’s
functionality and evaluate components of our algorithm by exchanging them with other alternative solutions.

Instead of accessing the knowledge base to determine a rule to resolve a conflict (in step 2 of the
algorithm, see Section 3.1), we use simpler heuristics. The heuristics compute a value between −2 and
+2, which corresponds to a rule as detailed in Section 3.3: A value of −2 equates to Rule 2 (strong
prioritization of one vehicle), −1 to Rule 1 (modest prioritization), 0 to Rule 3 (no prioritization), with +1
and +2 meaning the respective rule with reversed roles. We have evaluated the following heuristics:
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• Random: Choose a rule randomly.
• Earliest Deadline First (EDF): Give priority to the AGV iwith the earliest deadline di. Compute the

rule according to the formula: d1−d2
norm , where norm is a normalization factor. We chose norm = 500,

meaning that we assume a difference of 500 time units to make a significant impact.
• Nearest Robot First (NRF): The AGV i with the lowest straight line distance (disti) to the goal is

chosen. Compute the rule according to the formula
dist1 − dist2
dist1 + dist2

· norm. norm normalizes the

impact of one unit in space on the computation, we chose norm = 20.

Additionally, we computed lower bounds by disregarding collisions of vehicles: they are allowed to
simply follow their shortest paths and move through each other. Obviously, no routing algorithm can
achieve a better result. We also evaluate the Rule Expert by performing the forward simulation in each
instance, which cannot be done in real time operation, but is possible to do in this experiment.

Figure 7 and Figure 8 show the results of experimental simulation runs. While the times for average
task completion time show relatively little difference, the average delay of delivery trucks varies by about
10% between the best and worst alternative. It can be seen that the NRF heuristic and both knowledge
bases perform significantly better than the remaining two heuristics. It is surprising however that consulting
the Rule Expert in each new instance does not lead to better results. It explains why both knowledge bases
do not score higher as well, as they process what the Rule Expert provides and have to rely on that data.

To support this assumption, we have evidence that both learning algorithms more closely resemble the
Rule Expert’s decisions with an increasing amount of training examples. We have measured the amount of
situations that are mapped to the same action as the Rule Expert, and it grows from 42.2% (2500 training
examples) to 52.4% (45000) for the decision tree knowledge base.

We were able to show that the system functions as was expected and is able to fulfill the dynamically
demanded tasks for delivery trucks. The system was able to learn from artificial experiences, if not to the
expected degree, as it relies on generated knowledge that cannot be guaranteed to be optimal.

5 CONCLUSION

In this paper we present our approach for the routing of free roaming AGVs in a distribution center. The
free roaming ability allows for a more efficient usage of available floor space and does not require any
prior path definition.

We introduce an improved decision making process for routing multiple vehicles and prove its strength
by a first utilization within a given application area. With our approach, we gain a higher flexibility in reacting
to occurring disturbance events during the execution by computing subparts of the entire transportation
path. In order to overcome the limitations of existing approaches, we use a machine learning algorithm
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to select the best situation-dependent decision rule, based on each single situational setting. For real-time
application of our method, an initial training through a learning algorithm has to be done in advance. Here
we use discrete, event-based simulation for the creation of multiple training situations with lots of decisions
to be made, and again use the results of a simulation of different alternative decisions in order to judge
the quality of each decision and save the best alternative to a training set. By supplying the results of the
computations, we improve the training set until the created knowledge base works sufficiently. Then, we
may again learn from our decisions in the real-time application and improve the training set with each
decision. Moreover, within this approach, we are able to react to environmental changes and learn good
decision rules for the changed underlying system.

The presented approach is today limited to the decision making process of the concrete routing of
each AGV in the given setting, although there are multiple decisions to be taken for the application of a
usable, knowledge-based floor control for a distribution system. During the next steps, we will therefore
expand our approach to the selection of a specific combination of decision rules for routing, dispatching and
selection of transport gates for delivering trucks, etc. This way, we will iteratively build up a knowledge
base which is able to select a good combination of decision rules, depending on a specific overall situation
for the distribution center. A possible answer for the breakdown of a specific AGV then might be the
change of an arrival gate for a certain delivery truck, a change in the dispatching of orders and a following
rearrangement of the priorities of the AGVs and their successive routing.
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