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ABSTRACT 

We consider an inventory system for continuous decaying items with stochastic lead time and Poisson 
demand. Shortage is allowed and all the unsatisfied demands are backlogged. Moreover, replenishment is 
one for one. Our objective is to minimize the long-run total expected cost of the system. Firstly, we have 
developed the mathematical model with deterministic lead time. Since the stochastic lead time makes the 
model complex especially when lead time has complicated probability distribution and it is difficult to 
prove convexity of the objective function, we have applied simulation modeling approach. The simulation 
model has no limitation on lead time or any other parameters. The simulation model is validated by 
comparing its outputs and analytical model’s results for the deterministic lead time case. Furthermore, we 
use optimizer module of the applied software to find near optimal solutions for a number of examples 
with stochastic lead time.     

1 INTRODUCTION 

In the literature different concepts of deterioration were mentioned. Raafat (1991) categorized 
deteriorating items into two different groups. Firstly, items which become obsolete simultaneously at the 
end of planning horizon, such as style goods or classic newsboy problem. Secondly, items which 
deteriorate during their planning horizon. This category has been divided into two classes by Raafat: (1) 
items which have a fixed shelf life such as blood and (2) items which have random life time and decay 
continuously such as radioactive materials. Our model is about items of second group which have random 
life time or on the other hand continuous decaying items. “In many inventory systems, the deterioration of 
goods is a realistic phenomenon. It is well known products such as medicine, volatile liquids, blood bank, 
food stuff and many others decrease under deterioration (vaporization, damage, spoilage, dryness, and so 
on) during their normal storage period. As a result, while determining optimal inventory policy of that 
type of products, the loss due to deterioration cannot be ignored” (Dye, Hsieh, and Ouyang 2007).    
 "The analysis of decaying inventory problems began with Ghare and Schrader (1963)" (Raafat 1991). 
Since 1963 a lot of research has been conducted in this area. Unfortunately, most of these studies were 
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concentrated on deterministic demand. It could be concluded from the papers that reviewed research from 
beginning to 2000 (consisting of Goyal and Giri 2001; Nahmias 1982; Raafat 1991) that there were few 
studies which assume stochastic demand. Although, researchers do not pay sufficient attention to 
stochastic continuous decaying inventory models, there are lots of studies on different kinds of 
deterministic demand. Li, Teng, and Wang (2007) and Hsieh, Dye, and Ouyang (2008) are two examples 
of considering constant demand rate for deteriorating inventory items. Li, Teng, and Wang (2007) 
developed an EOQ based model with deteriorating items for a supply chain involving a retailer and N 
customers by considering postponement strategy. Hsieh, Dye, and Ouyang (2008) established a model for 
deteriorating items with constant demand rate and two warehouses (own and rented) to consider capacity 
limitation. There are also many research efforts that consider time-varying demand in deteriorating 
inventory models. Papachristos and Skouri (2000), Goyal and Giri (2003), Sana, Goyal, and Chaudhuri 
(2004), and Chern et al. (2008) are such studies. In addition there are considerable deteriorating inventory 
models with price-dependent demand. Dye, Hsieh, and Ouyang (2007) and Dye, Ouyang, and Hsieh 
(2007) provide such models. Furthermore a large number of papers have been published recently for 
deteriorating items inventory model with stock-dependent demand such as Teng and Chang (2005) and 
Chang, Teng, and Goyal (2009). But there are few research efforts for deteriorating inventory items with 
stochastic demand, even though in real world demand is usually stochastic. “Stochastic demand inventory 
models have received considerably less attention, particularly those papers that have been published after 
the Goyal and Giri, 2001” (Lodree and Uzochukwu 2008). Lodree and Uzochukwu (2008) developed a 
production planning model for a deteriorating item with stochastic demand and consumer choice. As their 
model was developed for an agricultural product which perishes after a known number of periods, they 
assumed positive procurement lead time. “The complexity of decay models having random demand 
depends strongly on the lead time assumptions. When lead times are zero, determining optimal order 
policies is relatively straightforward” (Nahmias 1982). As a result of this fact, not only in all the above 
mentioned papers (except Lodree and Uzochukwu 2008) but also in a large number of studies lead time 
have been assumed negligible (zero lead time). There are some stochastic inventory models for 
deteriorating items in which positive or stochastic lead time are considered. Kalpakam and Sapna (1994) 
in their paper analyzed an (s, S) exponential decaying system with Poisson demand and exponentially 
distributed lead time. They assumed demands during stock-out periods are lost. Sivakumar (2009) 
developed an inventory model for exponential decaying items. In that model a finite number of 
homogenous sources of demand were considered. (s,S) inventory policy and exponentially distributed 
lead time were assumed by Sivakumar (2009). In addition, it was considered that demands occurring 
during stock-out periods enter into an orbit. The orbiting demands send out signal according to 
exponential distribution to compete for their demand. The system has been analyzed as a Markov process.  
 To the best of our knowledge, there is no research in the field of deteriorating items inventory models 
with stochastic demand and lead time unless lead time is exponentially distributed. Analyzing models 
with stochastic demand and lead time is necessary for real world problems. In this article we develop a 
stochastic inventory model for continuous decaying items with stochastic lead time. We assume a 
warehouse where customers enter the system according to Poisson process and the warehouse inventory 
policy is base-stock policy (s-1,s). Shortage is allowed and unsatisfied demands are backlogged. Lead 
time is assumed to be stochastic and we try a number of different probability distribution as our model's 
lead time. As it is stated before, stochastic lead times make models complex, especially when demand is 
stochastic too. We develop a mathematical model but it is complicated to obtain an exact solution and it is 
too difficult to prove convexity of the model. Thus, we solve the problem by establishing a simulation 
model. We show the simulation model's solution is near to exact solution when lead time is deterministic 
as validation for the simulation model. After validating the model, we start finding near optimal solution 
for stochastic lead times.  

In our analytical model we take advantage of the approach which is offered by Axsäter (1990). 
Axsäter (1990) developed a two echelon model for non-deteriorating items in which expected cost per 
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item is calculated. Other assumptions of Axsäter's model are exactly same as our model except 
deterministic lead time.  

2 ANALYTICAL MODEL 

2.1 Model Description 

As it is stated before, in this model we have a warehouse where customers enter the system on the 
basis of Poisson distribution. Each customer needs just one unit of the product. Since the items are 
deteriorating according to exponential distribution, each time a customer orders one unit of the product, 
the warehouse orders an outside supplier (1+α) unit. After L0 time unit warehouse's order is delivered. We 
will discuss more about the extra amount (α) later. Shortage is allowed and all unsatisfied items are 
backlogged. The inventory system is demonstrated in Figure 1: 

 
 
 
 
 
 
 

Figure 1: The inventory system 

The analytical model of the problem is developed on the basis of the following assumptions: 
 Customers are served on the basis of first come, first served rule. 
 Replenishment is one for one. 
 Holding cost is calculated on the basis of amount of the product which is delivered to the 

warehouse. 
 Shortage is allowed and all the unsatisfied demands are backlogged.  
 Deterioration rate is constant. 
 
We introduce the following notations for the model's parameters:  

L0: lead time 
λ: demand intensity at the warehouse 
h0: holding cost per unit per time unit at the warehouse 
β: shortage cost per unit per time unit at the warehouse 
γ: deterioration cost per unit 
θ: deterioration rate which is constant and 0<θ<1 

Notations for the model's decision variables are as follows: 
S0: inventory position at the warehouse 
α: extra amount of the product ordered by warehouse 
 

 When customers enter the warehouse according to Poisson distribution with a rate λ, distribution of 
the time elapsed between the placement of an order and occurrence of its assigned demand will have 
Erlang distribution with parameters (λ,S0). We show the density function of the Erlang distribution by 
gS0(.): 
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We show the corresponding cumulative distribution function by GS0(t; λ): 
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When a demand occurs at the warehouse, (1+α) new unit is immediately ordered from the warehouse 
to the outside supplier. We designate this time as time zero. Note that the warehouse orders more than one 
unit for deterioration of the items during the lead time. If customers order while the warehouse is out of 
stock, the demand is satisfied with delay. As soon as units are again available at the warehouse, customers 
are served according to first come, first served rule. Furthermore, when a customer orders during stock 
out period, in fact, the related unit is virtually assigned to the customer. The below lemma which is 
similar to what is stated in Axsäter (1990) is necessary for understanding our modeling approach: 

Lemma. Any unit ordered by a specific customer is used to fill the S0th demand following this order, 
hereafter, referred to as its demand. 

The lemma is an obvious consequence of the ordering and delaying policy (first come, first served).                              
An order placed by a specific customer arrives after L0 time units. If the order arrives before its 

assigned demand, it is considered as inventory stocks and holding cost is incurred. Note that (1+α) units is 
originally ordered and this amount is decreasing during the period between ordering and delivering times 
because of deterioration. If the order arrives after its assigned demand, this customer's order is backlogged 
and shortage cost is incurred. Let H, Π and D denote the expected warehouse inventory holding cost, 
shortage cost and deterioration cost respectively, incurred to fill a customer's demand. 

2.2 Model Formulation with Deterministic Lead Time 

When lead time is deterministic H, Π and D are given by 
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Note that (1+α)e-θL0 is the amount of warehouse order ((1+α)) which remains after the lead time has 
elapsed. In the above expression, holding cost is calculated on the basis of proportion of (1+α) units that 
is delivered to the warehouse.   
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As mentioned before, for s≤ L0 shortage is incurred. According to expressions (2) and (3) we can 
obtain expected shortage cost (Π). Note that each customer orders just one unit of the product. Thus, 
when warehouse can not satisfy one unit demand of a specific customer, shortage is incurred. 
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 Note that first integral shows expected deterioration cost when the customer arrives before his 
assigned demand. And the second one explains expected deterioration cost when the customer arrives 

after the assigned demand. Note that in the analytical model we have just one decision variable,S0. 
The long-run expected total cost is given by 
 

 .)()()()( 0000 SDSSHSC   

2.3 Model Formulation with Stochastic Lead Time 

When lead time is stochastic with a specific density function, which is shown by w(x), holding cost, 
shortage cost and deterioration cost incurred to fill a customer's demand are given by 
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As illustrated above, when lead time is deterministic we can obtain holding, shortage and 

deterioration costs easily. But when lead time is stochastic, these three costs become more difficult to 
obtain. In addition, in this situation it is difficult to show whether the total cost function is convex and 
find the optimal solution. Thus, we build the simulation model of this problem and we show how easy we 
can find solutions in different situations without any limitation on the lead time distribution or any other 
parameters. In addition we can optimize the problem by using optimization module of the applied 
software. Firstly, we show that our model is valid and then we solve three different problems with 
stochastic lead time which is obtained from the literature. In this study we have applied Arena software 
and its optimizer, OptQuest (Kelton, Sadowski, and Sturrock 2004). 

3 SIMULATION MODEL  

3.1 Conceptual Model 

We built the simulation model according to the analytical model's approach which was explained in the 
previous section. The conceptual model of our simulation model is illustrated in Figure 2.   
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Figure 2: A conceptual model of the simulation model 
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3.2 Simulation Model Validation 

We use deterministic lead time to validate our simulation model. For a number of different experiments 
we illustrate there are not significant differences between holding, shortage, and deterioration costs of our 
analytical model and simulation model. Note that the holding cost (H), shortage cost (Π), and 
deterioration cost (D) of our analytical model are obtained according to expressions (1), (4), and (5) 
respectively. In addition, we run our simulation model for 50 replications where each replication takes 
50,000 hours. Table 1 shows the output results of two models, simulation and analytical, for the eight 
different configurations where the model parameters are randomly chosen. Note that the confidence level 
is assumed to be 95%.  

Table 1: Validation Experiments 

Model 
Parameters 

Model 
Cost 

Holding (H) Shortage (Π) Deterioration (D) 

h0=3  β=2  γ=15   α=0.1 
θ=0.01  L0=5  S0=5      

λ=3 

Simulation 1.5695±0.04 6.6731±0.00 0.8048±0.00 

Analytical 1.6078 6.6674 0.8048 

Error  2.382% 0.085% 0.000% 
h0=2  β=5  γ=8 α=0.1 
θ=0.01  L0=12  S0=17  

λ=0.25 

Simulation 109.30±0.08 0 4.2830±0.00 

Analytical 109.2686 1.3527e-007 4.2823 

Error  0.029% N/A 0.016% 

h0=5  β=6  γ=17   α=0.2 
θ=0.02  L0=31  S0=6  

λ=1.2 

Simulation 0 156.00±0.03 9.4804±0.00 

Analytical 1.4693e-010 156.0000 9.4259 

Error  N/A 0.000% 0.578% 

h0=0.6  β=0.4  γ=21
 α=0.3  θ=0.00042  
L0=43  S0=54  λ=10 

Simulation 0 15.0402±0.00 0.4886±0.00 

Analytical 0 15.0400 0.4886 

Error  0.000% 0.001% 0.000% 

h0=0.25  β=0.3  γ=16
 α=0.4  θ=0.00125  
L0=29  S0=33  λ=0.5 

Simulation 12.4901±0.01 0 1.7718±0.00 

Analytical 12.4890 1.1773e-005 1.7717 

Error  0.009% N/A 0.006% 

h0=4  β=3  γ=10 
 α=0.6  θ=0.03  L0=5  

S0=30  λ=2.5 

Simulation 38.5647±0.01 0 4.8135±0.00 

Analytical 38.5597 1.4309e-005 4.8132 

Error  0.013% N/A 0.006% 

h0=0.32  β=0.25  γ=7
 α=0.8  θ=0.00057  
L0=78  S0=23  λ=30 

Simulation 0 19.3084±0.00 0.5479±0.00 

Analytical 0 19.3083 0.5479 

Error  0.000% 0.005% 0.000% 
h0=0.55  β=0.67  γ=21

 α=0.9  θ=0.001  
L0=10  S0=97  λ=5 

Simulation 9.7205±0.00 0 0.7663±0.00 

Analytical 9.7253 3.4312e-010 0.7665 

Error  0.049% N/A 0.026% 
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Table 1 indicates that there are very small differences between results obtained from simulation 

model with those of the analytical model. As can be seen in the table, because of running model for 50 
long replications (50,000 hours) half width of the simulation model's costs are very small. In other words, 
the simulation estimators of the system's costs are almost point estimators. Thus, error is calculated for 
each configuration to show small differences between results of simulation and analytical models. Now 
we can trust the simulation model and solve problems with stochastic lead times.        

4 STOCHASTIC LEAD TIME PROBLEMS 

In the previous section we show our simulation model is valid. Now we can run our model with stochastic 
lead time. To the best of our knowledge all the deteriorating items inventory models with stochastic lead 
time have focused on exponential distribution which can be analyzed by Markov process. As mentioned 
before in stochastic demand inventory models of deteriorating items, stochastic lead time makes these 
models complicated. We also have shown this fact in expression (6), (7) and (8). Furthermore, it is 
extremely difficult to prove convexity of total cost function. In this inventory model, we have three 
stochastic parameters: the life time of the inventory items, lead time and the Poisson demand. It will be 
difficult to analyze this problem with analytical models. On the other hand, we can create the simulation 
model and choose any distribution for lead time or for other parameters without any limitation. We found 
in the inventory system literature that the lead time is typically normally or exponentially distributed. In 
this section we will take advantage of the simulation model for three examples with three different lead 
time distributions. We will use Arena optimizer module, OptQuest, and try to find near optimal solutions 
for these examples. OptQuest combines the metaheuristics of Tabu search, Scatter search and Neural 
Networks into a single, composite search algorithm to provide maximum efficiency in identifying new 
scenarios (April et al. 2003). In all the three examples we have used the parameters which have been used 
by Lin and Lin (2007). These parameters are provided in Table 2. 

Table 2: Common Parameters of the Numerical Examples 

Shortage cost per unit per time unit β=100 
Deterioration cost per unit γ=10 

Holding cost per unit per time unit h0=1 
Deterioration rate per unit per day θ=0.02 

 
In addition, we use customer arrival rate which was applied by Kalpakam and Sapna (1994). In their 

research customer arrival rate (λ) was considered to be 5 (λ=5). In the literature of inventory models we 
have found normal and exponential distributions for lead time. In the first example we assumed normal 
distribution for lead time (w(x)) with parameters =0.03 day and =0.06 day, and exponential distribution 
with parameter b=3.33 for the second one which were used by Maiti, Maiti, and Maiti (2009). For the 
third example we assumed Erlang distribution with parameters lambda=3 and n=8. Note that for each 
example parameters of the lead time distribution are given in the associated table. We took advantage of 
Arena optimizer, OptQuest, to minimize the total cost which is sum of H, Π and D. Our goal is to find 
near optimal solution for decision variables, extra amount of ordering (α) and the inventory position at the 
warehouse (S0). The results of optimizations are illustrated in Tables 3, 4 and 5 for the example number 1 
to 3 respectively. These tables show the trend in which the best found solutions are obtained during 
specified replication number by OptQuest software. Graphical view of each table is illustrated by the 
graph below these tables (Figures 3, 4 and 5). These figures also show how the value of the objective 
function improves during simulation runs. 
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Table 3: Optimization Results Obtained from OptQuest for Normal Lead Time (Example 1) 

Lead time: Normal (=0.03, =0.06)(day) No. of replication: 100 
Parameters 

h0=1 β=100 γ=10 θ=0.02 λ=5 
Simulation Run S0 α Total Cost 

1 50 0.500000 17.1760 
11 28 0.349305 8.53485 
41 8 1.32600 3.87091 
82 8 1.30156 3.83164 
85 8 1.27711 3.79237 
91 8 0.909638 3.20208 
98 8 0.718857 2.89561 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Optimization results obtained from OptQuest for example 1  

Table 4: Optimization Results Obtained from OptQuest for Exponential Lead Time (Example 2) 

Lead time: Exponential (b=3.33) No. of replication: 100 
Parameters 

h0=1 β=100 γ=10 θ=0.02 λ=5 
Simulation Run S0 α Total Cost 

1 50 0.500000 342.937 
3 1 0 333.735 
5 189 0.574661 114.052 

24 200 0.574691 101.173 
27 200 0.052606 80.2533 
63 200 0.039190 79.7157 
65 200 0.025773 79.1781 
67 200 0 78.1454 
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Figure 4: Optimization results obtained from OptQuest for example 2 

Table 5: Optimization Results Obtained from OptQuest for Erlang Lead Time (Example 3) 

Lead time: Erlang (lambda=3, n=8) No. of replication: 100 
Parameters 

h0=1 β=100 γ=10 θ=0.02 λ=5 
Simulation Run S0 α Total Cost 

1 50 0.500000 1441.83 
2 101 5 912.932 
4 200 10 717.507 
5 189 0.574661 569.487 

14 194 0.747858 565.113 
23 200 0.571959 556.463 
26 199 0.561300 556.368 
42 200 0 546.693 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Optimization results obtained from OptQuest for example 3 
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For the best solutions of each example we run simulation models for 50 replications where each 

replication takes 3000 days to obtain average of H, Π and D separately. The results are demonstrated in 
Table 6. 

Table 6: The Related Costs for the Best Solutions for Three Examples 

Example S0 α H Π D Total Cost 
1 8 0.718857 2.2209 0.1259 0.5402 2.8870 
2 200 0 35.0566 36.9597 5.4994 77.5156 
3 200 0 11.5524 530.45 5.5215 547.53 

 
Note that there is no limitation in lead time or any other parameters in our simulation model which 

could be a great advantage of the simulation approach. In addition, we can take advantage of simulation 
optimization as a decision support tool to obtain near optimal values of decision variables (S0 and α).  

5 CONCLUSION 

Although, most of the real world cases have stochastic demand and lead time, in the literature of 
deteriorating items inventory models there are limited number of research efforts with stochastic demand 
and lead time. We considered an inventory model of deteriorating items with stochastic demand and lead 
time. For deterministic lead times, we built analytical model and we showed how difficult it would be to 
solve for stochastic lead time. Since in our model we have three stochastic parameters (items life time, 
demand and lead time) it is too difficult to build the analytical model of this problem and prove convexity 
of the model. Hence we built a simulation model of our problem using the Arena simulation software. We 
have validated our simulation model by comparing its result with analytical model's result for eight 
random experiments. There were very small differences between two models' results. After model 
validation we applied OptQuest software to find near optimal solutions with stochastic lead time for three 
different examples. Although analytical model is too difficult to be established for stochastic lead time 
especially when the density function of lead time is complex, there is no limitation in our simulation 
model. In fact, difficult problems could be analyzed by this simulation model and simulation optimization 
can be used as a decision support tool to find optimal or near optimal solutions.    
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