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ABSTRACT

This paper examines a constrained stochastic inventory optimization problem by means of sample average
approximations (SAA). The problem is formulated based on the lead time demand parameters. Lead time
demands are sampled by a bootstrap method that is performed by randomly generating demand values
over deterministic lead time values. In order to increase the efficiency of solving an SAA replication, a
number of variance reduction techniques (VRT) are proposed, namely: antithetic variates, common random
numbers and Latin hypercube sampling methods. A set of experiments investigates the quality of these
VRTs on the estimated optimality gap and gap variance results for different demand processes. The results
indicate that the use of VRTs produces significant improvements over the crude Monte Carlo sampling
method on all test cases.

1 INTRODUCTION

In this paper, a constrained stochastic inventory optimization problem is examined within a sample average
approximation (SAA) method. The problem is defined as the minimization of the total expected relevant
inventory costs subject to a service level constraint. The foregoing problem arises in the context of the
continuous review (r, q) inventory system where the optimal policy parameters are determined by discrete
values of r and q. We consider the ready rate as the underlying service level constraint. The ready rate is
known as the fraction of time with positive stock on-hand (Axsäter 2006, p94). Even though the problem
contains a service level constraint, we propose an approach to represent it in a single objective function,
which facilitates the application of the SAA method.

As far as the joint optimization of the discrete policy parameters is concerned, the defined constrained
problem is known as a hard problem (Zipkin 2000, p226). A heuristic algorithm is proposed by (Zipkin
2000, p227) that states that the policy obtained through the heuristic does not guarantee the minimization
of the true costs. His heuristic is developed based on the algorithm proposed by (Federgruen and Zheng
1992) that is focused on the unconstrained problem. It should be noted that the algorithm proposed by
(Federgruen and Zheng 1992) can also be used to obtain exact solutions for the constrained problem only
for cases where the lead time demand (LTD) is Poisson. For general LTD cases, (Agrawal and Seshadri
2000) propose an optimization algorithm which is developed based on the search in the regions defined by
the distribution free bounds on the policy parameter q. However, their algorithm is still dependent upon a
given LTD distribution due to the calculation of the total relevant inventory costs.

In most practices, the LTD distribution is not known or unavailable in a closed mathematical form.
Therefore, the analytical formulas to exactly calculate the total inventory costs can not be directly used.
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The solution of the inventory optimization problem whose cost function is represented in the expected
form is optimal in the expected sense. The calculation of expected costs is expensive since it typically
involves enumerating all possible LTD outcomes which may be observed as combinatorially many scenarios
depending on the input parameters. We apply the SAA method due to (Ahmed and Shapiro 2002) and
(Kleywegt and Shapiro 2001) in order to estimate the expected costs in the problem. The motivation behind
employing SAA is the theoretical fact that the solution to the approximation problem exponentially converges
to the optimal solution as the number of scenarios increases (Kleywegt and Shapiro 2001). The SAA
method has been applied to many different stochastic problem domains. Examples include the stochastic
bidding and stochastic scheduling problems (Greenwald, Guillemette, Naroditskiy, and Tschantz 2006),
vehicle assignment, aircraft allocation, network design and cargo flight scheduling (Linderoth, Shapiro,
and Wright 2006).

The optimization procedure described in this study requires no explicit LTD model. However, the
problem formulation is still dependent upon the LTD parameters. The optimization procedure is predicated
on evaluating each candidate solution which is associated with each given q whose set is determined by
applying the distribution free bounds proposed by (Agrawal and Seshadri 2000). The candidate solution
is generated by solving the SAA problem which is constructed based on the sample of the LTD values.
A bootstrapping method is applied to generate LTD values from a given demand distribution over a given
lead time value. We apply SAA statistical techniques to evaluate each candidate solution. This evaluation
relies on the specified precision on the optimization gap and gap variance, which are subject to vary
depending on the sample size. Typically a large sample size results in more precision while it often causes
an increase in the computational time. One can apply a variance reduction technique which helps reduce
the required sample size to reach a specified precision in the gap variance value. It should be noted that
the variance observed during the evaluation procedure also effects the precision of the optimization gap.
Thus, identifying a variance reduction technique can be considered a key to a potential efficient SAA based
optimization algorithm.

The focus of this paper is to evaluate a number of variance reduction techniques which may be applicable
in the design of an efficient optimization algorithm. In this respect, three variance reduction techniques;
namely, antithetic variates (AV), Latin hypercube sampling method (LHS) and common random numbers
(CRN) are considered in this study. The AV, LHS and CRN are the techniques that are often recommended
for reducing variance (Law and Kelton 1999). The variance reduction observed under these VRTs is
compared with results observed through the crude Monte Carlo sampling method. This paper discusses
how these VRTs can be utilized in the context of the constrained stochastic inventory optimization problem.
The details of the problem will be introduced in the next section. Section 3 describes the SAA based
solution procedure and the variance reduction techniques. Section 4 discusses the effectiveness of the
underlying variance reduction techniques. Finally, Section 5 provides concluding remarks and directions
for the future research.

2 PROBLEM FORMULATION

The constrained optimization problem arises in the following inventory system. The inventory is reviewed
continuously at a single stage for a single item and controlled by the (r, q) policy with the following
mechanism. Whenever the inventory position IP drops to or below an integer value of re-order level (r),
the amount of q units of items is issued to replenish the inventory, and the ordered items arrive at the
inventory system after a given constant time delay L. Let E [D] be the expected value of the demand. The
lead times are assumed to be independent of the demand process. Let Y be the total demand during lead
time, which is a random variable with the expected value E [D]L.

A bootstrapping method is of interest in generating lead time demand values which will be utilized
in the SAA procedure. Since the lead times are assumed to be independent of the demand process, the
following procedure can be used to generate Y . In most practices, even if the inventory system faces a
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compound demand process, the information related to the demand during a unit time (per day, per week,
etc.) is available. By using the given mean (µX ) and variance (σ2

X ) parameter information of the demand
during a unit time, demand amounts are generated for discrete unit time points (t). The total sum value
of the demand observed over a fixed lead time (L) gives independent and identically distributed Y values.
This procedure is independently repeated to produce a sample of Y . We generate the unit time demand
component from a distribution. Let Xt be the generated demand amount during a time unit and Xt ∼ fX (.),
then clearly,

Y =
L

∑
t=1

Xt (1)

The inventory system faces a discrete compound demand process. That is, customer demands arrive at
any point in time with an amount of items as a batch or as individual units. We assume that the inventory
system processes the demand in individual units even if it arrives as a batch of items. The reader is referred
to (Rossetti and Ünlü 2011) for details of the inventory system. Based on the described inventory system,
the following exact formulations are used to compute the inventory performance measures of the ready
rate (E [RR]), the expected number of inventory on-hand levels (E [I]) and the expected order frequency
(E [OF ]) (Zipkin 2000).

E [RR] = 1− 1
q

[
G1 (r)−G1 (r+q)

]
(2)

E [I] =
1
2
(q+1)+ r−Y +

1
q

[
G2 (r)−G2 (r+q)

]
(3)

E [OF ] =
E [D]

q
(4)

where E [D] = E [Y ]/L, G1
F (.) and G2

F (.) are the first and second order loss functions of the lead time

demand distribution F . Let [y]+ be denoted max{0, y}. Then it follows that G1
F (y) = E

[
[Y − y]+

]
and

G2
F (r) = 0.5E

[
[Y − r]+ [Y − r−1]+

]
.

In modeling the inventory optimization problem, a cost structure is imposed on E [OF ] and E [I]. The
backordered demand is controlled by imposing a service level constraint. The ready rate is used as the
service level in this study due to the existence of a tractable analytical formulation. The policy optimization
of the continuous review (r, q) system is performed by solving the corresponding stochastic inventory
problem. The goal is to obtain the optimal discrete policy parameters r and q which minimize the sum of
ordering and holding costs subject to the constraint that the ready rate should be at least equal to γ . Let
k be the fixed cost to place an order and h be the holding cost per unit per unit time. The cost measures
are assumed to be positive in order for q to be finite positive integer value while policy parameter r takes
any finite integer values greater than or equal to −q. For a pair of (r, q), denote the expected total cost
E [TC (r, q)]. Then the optimization problem is given as follows.

Optimization Problem P1:
minE [TC(r, q)] = kE [OF ]+hE [I] (5)

subject to E [RR]≥ γ (6)
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The optimization problem can be represented as

minE [TC(r, q)] = E

[
kE [D]

q
+h
(

q+1
2

+ r−Y
)

+
h

2q

(
max{Y − r, 0}max{Y − r−1, 0}

−max{Y − (r+q) , 0}max{Y − (r+q)−1, 0}
)]

(7)

subject to 1− 1
q

E [max{Y − r, 0}−max{Y − (r+q) , 0}]≥ γ (8)

For a given q, let r (q) be the re-order point that satisfies (8). Let S = {r : r ≥ r (q)}. Thus, S represents
the set of possible r that satisfy the service level. For a given q, let r∗ (q) be the optimal re-order point to
the optimization problem defined above. That is, r∗ (q) = argminr∈S E [TC (r, q)]. Then the optimization
problem can be rewritten as a single objective function as follows:

Optimization Problem P2:

minE [TC(q, r∗ (q))] = E

[
kE [D]

q
+h
(

q+1
2

+ r∗ (q)−Y
)

+
h
2q

(
max{Y − r∗ (q) , 0}max{Y − r∗ (q)−1, 0}

− max{Y − (r∗ (q)+q) , 0}max{Y − (r∗ (q)+q)−1, 0}
)]

(9)

If Y follows the pure Poisson distribution (i.e., demand size is 1 and inter-arrivals are exponentially
distributed), then (9) is convex since r (q) is unimodal. In this case, P1 can be solved through the algorithm
proposed by (Federgruen and Zheng 1992) with the help of Lagrange multipliers. Unfortunately (9) is
generally not convex. The search of the optimal policy requires a full enumeration of q if Y follows a
distribution other than Poisson (Zipkin 2000, p226). In the case where Y follows a known distribution
(e.g., gamma), (Agrawal and Seshadri 2000) propose an optimization algorithm for P1. This paper, on the
other hand, is focused on the cases where the lead time demand distribution model is not known (or not
available in the closed mathematical form). The random lead time demand variable Y is bootstrapped by
generating random demand values over a lead time. We perform the full enumeration over a finite set of q
which is determined by bounds applied on q (Agrawal and Seshadri 2000). Each possible q value creates
a candidate solution. These candidate solutions are evaluated and the best solution is selected from the
set. We evaluate candidate solutions by using the sample average approximation (SAA) technique, which
allows the estimation of the expected value in (9). The next section gives the details related to the solution
procedure including the SAA method and the generation of Y .

3 SOLUTION PROCEDURE

The SAA technique is applied in this paper as follows. First, P candidate solutions are determined. Each
candidate solution refers to a q and r (q) from a finite set. As mentioned earlier, this set can be obtained
by applying the distribution free bounds on q proposed by (Agrawal and Seshadri 2000). Each candidate
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solution is evaluated by SAA statistical tools to see their quality viewed as a candidate for solving the true
problem. Then the best solution is selected from the set of the evaluated candidate solutions. The next
section discusses the evaluation procedure in the context of optimization gap and variance reduction.

3.1 Optimization Gap Construction and Variance Reduction

The evaluation procedure involves constructing the optimization gap for each candidate solution x̂. The
candidate solutions (i.e., pair of (q, r∗ (q))) are obtained based on the following fact. For any given q≥ 1,
the value of q̂N (x) = 1

N ∑
N
i=1 TC

(
x, Y i

)
increases in r where Y i ∈ FLT D (.). In addition, there exits r∗ (q) ∈ S

such that r∗ (q) = argminr∈S q̂N (x). Thus, for a fixed q, the optimal value of (9) can be obtained by the
minimum feasible value of r. This will provide r∗ (q). The solution is performed satisfying the constraint
(8) in the sample average sense. That is, for a given q and a set of Y , r∗ (q) is the minimum value of r that
satisfies the following:

1− 1
q

{
1
N

(
N

∑
i=1

[
max

{
Y i− r, 0

}
−max

{
Y i− (r+q) , 0

}])}
≥ γ (10)

For a given value of q, it is trivial to obtain r∗ (q) through a simple line search. The candidate solution is
denoted by x̂ = (q, r∗ (q)). Clearly, the pair (q, r∗ (q)) minimizes the approximation q̂N (x̂). This refers to
the fact that the candidate solution x̂ = (q, r∗ (q)) is generated by “solving the corresponding SAA problem
to optimality.” However, this solution should be evaluated to see its quality viewed as a candidate for
solving the true problem. Notice that the true objective function value of this solution is different from the
approximated one. For a given q, we apply statistical methods to estimate bounds for the true objective
value. In what follows, we discuss the details of constructing the optimization gap based on upper and
lower bounds.

3.1.1 Independent Sampling (CMC: Crude Monte Carlo Method)

Upper Bound Estimation: In order to estimate an upper bound, we first construct an unbiased estimator
of g(x̂). We generate M independent and identically distributed (i.i.d.) batches of random samples. In
addition, each batch consists of N random elements (i.e., the sample of Y ). Let the generated batches be
denoted by i.i.d. random elements of w1, j, w2, j, ..., wN, j j = 1,2, ...,M. Then, the unbiased property of
each batch can be denoted by

E

[
q̂ j

N (x̂) =
1
N

N

∑
i=1

TC
(
x̂,wi, j)]= g(x̂) (11)

Let g(x̂)N,M be an estimate for g(x̂). Then

g(x̂)N,M =
1
M

M

∑
j=1

[
q̂ j (x̂)

]
(12)

is an unbiased estimate of g(x̂). The associated sample variance estimator is obtained by

σ̂
2
UB =

1
M−1

M

∑
j=1

[
q̂ j (x̂)−g(x̂)N,M

]2
(13)

Since g(x̂)≥ v∗ (for minimization type problems), an approximate 100(1−α)% upper bound estimate
is given by

ÛBN,M = g(x̂)N,M +
tα,νσU√

M
(14)
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where ν = M−1 and tα,ν is the α-critical value of the t-distribution with ν degrees of freedom.
Lower Bound Estimation: Let v̂N′ be the optimal value of an SAA problem based on sample size N′.

Then, a lower bound can be estimated based on the fact that v∗ ≥ E [v̂N′ ]. We estimate a lower bound
for E [v̂N′ ]. E [v̂N′ ] can be estimated by solving SAA problems several times and averaging the calculated
optimal values. M′ SAA problems are created based on generated i.i.d. batches which contain i.i.d. random
elements of w1, j, w2, j, ..., wN′, j j = 1,2, ...,M′. Let v̂1

N′ , v̂
2
N′ , ..., v̂

M′
N′ be the computed optimal values of the

SAA problems. Then

vN′,M′ =
1

M′
M′

∑
i=1

v̂i
N′ (15)

is an unbiased estimator of E [v̂N′ ]. We can estimate the variance of vN′,M′ as follows

σ̂
2
LB =

1
(M′−1)

M′

∑
i=1

(
vN′,M′− vi

N′
)2

(16)

An approximate 100(1−α)% lower bound for E [v̂N′ ] is then given by

L̂BN′,M′ = vN′,M′− tα,ν σ̂LB (17)

The quality of x̂ can be measured by the optimality gap

gap(x̂) = g(x̂)− v∗ (18)

We outline a statistical procedure for estimating this optimality gap via upper bound (ÛB) and lower
bound (L̂B) analysis. Thus,

ˆgap(x̂) = ÛB− L̂B (19)

and
σ

2
gap = σ̂

2
UB + σ̂

2
LB (20)

We determine the candidate solution (x̂) during the upper bound estimation procedure. The candidate
solution, the optimality gap and gap variance are subject to change according to different sample sizes.
Although a large sample size gives a better estimate, it increases the computational time of the evaluation
procedure. Therefore, the SAA parameters N (batch size for UB estimation), N′ (batch size for LB
estimation), M (number of batches for UB estimation) and M′(number of batches for LB estimation) should
be wisely determined in the optimization algorithm development phase. The optimality gap and gap variance
are considered as major precision criteria in the development of an optimization procedure that evaluates
the candidate solutions. It should be noted that the variance observed during the evaluation procedure also
effects the precision of the optimization gap. In this respect, reducing variance is the key to an efficient
SAA based optimization algorithm.

Note that the random elements within a batch need not be i.i.d provided that the statistical bounds are
constructed based on the i.i.d. batches. The reader is referred to (Mak, Morton, and Wood 1999) where
the underlying theory is discussed in detail. We now present a number of variance reduction techniques
by utilizing the foregoing theory.

3.1.2 Antithetic Variates (AV)

In independent sampling method, g(x̂)N,M (or vN′,M′) is obtained based on M (or M′) independent batches,
respectively. As far as antithetic variates are concerned, independent batches can be generated as follows.
We first find an estimate for g(x̂) (or E [v̂N′ ]) based on a batch of random sample of size N (or N′). Next,
we find another estimate for g(x̂) (or E [v̂N′ ]) based on the same sample size. However, the second batch
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contains the antithetics of the first batch. In order to reach an independent estimate of g(x̂) (or E [v̂N′ ]), the
average of those two estimates is obtained. Therefore, g(x̂)N,M (or vN′,M′) is obtained based on M/2 (or
M′/2) i.i.d. batches of random samples. Then the same expressions are used to obtain an optimality gap for
the candidate solution. The AV is one of the most applied variance reduction techniques. An application
of the AV to the newsvendor problem is studied by (Freimer, Thomas, and Linderoth 2010).

3.1.3 Latin Hypercube Sampling (LHS)

We generate random elements in each batch of samples via the Latin hypercube sampling method. If the
lead time is given as 1 time unit (i.e., L = 1), then in this one-dimensional sampling, we divide the interval
[0, 1] into N (sample size) equal segments. The lead time demand value is drawn uniformly from the ith

segment. That is, the lead time demand value under LHS is uniformly distributed on [(i−1)/N, i/N]. If
the lead time is greater than 1 unit, then in this multi-dimensional sampling, the range of [0, 1] is portioned
into N non-overlapping intervals of equal probability 1/N. From each interval one demand value is selected
randomly according to the probability density of the interval. The N values of D1 are paired in a random
manner with values of D2, these pairs are then paired similarly with values of D3 and so on, until N samples
of L time units are formed. Then the corresponding lead time demand value (Y ) is obtained by the total
sum value of the demand observed over L time units (i.e., Y = D1+D2+ ...+DL). The reader is referred to
(Matala 2008) for the accuracy of LHS method and the simple strategy to evaluate N for general problem
domains.

3.1.4 Common Random Numbers (CRN)

The common random numbers method within the sample average approximation is proposed by (Mak,
Morton, and Wood 1999). The idea is to use the batch means approach to directly estimate the optimization
gap for the candidate solution. Based on a batch of sample of size N, an estimate for gap(x̂) can be
obtained by

E

[
1
N

N

∑
i=1

TC
(
x̂,wi)−min

x∈χ

1
N

N

∑
i=1

TC
(
x,wi)] (21)

Note that the upper and lower bounds are estimated by using the same batch, which can be considered
as an application of the common random numbers. The optimization gap and gap variance can be estimated
based on separately estimated upper and lower bounds by using the formulas introduced in Section 3.1.1.

4 EXPERIMENTAL STUDY

The quality of the variance reduction techniques is computationally investigated on the estimated optimality
gap and gap variance results across a large set of test cases. The results are collected under different
demand models; namely, Poisson, negative binomial and gamma. The test cases are generated based on the
combination of the low and high values of a number of experimental . These factors are given in Table 1.

Table 1: Experimental Factors.

Level Target Lead Mean Variance Ordering Holding
Service Level Time LTD LTD Cost Cost

Low 0.90 1 1.8 4 50 1
High 0.95 4 3.6 8 100 10

Based on the given experimental factors, the algorithm proposed by (Agrawal and Seshadri 2000)
indicates that the optimal reorder quantity can take values over the range between 1 and 30. Therefore,
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test cases are generated based on the combination of the given values from Table 1 and reorder quantity
enumerated over the set {1,2,3, ...,30}. This creates (2)2(2)2(2)2(30) = 1920 different test cases. For each
test case, the candidate solution (i.e., x̂ = (q, r∗ (q))) is obtained based on a given sample size. Then an
estimate is obtained for the upper bound, lower bound, (accordingly, optimization gap on the candidate
solution) and their variances estimates. The average values of these estimates are tabulated in Table 2 and
Table 3 for different total sample size values. Notice that tables show blank cells for upper and lower
bounds of the sampling technique CRN whose optimization gap and gap variance are directly estimated.

Table 2: Optimization Gap and Variance Results for Total Sampling 1000.

Sampling Upper Bound Lower Bound Total Optimization Total Variance

Technique N M UB Variance N′ M′ LB Variance Sampling Gap Gap Variance Reduction

CMC 50 10 0.0302 50 10 0.4721 1000 2.8488 0.5023 –

Pure AV 50 5 0.0399 50 5 0.0881 1000 2.5540 0.1280 75%

Poisson CRN 100 10 - - - - 1000 1.9162 0.0219 96%

LHS 50 10 0.0006 50 10 0.2178 1000 1.0169 0.2184 57%

CMC 50 10 0.0559 50 10 1.6389 1000 5.8829 1.6948 –

Negative AV 50 5 0.0618 50 5 0.2615 1000 4.0354 0.3233 81%

Binomial CRN 100 10 - - - - 1000 3.1389 0.0501 97%

LHS 50 10 0.0013 50 10 0.5932 1000 2.1755 0.5945 65%

CMC 50 10 0.0529 50 10 1.9523 1000 6.4134 2.0052 –

Gamma AV 50 5 0.0508 50 5 0.2930 1000 4.3434 0.3437 83%

CRN 100 10 - - - - 1000 3.2256 0.0448 98%

LHS 50 10 0.0011 50 10 0.6269 1000 2.2665 0.6280 69%

Table 3: Optimization Gap and Variance Results for Total Sampling 2000.

Sampling Upper Bound Lower Bound Total Optimization Total Variance

Technique N M UB Variance N′ M′ LB Variance Sampling Gap Gap Variance Reduction

CMC 100 10 0.0156 100 10 0.3843 2000 2.2486 0.3999 –

Pure AV 100 5 0.0127 100 5 0.0668 2000 1.8927 0.0795 80%

Poisson CRN 200 10 - - - - 2000 1.4477 0.0173 96%

LHS 100 10 0.0002 100 10 0.1392 2000 0.6324 0.1393 65%

CMC 100 10 0.0282 100 10 0.9693 2000 4.1098 0.9975 –

Negative AV 100 5 0.0184 100 5 0.1655 2000 3.1790 0.1839 82%

Binomial CRN 200 10 - - - - 2000 2.2823 0.0265 97%

LHS 100 10 0.0004 100 10 0.2869 2000 1.2596 0.2873 71%

CMC 100 10 0.0267 100 10 1.1145 2000 4.4636 1.1413 –

Gamma AV 100 5 0.0178 100 5 0.1893 2000 3.3281 0.2071 82%

CRN 200 10 - - - - 2000 2.3415 0.0258 98%

LHS 100 10 0.0003 100 10 0.2769 2000 1.1935 0.2772 76%

As can be noted from both tables, the VRTs are effective in terms of reducing the optimization
gap variance estimated through the crude Monte Carlo sampling method. In addition, the value of the
optimization gap is inclined to be smaller under the applied VRTs. For example, as can be seen from
Table 1, for the negative binomial model with sample size 1000, CMC sampling method yields 5.8829 for
optimization gap and 1.6948 for optimization gap variance while the optimization gap and gap variance
under CRN are observed 3.1389 and 0.0501, respectively. CRN is able to reduce the optimization gap
variance by 97%. The minimum optimization gap value is always estimated by the Latin hypercube sampling
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method. The common random numbers yield the minimum estimated optimization gap results among all
considered sampling methods. By comparing the observed variance results in Table 2 and Table 3, one can
note that the VRTs are more effective under a larger amount of sampling since VRTs are able to reduce
the observed variance by similar percentages. For example, for the gamma distribution CRN is able to
reduce the observed optimization gap variance by approximately 98% for each sample size 1000 and 2000.
Therefore, VRTs yield much smaller variance values for large sample sizes.

The statistical package MINITAB provides the multiple comparison procedure referred to as “Tukey-
Kramer HSD” ((Tukey 1953) and (Kramer 1956)) which facilitates analyzing the overall performance of
the VRTs. Based on the least square means for each pair of the VRTs, the results are tabulated in a
categorized manner. Each category is represented by a letter in a column. Table 4, Table 5 and Table 6
tabulate the results of the procedure for the Poisson, negative binomial and gamma models, respectively
with 95% confidence level and with sample size 2000. If two sampling techniques share a letter, then they
are regarded as not significantly different from each other. In this respect, the performance if the VRTs is
sorted in descending order as follows: {CRN}> {AV}> {LHS}> {CMC} for the Poisson and negative
binomial models and {CRN}> {AV, LHS}> {CMC} for the gamma model. For all models, AV, LHS are
the two VRTs whose performances are significantly higher than CMC while the performance of CRN is
significantly higher than other VRTs.

Table 4: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Poisson Model.

Models Category 1 Category 2 Category 3 Category 4 Mean
CMC D 0.3999
AV B 0.0795

CRN A 0.0173
LHS C 0.1393

Table 5: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Negative Binomial
Model.

Models Category 1 Category 2 Category 3 Category 4 Mean
CMC D 0.9975
AV B 0.1839

CRN A 0.0265
LHS C 0.2873

Table 6: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Gamma Model.

Models Category 1 Category 2 Category 3 Category 4 Mean
CMC D 1.1413
AV B 0.2071

CRN A 0.0258
LHS B 0.2772
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Exhibit-1: For the Poisson Model, Hsu’s MCB Results.

Level     N    Mean   StDev    +---------+---------+---------+--------- Level    Lower   Center   Upper  ------+---------+---------+---------+---

CMC    1920  0.3999  0.5749                                    (*-) CMC     0.0000   0.3825  0.4083        (-------------------------*)

AV     1920  0.0795  0.1700         (-*) AV      0.0000   0.0621  0.0879        (---*-)

CRN    1920  0.0173  0.0411    (*-) CRN    -0.0879  -0.0621  0.0000  (-*---)

LHS    1920  0.1393  0.4863              (-*) LHS     0.0000   0.1220  0.1477        (-------*-)

                               +---------+---------+---------+---------                                  ------+---------+---------+---------+---

                             0.00      0.12      0.24      0.36                                      0.00      0.15      0.30      0.45

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means

Exhibit-2: For the Negative Binomial Model, Hsu’s MCB Results.

Level     N   Mean  StDev   -+---------+---------+---------+-------- Level   Lower  Center  Upper  -------+---------+---------+---------+--

CMC    1920  0.998  1.984                                    (*-) CMC     0.000   0.971  1.045         (---------------------------*-)

AV     1920  0.184  0.597        (-*-) AV      0.000   0.157  0.231         (---*--)

CRN    1920  0.026  0.064   (-*-) CRN    -0.231  -0.157  0.000  (--*---)

LHS    1920  0.287  0.779            (-*) LHS     0.000   0.261  0.335         (------*--)

                            -+---------+---------+---------+--------                               -------+---------+---------+---------+--

                           0.00      0.30      0.60      0.90                                    0.00      0.35      0.70      1.05

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means

Exhibit-3: For the Gamma Model, Hsu’s MCB Results.

Level     N   Mean  StDev   -+---------+---------+---------+-------- Level   Lower  Center  Upper  -------+---------+---------+---------+--

CMC    1920  1.141  2.390                                   (-*) CMC     0.000   1.116  1.203         (---------------------------*-)

AV     1920  0.207  0.741        (-*-) AV      0.000   0.181  0.269         (----*-)

CRN    1920  0.026  0.060   (-*) CRN    -0.269  -0.181  0.000  (-*----)

LHS    1920  0.277  0.851          (-*-) LHS     0.000   0.251  0.339         (-----*-)

                            -+---------+---------+---------+--------                               -------+---------+---------+---------+--

                           0.00      0.35      0.70      1.05                                    0.00      0.40      0.80      1.20

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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In order to recommend the best VRT with a confidence, we apply the multiple comparison procedure
so-called Hsu’s multiple comparisons with the best (Hsu’s MCB) (Hsu 1981). The method tests whether
means are greater than the unknown minimum in case of determining the minimum. A statistically significant
difference can only be observed between corresponding means if an interval contains zero as an end point.
The results that are collected via the statistical package MINITAB by setting the default options are depicted
in Exhibit 1, Exhibit 2 and Exhibit 3 under 95% confidence level for the Poisson, negative binomial and
gamma models, respectively, with sample size 2000. As can be noted, CRN is the VRT whose performance
is significantly different from others across all the demand models.

5 CONCLUSION AND FUTURE STUDY

This paper examines a constrained stochastic inventory optimization problem. For the solution of the problem,
we describe an SAA based optimization procedure. In order to increase the efficiency of a potential algorithm
for which the described optimization procedure is embedded, three variance reduction techniques; namely,
antithetic variates, Latin hypercube sampling and common random numbers are evaluated for a set of test
cases. We computationally investigate the impact of these VRTs on the optimization gap and gap variance
by comparing the results with the crude Monte Carlo sampling method. The experiment results indicate
that all three VRTs are affective at reducing the total gap variance, with the CRN outperforming other
VRTs. One direction for future research is to investigate the applicability of other VRTs (e.g., importance
sampling) for the underlying problem domain. Another direction lies in explicitly designing and testing
the efficiency of the optimization algorithm within the proposed VRTs. The last, but not least, direction
is to investigate the applicability of the procedure and variance reduction techniques for other inventory
policies such as (s, S) and (r, nq).
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