
Proceedings of the 2011 Winter Simulation Conference

S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

INTRODUCTION TO SIMULATION

Ricki G. Ingalls

Oklahoma State University

322 Engineering North

Stillwater, OK, USA

ABSTRACT

Simulation is a powerful tool if understood and used properly. This introduction to simulation tutorial is

designed to teach the basics of simulation, including structure, function, data generated, and its proper

use. The introduction starts with a definition of simulation, goes through a talk about what makes up a

simulation, how the simulation actually works, and how to handle data generated by the simulation.

Throughout the paper, there is discussion on issues concerning the use of simulation in industry.

1 DEFINITION OF SIMULATION

Simulation, according to Shannon (1975), is “the process of designing a model of a real system and con-

ducting experiments with this model for the purpose either of understanding the behavior of the system or

of evaluating various strategies (within the limits imposed by a criterion or set of criteria) for the opera-

tion of the system.” According to this definition, a simulation can be a discrete-event simulation, as we

will discuss in this paper. Many people who attend this conference will be familiar with the term “MRP

simulation.” This is a model (actually a copy) of the real system (the MRP system of record) on which

experiments (or scenarios) can be run to evaluate various strategies (such as how to respond to a drastic

change in the forecast). Although we do not teach courses in our curriculum on “MRP simulation,” a

MRP simulation is no less a simulation than the type of simulation we will discuss in this tutorial.

The difference, and the power, of discrete-event simulation is the ability to mimic the dynamics of a

real system. Many models, including high-powered optimization models, cannot take into account the

dynamics of a real system. It is the ability to mimic the dynamics of the real system that gives discrete-

event simulation its structure, its function, and its unique way to analyze results. So, to take liberties with

one of my mentors in this field, we will say that simulation is the process of designing a dynamic model

of an actual dynamic system for the purpose either of understanding the behavior of the system or of eva-

luating various strategies (within the limits imposed by a criterion or set of criteria) for the operation of

the system.

Throughout this paper, we will be referencing ideas and thoughts from Shannon (1975), Law and Kel-

ton (2000), Banks et al. (2000), Kelton, Sadowski, and Sadowski (2001), Ingalls and Kasales (1999), In-

galls (1998), and Ingalls and Eckersley (1992).

2 A DRIVE-THROUGH EXAMPLE

In order to give us a reference model for discussion purposes, let us consider the example of a drive-

through window at a fast food restaurant whose logic is shown in Figure 1. As a car enters from the

street, the driver, who we will call Fred, decides whether or not to get in line. If Fred decides to leave the

restaurant, he leaves as a dissatisfied customer. One of the great things about a simulation is that it is easy

to track these type of customers. In most real-world systems, it is usually difficult to track customers who

leave dissatisfied.

1379978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Ingalls

Figure 1: Drive-Through Example Logic Flow

If Fred decides to get in line, then he waits until the menu board (with the speaker no normal human

being can understand) is available. At that time, Fred gives the order to the order taker.

After the order is taken, then two things occur simultaneously. (1) Fred moves forward if there is

room. If there is no room, then he has to wait at the menu board until there is room to move forward. As

Enter Restaurant

Parking Lot

Is the Line Too
Long?

Leave the
Resturant as a

dissatisfied
customer

TRUE

Get in the Line for
the Menu Board

FALSE

When Arrive at the
Menu Board, Give

Order

Is there Room
to Move

Forward?

Wait until the Car
In Front of you

Moves

CAR

FALSE

Get in Line for
Order Pickup

Window

TRUE

Arrive at Order
Pickup Window -

Pay and Get Order

Leave the
Restaurant Parking

Lot

Order is Made in
the Kitchen ORDER

Order Meets
Car at Order

Pickup Window

1380

Ingalls

soon as there is room, he moves so the next customer can order. (2) The order is sent electronically back

to the kitchen where it is prepared as soon as the cook is available.

As soon as Fred reaches the pickup window, then he pays and picks up his food, if it is ready. If the

food is not ready, then Fred has to wait until his order is prepared. In this drive-through, Fred never

hears, “Please pull forward and we will bring your order out to you.” That is one of the reasons that Fred

and I both like this place.

As soon as Fred parts with his money and gets his food, he then leaves the pickup window a satisfied

customer.

3 DISCRETE-EVENT SIMULATION STRUCTURE

Although there are various flavors and paradigms in discrete-event simulation, there has evolved a basic

structure that is used by most simulation packages. Regardless of how complex a discrete-event simula-

tion package may be, it is likely to contain the basic components that we will describe in this section.

The structural components of a discrete-event simulation include entities, activities and events, re-

sources, global variables, a random number generator, a calendar, system state variables and statistics

collectors.

3.1 Entities

The best way to understand the function of an entity is understand that entities cause changes in the state

of the simulation. Without entities, nothing would happen in a simulation. As a matter of fact, one stop-

ping condition for a simulation model is the condition where there are no active entities in the system.

Entities have attributes. Attributes are characteristics of a given entity that are unique to that entity.

Attributes are critical to the understanding of the performance and function of entities in the simulation.

In our example, the primary entity type is the cars coming to the restaurant. Also, there is a second

entity type created when the order is taken, and that is the order itself. It has a relatively short life in the

simulation, lasting only from the time the order is taken until it meets back up with the car at the pickup

window.

We also have two attributes in our simulation. The first one is the time of day that the car enters the

restaurant parking lot. We will call this attribute StartTime. The second is the value of the order. We

will call this attribute OrderValue. Both of these are unique to the customers who are represented in the

simulation.

Another example of an entity is the part that is flowing through a factory. Entities that represent parts

in a factory could be created randomly or according to a schedule. A common attribute would be the time

that the part started in the factory. Each part would have a unique time that it started in the factory. It

may also have other attributes such as priority, the type of part, and cost incurred to produce the part. In a

normal factory simulation that is tracking each individual part, it would not be unusual to have thousands

of entities active in the simulation simultaneously.

Entities, however, do not need to be parts in a manufacturing facility or cars in a drive-through. It is

also a common practice to use entities to represent the flow of information. This information could be a

customer order, an email alert, a packet in a computer network, etc. It can be anything non-physical that

causes a change in the status of system. These entities also have attributes. For example, an entity

representing a packet in a computer network would have attributes such as packet size, packet destination,

the time that the packet would time-out, etc.

3.2 Activities and Events

Activities are processes and logic in the simulation. Events are conditions that occur at a point in time

which cause a change in the state of the system. An entity interacts with activities. Entities interacting

with activities create events.

1381

Ingalls

There are three major types of activities in a simulation: delays, queues and logic. The delay activity

is when the entity is delayed for a definite period of time. In our example, there are three delays. The

first is when Fred is ordering at the menu board, the second is when the order is being cooked in the

kitchen, and the third is Fred picks up his order at the pickup window. In general, the length of time for a

delay is either constant or is randomly generated. At the point that the entity starts the delay, an event

occurs. This event schedules the entity on the calendar (which we will get to later). If the delay is for d

time units, then the entity is scheduled to complete the delay d time units after the current time of the si-

mulation. At that time, the delay expires and another event is generated.

Queues are places in the simulation were entities wait for an unspecified period of time. Entities can

be waiting on resources (which we will get to later) to be available or for a given system condition to oc-

cur. Queues are most commonly used for waiting in line for a resource or storing material that will be

taken out of the queue when the right conditions exist. In our example, there are three queues, the first is

the part of the line that waits on the menu board to be available, the second is the order waiting on the

kitchen becoming available, and the third is the part of the car line waiting on the order pickup window to

become available. All three of these queues are waiting for resources to be available.

Logic activities simply allow the entity to effect the state of the system through the manipulation of

state variables (which we will get to later) or decision logic. The first of several logic activities in our ex-

ample is the decision whether or not to get in the order line in the first place. This decision is effected by

the length of the line in front of the menu board.

3.3 Resources

In a simulation, resources represent anything that has a restricted (or constrained) capacity. Common ex-

amples of resources include workers, machines, nodes in a communication network, traffic intersections,

etc. In our example, we have three different resources. The first resource is the menu board, which only

one car can use at a time. The menu board is utilized from the time a car moves in front of it until the car

moves away from it. In our model, the car does not automatically move away from the menu board after

the order has been placed. There must also be room to move forward. So, this resource is occupied for

both productive time (when the order is being placed) and unproductive time (when there is not enough

room to pull the car forward). The second resource is the kitchen. It is utilized from the time an order ar-

rives until the order is finished cooking. The third resource is the order pickup window. This resource

can also be unproductive. That occurs when the car has arrived at the window, but the order is not ready

from the kitchen yet. In the course of the simulation, we can track the key statistics of each of these re-

sources, including utilization and costs.

It should also be noted that very complex resources can be utilized in a simulation. In a manufactur-

ing simulation, conveyors are a very complex resource that many simulation packages offer. Also, trans-

portation options such as trucks are offered as resources. A third complex resource is a vat or container

that has a (continuous) flow of material both in an out of the resource. Depending on the target market of

the simulation package, many complex resources are available to use.

3.4 Global Variables

If you are a programmer, then the idea of having global variables is nothing new. A global variable is a

variable that is available to the entire model at all times. A global variable can track just about anything

that is of interest to the entire simulation. In our model we have four global variables, two of which help

us configure the problem and two of which collect revenue information. The two variables that help us

configure the problem are the length of the line allowed at the restaurant. The first is MenuBoardLineS-

ize, which gives the maximum line size for the menu board, including the car who is at the menu board.

The second is OrderPickupLineSize, which gives the maximum line size after the menu board, including

the car at the pickup window. By changing these two variables, the simulator can analyze the effective-

ness of different line configurations.

1382

Ingalls

The two variables that help use collect revenue information are Revenue and LostRevenue. Revenue

is the total amount of revenue collected in the simulation, and LostRevenue is the total amount of revenue

lost because the customer thought that the line was too long.

3.5 Random Number Generator

Every simulation package has a random number generator. The random number generator (technically

called a pseudo-random number generator) is a software routine that generates a random number between

0 and 1 that is used in sampling random distributions. For example, let us assume that you have deter-

mined that a given process delay is uniformly distributed between 10 minutes and 20 minutes. Then

every time an entity went through that process, the random number generator would a generate a number

between 0 and 1 and evaluate the uniform distribution formula that has a minimum of 10 and a maximum

of 20. As an example, let us assume that the generated random number is 0.7312, then the delay would be

10+(0.7312)*(20-10) = 17.312. So the entity would delay for 17.312 time units in the simulation. Every-

thing that is random in the simulation uses the random number generator as an input to determine values.

In our example model, we will use a physical random number generator, two dice. The probability

distribution for the roll of two dice is seen in Figure 2. In our model, the roll of two dice becomes the ba-

sis for every random delay and randomly assigned value in the model. We have five randomly assigned

delays and values in the model, (1) the time between arrivals of cars to the restaurant, (2) the value of the

order for the car, (3) the delay at the menu board, (4) the delay at the kitchen, and (5) the delay at the or-

der pickup window. The formulas for these random values are as follows:

1. Time between arrivals of cars to the restaurant = (Dice * 10) seconds

2. The value of the order for the car = (Dice * 2) – 2 dollars.

3. The delay at the menu board = (Dice * 10) seconds.

4. The delay at the kitchen = (Dice * 8) seconds.

5. The delay at the order pickup window = (Dice * 10) seconds.

Figure 2: Distribution of Rolling Two Dice

3.6 The Calendar

The calendar for the simulation is a list of events that are scheduled to occur in the future. In every simu-

lation, there is only one calendar of future events and it is ordered by the earliest scheduled time first. In

a later example, it will become more clear how the calendar works and why it is important in the simula-

tion. At this point, just remember that, at any given point in time, every event that has already been sche-

duled to occur in the future is held on the calendar.

1383

Ingalls

3.7 System State Variables

Depending on the simulation package, there can be several system state variables, but the one system state

variable that every simulation package has is the current time of the simulation. In order to keep from of-

fending any simulation vendors, we will choose a different name for our simulation time variable. Our

name of the current time of the simulation is CurrentTime. This variable is updated every time an entity

is taken from the calendar.

3.8 Statistics Collectors

Statistics collectors are a part of the simulation that collects statistics on certain states (such as the state of

a resources), or the value of global variables, or certain performance statistics based on attributes of the

entity. There are three different types of statistics that are collected, counts, time-persistent, and tallies.

Counts are very straightforward, they count. In our model, we count the number of Lost Customers be-

cause the line was too long. Time-persistent statistical collectors give the time-weighted values of differ-

ent variables in the simulation. A common variable to track is the utilization of a resource. In our model,

we collect 6 different time-persistent statistics, which are the number of busy resources of the three re-

sources that we have in the model and, the number of entities in each of the three queues that serve the

three resources. Tally statistics are collected one observation at a time without regard to the amount of

time between observations. In our model, we collect a very common statistic, which is the amount of

time that an entity stays in the system. Since we assign the value of StartTime to the attribute of the entity

when it enters the restaurant parking lot, then the value CurrentTime – StartTime is the total amount of

time in the system. If we are to improve this system, we would want to minimize this statistic without

hurting the revenue too much.

4 A WALK THROUGH THESE CONCEPTS

What we are going to do now is walk through a couple of steps in our simulation model. As you will see,

we will track the state of the system, the entities on the calendar, the values of attributes and state va-

riables, and the statistics we are collecting.

4.1 The State of The System at Noon

Figure 3 shows the state of the system at noon during a lunch rush at our fast food restaurant. To help us

design the line at the restaurant, we have set two of our global variables, MenuBoardLineSize and Order-

PickupLineSize, both equal to 3. As you can see, that is the total capacity of the line at the restaurant.

The state of our system at noon is as follows:
 Car 1 (the Corvette) is at the Order Pickup Window receiving its order.

 Cars 2 (the convertible VW Bug) and 3 (the minivan) are in line waiting for the Order Pickup Window.

 Car 4 (the 2-seat convertible) is ordering at the Menu Board.

 Cars 5 (the Police Car) and 6 (the Porsche) are waiting in line for the Menu Board.

 The Order for Car 2 is being cooked in the Kitchen.

 The Order for Car 3 is waiting in line for the Kitchen.

 Car 7 (of undetermined type) is schedule to arrive at the restaurant in the future.

The calendar of this system is made up of the entities that are scheduled to complete an activity with a

specific time duration. These entities are Car 1, Car 4, the Order for Car 2, and Car 7. The calendar for

these four entities is shown in Table 1.

1384

Ingalls

Figure 3: State of the System at Noon

Table 1: The Calendar at Noon

Entity Event Event Time

Car(7) Arrive at Restaurant 12:00:20 PM

Car(1) Order Pickup Window Complete 12:00:40 PM

Order(2) Kitchen Complete 12:00:56 PM

Car(4) Menu Board Complete 12:01:10 PM

We also know the values of the attributes of the entities in the system. As you recall, we have two

attributes, StartTime and OrderValue. The values for those attributes for each of the entities in the system

is outlined in Table 2.

Table 2: Entity Attributes at Noon

Entity StartTime OrderValue

Car(1) 11:54:20 AM $ 10

Car(2) 11:55:50 AM $ 6

Car(3) 11:57:10 AM $ 4

Car(4) 11:58:20 AM $ 14

Car(5) 11:59:30 AM $ 14

Car(6) 12:00:00 PM $ 10

Car(7) --- ---

Other important information concerns our system state variable, CurrentTime, which is set to

12:00:00 PM.

The statistics that we are tracking in the simulation have the values listed in Table 3 as of noon. The

“Time/Obs” column gives the amount of time that we have been collecting the statistic (which is since

11:00 AM) for time-persistent statistics or the number of observations for tally statistics.

1385

Ingalls

Table 3: Statistics at Noon

Statistic Value Time/Obs

Revenue $504

Lost Revenue $74

MenuBoard Utilization 0.9984 1:00:00

Kitchen Utilization 0.7006 1:00:00

OrderWindow Utilization 0.9678 1:00:00

MenuBoard Waiting in Line 1.2306 1:00:00

Kitchen Waiting in Line 0.0822 1:00:00

OrderWindow Waiting in Line 1.0311 1:00:00

Time In System 5.5969 44

4.2 The State of The System at 12:00:20 PM

Here is where we get one of the key ideas about a discrete-event simulation. A discrete-event simulation

moves the current time of the simulation through events and their timing instead of distinct time intervals.

If we had distinct time intervals of 1 second, we would go through 20 time intervals before anything

would happen. So instead of going through 20 time intervals with nothing happening, we go straight to

the next scheduled event, which is the first event on the calendar, which is scheduled to occur at 12:00:20

PM. That event is the arrival of Car 7 to the restaurant.

When Car 7 arrives at the restaurant, the first activity in the simulation is to set its attributes. Ob-

viously, StartTime is set to 12:00:20 PM, and the OrderValue is set using the formula (Dice * 2) – 2 after

we roll the dice. The roll of the dice gives us a 9, so the value of the order is $16. After the attributes are

assigned, Car 7 makes a decision whether or not to get in line to order. Since we have set the MenuBoar-

dLineSize = 3 and there are 3 cars in the line, Car 7 leaves as a dissatisfied customer. When Car 7 leaves,

we want to capture some important information, namely how much revenue have we lost because of dis-

satisfied customers, which is tracked in our global variable RevenueLost. RevenueLost is incremented

from $74 to $90.

Now that Car 7 has arrived at (and subsequently, left) the restaurant, we also need to schedule the ar-

rival of the next car (Car 8) to the restaurant. The time between arrivals to the restaurant is set using the

formula (Dice * 10) in seconds. So, we roll the dice and get a 7. Car 8 will arrive 70 seconds in the fu-

ture at time 12:01:30 PM. Car 8 is now put on the calendar with the event “Arrive at Restaurant” that will

occur at the event time of 12:01:30 PM.

So what has changed? Car 7 has arrived and left and Car 8 is schedule to arrive in the future. We

have also updated RevenueLost. We have a new calendar, which is shown in Table 4.

The statistics can be updated at this point as well. (However, most simulation packages only update

statistics when the value that is being tracked changes). We have two types of statistics, the counting of

Revenue and RevenueLost, the resource utilization statistics and the queue length statistics. The counting

statistics are simply the values of the variables we are tracking, and RevenueLost has gone to $90. The

other statistics are time-dependent statistics that are time-weighted averages of a given value. As an ex-

ample, let us calculate the new value of the average number of cars waiting in line for the menu board. At

noon, the simulation had been running for one hour and the average value was 1.2306. From noon to

12:00:20 PM, the number of cars waiting in line for the menu board has been 2. So the new time-

weighted average is ((1.2306 * 1:00:00) + (2 * 0:00:20)) / 1:00:20 = 1.234851. If we were to convert this

formula to seconds, it would be ((1.2306 * 3600) + (2 * 20)) / 3620 = 1.234851. All time-dependent sta-

tistics are calculated in this way. The value for all of the statistics at time 12:00:20 PM is in Table 5.

1386

Ingalls

Table 4: The Calendar at 12:00:20 PM

Entity Event Event Time

Car(1) Order Pickup Window Complete 12:00:40 PM

Order(2) Kitchen Complete 12:00:56 PM

Car(4) Menu Board Complete 12:01:10 PM

Car(8) Arrive at Restaurant 12:01:30 PM

Table 5: Statistics at 12:00:20 PM

Statistic Value Time/Obs

Revenue $ 504

Lost Revenue $ 90

MenuBoard Utilization 0.998409 1:00:20

Kitchen Utilization 0.702254 1:00:20

OrderWindow Utilization 0.967978 1:00:20

MenuBoard Waiting in Line 1.234851 1:00:20

Kitchen Waiting in Line 0.087271 1:00:20

OrderWindow Waiting in Line 1.036453 1:00:20

Time In System 5.5969 44

4.3 The State of The System at 12:00:40 PM

We want to take one more step in the simulation because we actually see the line move! Looking at Table

4, we know that the next scheduled event is that Car 1 finishes its time at the Order Pickup Window at

time 12:00:40 PM. The first thing to do is set the CurrentTime to 12:00:40 PM. When Car 1 finishes its

time at the Order Pickup Window, we know that Car 1 has paid for its order, and so Revenue must be in-

crease by the OrderValue attribute of Car 1. So the value Revenue is increased from $504 to $514. We

also need to calculate a new average Time in System statistic. The time in the system for Car 1 is the Cur-

rentTime – StartTime, which would be 12:00:40 PM – 11:54:20 AM, which is 6 minutes and 20 seconds.

Since we are collecting Time in System in minutes, the new average Time in System is ((5.5969 * 44) +

6.3333) / 45 = 5.613265. The other thing that occurs is that the Order Pickup Window resource is no

longer utilized. Since the Order Pickup Window resources is available for other cars, the simulation will

allocate the Order Pickup Window resource to the car that is first in the line that is waiting to use the Or-

der Pickup Window. Our Car 2 (the convertible VW Bug) is first in line for the Order Pickup Window, so

Car 2 is allocated the Order Pickup Window resource. Can Car 2 start picking up its order? No, it cannot.

The reason is that the order for Car 2 is still in the Kitchen. So even though the Order Pickup Window re-

source is occupied, no productive work is going on. At the next step in the simulation, the order for Car 2

will complete in the Kitchen and Car 2 will be able to start the process of picking up its order. But for

now, it just has to wait!

Since Car 2 has moved forward, Car 3 moves to first place in the line waiting for the Order Pickup

Window resource. Car 4 is still occupies the Menu Board resource and is still in the process of giving its

order. This process is scheduled to end at time 12:01:10 PM (See Table 4). Cars 5 and 6 do no change

their position in the line and Car 8 is still scheduled to arrive at the restaurant at time 12:01:30 PM. The

new state of the system is shown in Figure 4.

1387

Ingalls

Figure 4: The State of the System at 12:00:40 PM

We also update our statistics at this time. As we described in at time 12:00:20 PM, we look at what

has happened since the last time we updated the statistics in order to determine the new values for the sta-

tistics. So, what number will we use to calculate the new average number of cars waiting for the Order

Window, 2 (the number in line at 12:00:20) or 1 (the number in line now)? The answer is 2 because from

time 12:00:20 PM to 12:00:40 PM there were 2 cars waiting in line. The new values for the statistics are

shown in Table 6.

Table 6: Statistics at 12:00:40 PM

Statistic Value Time/Obs

Revenue $514

Lost Revenue $90

MenuBoard Utilization 0.998418 1:00:40

Kitchen Utilization 0.703890 1:00:40

OrderWindow Utilization 0.968154 1:00:40

MenuBoard Waiting in Line 1.239055 1:00:40

Kitchen Waiting in Line 0.092286 1:00:40

OrderWindow Waiting in Line 1.041747 1:00:40

Time in System 5.613265 45

5 INTERPRETING OUTPUT STATISTICS

Let us assume that our model has run from 11:00 AM to 2:00 PM. At 2:00 PM, we stop the simulation

and we have all of our statistics calculated. The “answer” for the simulation is in Table 7.

Table 7: Statistics at End of Simulation

Statistic Value Time/Obs

Revenue $ 1,638

Lost Revenue $ 170

MenuBoard Utilization 0.9724 3:00:00

1388

Ingalls

Kitchen Utilization 0.7250 3:00:00

OrderWindow Utilization 0.9846 3:00:00

MenuBoard Waiting in Line 0.8785 3:00:00

Kitchen Waiting in Line 0.133 3:00:00

OrderWindow Waiting in Line 1.1567 3:00:00

Time In System 5.0487 140

But what does this data really telling us? Is it saying that every day, from 11:00 AM to 2:00 PM, the

revenue for the restaurant will be $1,638? Is it saying that every day, from 11:00 AM to 2:00 PM, the av-

erage amount of time that a car will be in line is 5.0487 minutes? What is this really saying?

The answer to that question is, “These numbers give us a random answer to the performance of the

system.” It is a random answer because there are random inputs to the system that give us this answer.

So how can we be sure that the answer is any good?

The answer generated by only one run is not really an answer at all. To make the point, let us take the

following 100 rolls of the dice. You would think that 100 rolls of the dice would tell us the average. But

if you take the 100 rolls in Table 8, the average is only 6.72. Is that close enough? Would you be willing

to bet that the next 100 rolls would come up with an average of 6.72. Probably not. (If you are, please

contact me as soon as possible on any other wagers you may be considering.)

Table 8: 100 Rolls of the Dice

6 5 8 6 5 4 10 6 7 8

5 9 8 7 8 6 3 8 7 6

9 9 8 8 6 8 9 7 10 5

2 10 11 8 6 8 7 3 8 8

4 6 8 11 2 4 8 9 8 5

9 3 8 7 2 3 9 10 7 7

3 9 5 7 7 7 9 4 8 7

4 10 7 4 10 8 4 8 9 7

3 6 6 3 6 3 10 9 7 4

6 8 5 9 12 6 8 6 4 2

Average: 6.72

So what is the answer to this problem. The answer is that if we really want to estimate the average

value of the roll of the dice if we roll the dice 100 times, we need to run the simulation more times. Each

time that we run a simulation is called an iteration. So, as an example, let us say that we have run our

dice throwing simulation for 30 iterations and Table 9 has the average values for each of those iterations.

Table 9: 30 Iterations of Throwing Dice 100 Times

6.72 6.95 6.78 7.14 6.62 6.81

6.75 7.17 6.62 7.3 6.92 7.04

6.79 7.13 7.17 7.12 6.82 7.29

7.13 7.26 7.19 6.52 6.8 7.3

6.95 6.96 6.78 7.17 7.13 6.68

Average: 6.967

Standard Deviation: 0.22992

95% Confidence Interval: [6.8847,7.0493]

1389

Ingalls

If we are simply trying to estimate the average of 100 rolls of the dice, we do not need to worry about

the standard deviation for each iteration. However, we do need to worry about the standard deviation of

the averages from each iteration. As is shown in Table 9, the average of the averages (so to speak) is

6.967. The standard deviation of those 30 averages is 0.22992. With that information, we can calculate a

confidence interval.

A confidence interval is a statistical measure where we want to bound some statistic. The level of

confidence (95% in our example) is the statistical probability that the statistic that we are considering lies

in the interval. So, the interpretation of the 95% confidence interval of [6.8847,7.0493] would be “There

is a 95% chance that the true average of rolling the dice 100 times lies between 6.8847 and 7.0493.”

Most statistical and simulation packages automatically calculate confidence intervals for you. Even Mi-

crosoft Excel has a function to calculate confidence intervals.

So in our example, we want to run 30 iterations so that we can have good confidence intervals for

each of our statistics. (Although we will not get into the topic in this paper, one should run 30 iterations

(or more) if you can in order to get good confidence intervals.) Table 10 shows the confidence intervals

for each of our statistics.

Table 10: Confidence Intervals after 30 Iterations

Statistic Value CI Lower CI Upper

Revenue $1,649 $1,627 $1,670

Lost Revenue $155 $135 $176

Lost Customers 12.83 10.99 14.67

MenuBoard Utilization 0.97 0.96 0.98

Kitchen Utilization 0.73 0.72 0.74

OrderWindow Utilization 0.99 0.99 0.99

MenuBoard Waiting in Line 0.95 0.89 1.01

Kitchen Waiting in Line 0.12 0.11 0.13

OrderWindow Waiting in Line 1.23 1.18 1.28

Time In System 5.31 5.18 5.44

 These statistics are very interesting on several fronts. First, could improve our revenue every day at

lunch 9.4% if we could capture the lost revenue. We need to find a way to lower the number of lost cus-

tomers from the 12.83 that we have seen in the current system. We also know that both the Menu Board

and Order Window are highly utilized, which means that lines are forming in front of those two resources.

We would also want to look at reducing the car’s time in the system. The minimum average theoretical

time for a car would be 70 seconds at the Menu Board and 70 seconds at the Order Window, which is 140

seconds, or 2.33 minutes. So, about 3 minutes of the car’s time is simply waiting. A key customer satis-

faction metric is to minimize the amount of time they have to wait in line.

6 FINDING WAYS TO IMPROVE A SYSTEM

What we have accomplished to this point is the analysis of a system that exists. We have learned that we

can improve revenue and that we have very busy resources. So let us run some alternative scenarios to

determine what (if any) improvements we should make.

6.1 Scenario 1: No Lines

Scenario 1 is based on the “eliminating inventory” thought. If we want to get the customer out of the sys-

tem quicker, we would simply need to eliminate some (or all) of the line. We’ll take drastic action and

eliminate all waiting in the system. If a car cannot pull right up to the Menu Board, then it will leave. If

the Order Window is not available after the order is placed, then the car waits at the Menu Board until the

1390

Ingalls

Order Window is free. This should greatly lower the Time in System statistic. Some would say that this

would be the best way to run the drive-through line since the system is balanced. The arrival rate is 1

every 70 seconds, the Menu Board rate is 1 every 70 seconds, and the Order Window rate is 1 every 70

seconds. Some would say that this is a perfect production line.

In order to accomplish this in the model, we simply change 2 variables, MenuBoardLineSize and Or-

derPickupLineSize, and set them both to a value of 1. Then we run the model for 30 iterations and get the

statistics in Table 11.

Table 11: Scenario 1 Statistics

Statistic Value CI Lower CI Upper

Revenue $989 $968 $1,010

Lost Revenue $851 $827 $875

Lost Customers 70.43 68.87 71.99

MenuBoard Utilization 0.68 0.67 0.69

Kitchen Utilization 0.43 0.42 0.44

OrderWindow Utilization 0.84 0.83 0.85

MenuBoard Waiting in Line 0.00 0.00 0.00

Kitchen Waiting in Line 0.00 0.00 0.00

OrderWindow Waiting in Line 0.00 0.00 0.00

Time In System 3.31 3.28 3.34

Well, the strategy worked the way we expected it to work. We reduced the Time in System statistic

by 37.7%. Now the cars are whipping through the drive-through. But there is a catch. We’re losing 5.5

times the number of customers that we were losing before! We’ve lowered our revenues by 40%! This

would hardly be considered a viable alternative!

What was it about eliminating the lines that caused such a problem? Without the lines, we caused ex-

cessive blocking in the system. Blocking occurs when something in the system will not allow a resource

to become available even though its service is finished. Throughout this scenario, the car at the Menu-

Board was finished ordering, but the car could not move forward because the Order Window was still oc-

cupied. In this scenario (or in any balanced system with random variation and no queuing space), each

car at the MenuBoard has a 50% chance of being blocked by the OrderWindow. This can be reduced by

adding queues between the resources.

In industrial problems, it is often difficult to determine where and why blocking occurs. That is why

there is so much emphasis on eliminating and/or controlling the bottleneck of the system. It is likely that

the bottleneck is in large part responsible for blocking in other parts of the system.

6.2 Scenario 2: Longer Lines at the Menu Board

Well, since Scenario 1 did not work very well, let us try another. Let us rearrange the parking lot so that

we can get room for 6 cars waiting in line for the Menu Board (including the car whose order is being

taken). We will keep the line for 3 cars for the Order Pickup Window. The results for Scenario 2 is

shown in Table 12.

Table 12: Scenario 2 Statistics

Statistic Value CI Lower CI Upper

Revenue $1,690 $1,665 $1,715

Lost Revenue $99 $77 $122

Lost Customers 8.50 6.73 10.27

1391

Ingalls

MenuBoard Utilization 0.99 0.99 0.99

Kitchen Utilization 0.73 0.72 0.74

OrderWindow Utilization 0.99 0.99 0.99

MenuBoard Waiting in Line 3.07 2.90 3.24

Kitchen Waiting in Line 0.13 0.12 0.14

OrderWindow Waiting in Line 1.28 1.23 1.33

Time In System 6.33 6.14 6.52

Well, we did add revenue ($51 per day) and decrease the number of lost customers, that is good, but

now the average customer waits an additional minute to get the order, which is bad. You can see why this

occurs. With the Menu Board line being longer, more cars can wait for the menu board and they do not

become lost customers in this scenario, where they would have become lost customers in the original

model. The price they pay for having room to get in line is that the line is longer, and so the time through

the system increases. This is another typical trade-off. Queues are good because they allow more

throughput in a system, but they add cycle time for the system.

6.3 Scenario 3: Improved Service Times

Let us try one more scenario. This scenario has found new technology that will cut the average service

time at the Menu Board and the Order Window by 20% from 70 seconds to 56 seconds. To implement

this technology, it would take $30,000 at each store and must be paid for by increased revenue at the

store. This is the only thing that changes from the original model. The results are shown in Table 13.

Table 13: Scenario 3 Statistics

Statistic Value CI Lower CI Upper

Revenue $1,822 $1,794 $1,850

Lost Revenue $10 $5 $15

Lost Customers 0.70 0.33 1.07

MenuBoard Utilization 0.81 0.80 0.82

Kitchen Utilization 0.79 0.78 0.80

OrderWindow Utilization 0.97 0.97 0.97

MenuBoard Waiting in Line 0.26 0.23 0.29

Kitchen Waiting in Line 0.23 0.21 0.25

OrderWindow Waiting in Line 0.85 0.82 0.88

Time In System 3.42 3.36 3.48

Well, now we see some improvement! The Time in System has dropped from 5.31 minutes to 3.42

minutes. We have virtually eliminated any lost customers, and have increased revenue by $174 per lunch

shift. We would pay back the $30,000 for the implementation of the new technology in 172 days or less

than 6 months! It is well worth the investment and you are a hero for figuring it out!

Why did this scenario show such improvement? It was because our resources were not so highly

loaded. The Menu Board utilization dropped from 97% to 81%, and so the line for the Menu Board

would be much smaller (it dropped by 72%). We would have seen a similar drop in the Order Window

utilization, but now the Order Window is being often being blocked by the Kitchen.

6.4 Generating Other Scenarios

This simulation and any other simulation can be used to evaluate many different scenarios if the person

creating the model allows some flexibility in the model structure. One also has to consider the amount of

1392

Ingalls

time it takes to run a new scenario. In a large scale simulation, to run and evaluate a new scenario could

take several days.

7 WHAT HAVE WE LEARNED?

This exercise points out several things about simulation in general. First, simulation can mimic the dy-

namic behavior of a system. That is what it is built to do. Regardless of how complex a system may be,

it is likely that a simulation expert will be able to create a model that will evaluate it. However, the more

complex a system is, the longer it takes to model, run and evaluate. But do not be discouraged; there are

very good simulation people available to model large systems.

Second, you (or the person analyzing the system) must have a good understanding of simulation sta-

tistics. It is important during the creation of the model so that input distributions are used properly. It is

important during the analysis of the output statistics so that the output is not misinterpreted. Mistakes

with either the inputs or the outputs will cause the simulation analysis to be invalid.

Third, to analyze a system, simulation is used to evaluate different scenarios. It does not choose the

best scenario for you. This may seem to be a problem, but most managers have no shortage of scenarios

to evaluate. The trade off for this is that you can analyze the dynamics of the system and not just the av-

erage behavior.

Fourth, the scenarios that you do choose are generated by you and not the system. This is where fa-

miliarity with the system under study and a familiarity with system dynamics concepts are very valuable.

This is, of course, simply an introduction. Through this conference and interaction with simulation

professionals, you can get a deeper understanding of simulation and what it can do for you.

REFERENCES

Banks, J., J.S. Carson II, B.L. Nelson, and D.M. Nicol. 2000. Discrete Event System Simulation, 3
rd

 Ed.,

Prentice-Hall.

Law, A.M. and W.D. Kelton. 2000. Simulation Modeling and Analysis, 3
rd

 Ed., McGraw-Hill.

Kelton, W.D., R. Sadowski, D. Sadowski. 2001. Simulation with Arena, 2nd Edition, McGraw-Hill.

Ingalls, R.G, C. Kasales, 1999. “CSCAT: Compaq Supply Chain Analysis Tool.” In Proceedings of the

1999 Winter Simulation Conference, edited by P.A. Farrington, H.B. Nembhard, D.T. Sturrock and

G.W. Evans. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Ingalls, R.G., 1998. “The Value of Simulation in Modeling Supply Chains.” In Proceedings of the 1998

Winter Simulation Conference, edited by D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Mani-

vannan. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Ingalls, R.G., C. Eckersley, 1992. Simulation Issues in Electronics Manufacturing. Proceedings of the

1992 Winter Simulation Conference. ed. J.J. Swain, D. Goldsman, R.C. Crain and J.R. Wilson. Pisca-

taway, New Jersey: Institute of Electrical and Electronics Engineers.

Shannon, Robert E., 1975. Systems Simulation – The Art and Science. Prentice-Hall.

AUTHOR BIOGRAPHY

RICKI G. INGALLS is Associate Professor and Site Director of the Center for Engineering Logistics

and Distribution (CELDi) in the School of Industrial Engineering and Management at Oklahoma State

University. He is also a Founding Principal with Diamond Head Associates, Inc. He joined OSU in the

Fall of 2000 after 16 years in industry with Compaq, SEMATECH, General Electric and Motorola. He

has a B.S. in Mathematics from East Texas Baptist College (1982), a M.S. in Industrial Engineering from

Texas A&M University (1984) and a Ph.D. in Management Science from the University of Texas at Aus-

tin (1999). His research interests include the supply chain design issues and the development and applica-

tion of qualitative discrete-event simulation. He is a member of IIE. His email address is <rick-

i.ingalls@okstate.edu>.

1393

