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ABSTRACT 

Ambulance Diversion (AD) has been an issue of concern for the medical community because of the po-
tential harmful effects of long transportation; however, AD can be used to reduce the waiting time in 
Emergency Departments (EDs) by redirecting patients to less crowded facilities. This paper proposes a 
Simulation-Optimization approach to find the appropriate parameters of diversion policies for all the fa-
cilities in a geographical area to minimize the expected time that patients spend in non-value added activi-
ties, such as transporting, waiting and boarding. In addition, two destination policies are tested in combi-
nation with the AD policies. The use of diversion and destination policies can be seen as ambulance flow 
control within an emergency care system. The results of this research show significant improvement in 
the flow of emergency patients in the system as a result of the optimization of destination-diversion poli-
cies compared to not using AD at all. 

1 INTRODUCTION 

Ambulance Diversion (AD) are the periods when overcrowded Emergency Departments (EDs) request 
ambulance services to bypass their facilities (GAO 2003). The Center for Disease Control and Prevention 
reported that the mean annual hours on AD in metropolitan areas was 404 hours from 2003 to 2004 (CDC 
2006).  
 The medical community strongly recommends to avoid or minimize the periods on AD because of the 
potential harmful effect of longer transportation on the health status of the patient (ACEP 1999a; ACEP 
2008). However, there is evidence suggesting that not diverting ambulances may increase the waiting 
time and the number of patients boarding in EDs (Massachusetts Nurse Newsletter 2009). 
  On the other hand, the effect of ambulance patients on the operations of EDs determines the effec-
tiveness of the system in many performance measures. Thus, ambulance patients tend to receive higher 
priority to start treatment than walk-ins because of their severity conditions. In addition, ambulance pa-
tients also have longer treatment times and larger admission probability than walk-ins. Therefore, the al-
location of the patient affects the flow of other patients. 

This paper proposes the centralized design of AD policies combined with effective destination poli-
cies as a mechanism of ambulance flow control. The destination policy determines the hospital destina-
tion of a patient when there are more than one open hospital in the region. The objective is to minimize 
the time that patients who require emergency assistance spend in suboptimal treatment (a.k.a non-value 
added time). The results show the potential of designing effective destination and diversion policies to 
smooth the flow through different stages of care. 
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2 LITERATURE REVIEW 

Empirical studies regarding ambulance diversion exists in the literature. These type of papers identify the 
main causes to divert ambulances and show efforts to design system-wide policies that enable the reduc-
tion of the diversion episodes in a region. 
 A survey conducted by the CDC (2006) revealed that the main causes for initiating AD episodes are 
the lack of beds in inpatient units, the high number of patients waiting in the ED and the complexity of 
ED cases. These factors are also identified in other publications. Furthermore, an additional cause that is 
consistently named in other publications is the high number of patients boarding, which are the patients in 
the ED waiting for an open bed in an inpatient unit (ACEP 2008; Pham et al. 2006). 

Empirical studies to design AD guidelines are available in the literature. The objective of these guide-
lines is to minimize the amount of time spent on AD in a region. For example, Vilke et al. (2004a) de-
signed a plan to observe the effect of AD in two hospitals. The authors found a reciprocating effect. Thus, 
when one hospital goes on diversion, it is very likely that the neighboring hospital starts diverting ambu-
lances within a short period. An enhanced project that comprised multiple hospitals had the objective of 
redesigning the guidelines to start AD. These new guidelines are more restrictive and the results show a 
significant reduction of AD hours in the region (Vilke et al. 2004b). 

Two similar studies were conducted in other regions. The first of them introduces a new AD protocol 
for a county with 600,000 inhabitants and 10 hospitals (Asamoah et al. 2008). The new protocol con-
strained the time on AD to only one hour out of every eight. The mean number of hours on diversion in 
the system was reduced by about 82%. The second study is a project carried out during three years in-
volving 17 hospitals (Patel at al. 2006). Similarly, this study is based on the redesign of AD guidelines 
that restrict the causes to initiate AD and limits the duration of the episodes. The results show a reduction 
of the hours spent on AD in the system by about 75%. 

Even though these results show a significant reduction of AD in a system, which increases the acces-
sibility to emergency care, these publications do not provide information about the impact of reducing AD 
in other measures, such as waiting time. It is known that AD can relieve congestion from an ED and re-
duce the average waiting time within a facility (Ramirez, Fowler, and Wu 2010). Therefore, restricting 
the use of AD might have undesirable effect if appropriate actions are not implemented to reduce conges-
tion. Furthermore, “No AD” laws approved in some regions might cause a rise in the waiting time and pa-
tients boarding (Massachusetts Nurse Newsletter 2009). 

On the other hand, few analytical studies on the use of AD in multiple hospitals are available in the 
literature. For example, Hagtvedt et al. (2009) models the AD decision of two hospitals using an analogy 
of the Prisoner’s Dilemma and introduces a payoff function that includes a penalty for diverting ambu-
lances. The authors found that a centralized system to control AD episodes is needed given that voluntary 
cooperation might not be a robust approach. 

Deo and Gurvich (2011) analyze the effect of AD in two hospitals using a model based on queuing 
networks. The authors use the average waiting time in each ED as the performance measure of their inter-
est. They observed that a centralized AD can be Pareto improving compared with not allowing AD in the 
system. In addition, they introduce the rule that initiates AD when all the beds in the ED are occupied. 
These results suggest that AD can bring benefits to the system if the guidelines are properly designed 
based on a centralized system. However, their models do not include important aspects observed in emer-
gency systems, such as non-stationary arrivals, transference from EDs to inpatient units and distance to 
other hospitals. 

This paper proposes a model based on simulation to analyze the effect of AD and destination policies 
in the flow of patients in an emergency care system. Furthermore, a simulation-optimization approach us-
ing genetic algorithms is introduced as a method to design effective AD policies from a centralized per-
spective. The objective is to find Pareto improving policies that reduce the average-patient non-value 
added time in each hospital of a system. 
 

1252



Ramirez-Nafarrate, Fowler, and Wu 
 

3 EMERGENCY CARE DELIVERY SYSTEM MODEL 

This research is based on a discrete-event simulation model of an emergency care delivery system 
(ECDS) that includes multiple hospitals and ambulances delivering patients to their EDs. There are three 
main modules that allows the execution of the simulation and the evaluation of the decision policies: 
emergency patient generation, ambulance destination decision and hospital simulation. 

The emergency patient generation module creates patients that require transportation to an ED. This 
module assigns a random location that represents the departure point from the ambulance 

Then, the ambulance destination decision evaluates the options related to the open hospitals that can 
receive the new patient. The decision of where to take the new patient is based on a destination policy. 
After determining the destination hospital, the module schedules the arrival of the patient taking into ac-
count distance and a random variable associated with velocity. 

The hospital simulation module executes the events related to the operations of each hospital, includ-
ing ambulance and walk-in arrivals, end of treatments, direct admissions, etc. In addition, it keeps track of 
the status of the hospital to initiate AD if the conditions of the policy under evaluation are satisfied. Fig-
ure 1 presents an overview of the model. 

 

Figure 1: Overview of the simulation model of an ECDS 

Each hospital in the model has a similar structure. They include an ED and one inpatient unit (IP). 
Upon arrival to the ED, a severity level is assigned to the patient. This level determines the priority for 
being placed in a bed. The probability of receiving a specific severity level depends on the arrival mode. 
Patients arriving by ambulance are more likely to have higher severity level than walk-ins. The duration 
of the treatment in the ED depends also on the severity level. Higher severity implies longer treatment. 
After ending treatment in the ED, the patient can be discharged or be admitted to the IP unit. The admis-
sion probability is also correlated with the severity level. The IP unit receives direct admissions as well. If 
a patient in the ED requires admission, but the IP does not have available beds, then the patient waits in 
the bed of the ED (boarding) until an IP bed opens up. In addition, patients in the ED can leave without 
treatment (LWOT) if they have waited for a long period. Figure 2 depicts the patient flow in each hospital 
included in the model. Appendix A describes the input data for the generic hospital used in the model. 

Two assumptions are made regarding the accessibility to emergency care in the system. First, if the 
arrival of an ambulance with a patient is scheduled to the destination hospital and that hospital goes on 
diversion before the arrival event takes place, then the patient is still accepted in the hospital. This avoids 
redirecting patients while they are on the road. The second assumption avoids having all the hospitals in 
the system on diversion at the same time. Thus, if the last open hospital reaches the condition to go on di-
version, then all the hospitals go off diversion. This type of practice is commonly used in real settings 
(AEMS 2000). 
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Figure 2: Patient flow within the hospitals included in the model 

4 CENTRALIZED DESIGN OF AD POLICIES 

This paper introduces a simulation-optimization approach to allow a centralized design of AD policies 
that enables the improvement of the hospitals’ performance in the system. Particularly, this research is 
based on the use of genetic algorithms (GA) to define the parameters of the AD policies for each hospital 
in a system and it uses the simulation model described in Section 3 to evaluate the performance of the set 
of policies. 

Thus, the GA chromosome represents the union of AD policies for all the hospitals in the system. 
Therefore, the recombination and mutation of chromosomes enables the exploration of sets of policies 
that can improve the performance in the ECDS. Then, simulation evaluates the fitness of each chromo-
some by obtaining the average-patient non-value added time per hospital. Finally, the evolution of the GA 
allows finding the set of policies that have the best performance after a finite number of generations. Fig-
ure 3 depicts the process of the centralized design of AD policies proposed. 

 

Figure 3: Centralized design of AD policies using simulation-optimization 

4.1 Performance Evaluation 

The hypothesis of this research is based on the assumption that a smart allocation of ambulance patients, 
through ambulance diversion and destination policies, can reduce the time that patients spend in subopti-
mal treatment at different stages of care. Therefore, the performance of the ECDS is evaluated by the vec-
tor that contains the average-patient non-value added time for each hospital in the system: (ܸܰܶതതതതതതଵ, 
ܸܰܶതതതതതതଶ,…,	ܸܰܶതതതതതത௡), where n is the number of hospitals in the system. 

The average-patient non-value added time of a hospital is a measure that includes transportation, 
waiting in the ED and boarding; and it is computed in the following form: 
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ܸܰܶതതതതതത௜ ൌ ௜݌
௔ തܶ௜ ൅ ∑ ௞,௜ݓ

ହ
௞ୀଵ

ഥܹ௞,௜ ൅ ௜݌
௔ௗ௠ܤത௜       (1) 

 
where, 
ܸܰܶതതതതതത௜=  Average patient non-value added time in hospital Hi 
௜݌
௔= Fraction of ambulance arrivals to hospital Hi 
തܶ௜ = Average transportation time of ambulance patients received at hospital Hi. This includes patients 
whose final destination is Hi, and patients diverted from Hj to Hi, for all i ≠ j 
 ௞,௜ = Weight given to the average waiting time of patients with severity level k in hospital Hiݓ
ഥܹ௞,௜ = Average waiting time of patients with severity level k in hospital Hi 
௜݌
௔ௗ௠ = Fraction of ED patients admitted to hospital Hi 
 ത௜ = Average boarding time in hospital Hiܤ

 
 The first term on the right hand side of the equation takes into account the average transportation time 
of ambulance patients only. The second term is a weighted average, based the on severity level, of all the 
patients in the ED, except the patients that left without treatment (LWOT). The third term includes all the 
patients that were admitted from the ED. Note that the components related to waiting and boarding con-
siders walk-in patients.  
 Although the average proportion of ambulance arrivals to EDs is 15% (CDC 2010), the characteristics 
of their patients can cause important disruptions to the flow of patients in a hospital. Therefore, an effec-
tive design and combination of AD and destination policies could smooth the patient flow, which will be 
observed as an improvement on the performance vector. 

4.2 Ambulance Diversion and Destination Policies 

This paper compares three types of AD policies, each of them combined with two types of destination 
policies.  
 
Ambulance Diversion Policies: 

1. No AD. Ambulance diversion is not implemented if this type of policy is used. 
2. Simple AD. The simple AD policy initiates a period of AD when all the beds in the ED are occu-

pied. 
3. Optimized Single-Factor AD Policy (SF AD). This type of policy observes if a particular state 

variable reaches a threshold in order to initiate an AD episode. The optimal thresholds are ob-
tained via GA. 

 
Ambulance Destination Policies: 

1. Nearest Hospital (NH). With this policy, the patient is transported to the nearest hospital from the 
emergency location. 

2. Least Crowded Hospital (LCH). The patient is transported to the hospital with the fewest number 
of patients waiting in the ED. 

 
 The first type of AD policy reflects the situation in some regions and the recommendations of the 
medical community. The simple AD policy is suggested by Deo and Gurvich (2011) as Pareto improving 
policies in their queuing analysis. The optimized single-factor AD policy is the core of this research. It is 
based on a proposed structure for the policy that takes into account one of the main crowding variables 
and it includes parameters to reevaluate and remove the diversion status. The next section provides a 
deeper explanation of this type of policy. 
 The guidelines of EMS suggest to take a patient to the nearest appropriate hospital (ACEP 1999b). 
Therefore, this research evaluates two types of destination policies related to this recommendation. The 
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nearest hospital policy could improve the first term of Equation 1, while the second policy could have an 
effect of the second and third term. 

4.3 Encoding of Single-Factor AD Policies 

The AD policies proposed in this paper are based on the observation of one of the main variables that 
triggers the diversion status in practice. These state variables are: 
 
NQi: Number of patients waiting in the ED of hospital Hi. 
NBi: Number of patients boarding in the ED of hospital Hi. 
NIPBi: Number of beds available in the IP unit of hospital Hi. 
 
 Ramirez, Fowler, and Wu (2010) presented a bi-criteria analysis of single-factor policies based on 
these variables for a single hospital. Those policies comprises two parameters to set or remove/reevaluate 
the diversion status. Hence, the reevaluation could be continuous or at discrete points. 

This paper improves the definition of an AD policy by considering three parameters: (Don, Doff, t). 
The Don parameter represents a threshold on a state variable to set the diversion status on. The Doff pa-
rameter is another threshold on the same state variable to remove the diversion status. t is the reevalua-
tion frequency after going on diversion. Diversion status can be removed only at a reevaluation point. 
 Since three state variables are considered in this research, then there are three types of single-factor 
AD policies, one for each state variable. Therefore, the length of the AD chromosome that contains the 
AD policies of all the hospitals in the ECDS is 10n, where n is the number of hospitals. The subchromo-
some that represents the AD policy of a particular hospital is depicted in Figure 4. 

 
Gene 1 2 3 4 5 6 7 8 9 10 

Variable Pi UNQi LNQi tNQi UNBi LNBi tNBi LNIPBi UNIPBi tNIPBi 

Figure 4: Chromosome partition that represents an SF AD policy in one hospital 

 The first gene describes the type of factor to consider in the policy of hospital Hi. Thus, Pi = 1 implies 
that AD policy of hospital Hi is based only on number of patients waiting in the ED (NQi); Pi = 2 indi-
cates that AD is based on the number of patients boarding (NBi); and Pi = 3 means that AD is based on the 
number of beds available in the IP unit (NIPBi). Therefore, the execution of an SF AD policy requires 
values for three parameters. If the policy is type 1, then the parameters are in the genes 2, 3 and 4. If it is 
type 2, then the genes of interest are 5, 6 and 7. If the type is 3, then the related genes are 8, 9 and 10.  
 The first of the three parameters that define an SF AD policy is a threshold that triggers the diversion 
status (Don parameter in genes 2, 5 or 8). Thus, if policy is type 1, then the hospital Hi sets the diversion 
status when NQi > UNQi. If it is type 2, then Hi goes on diversion when NBi > UNBi. If it is type 3, then di-
version is set when NIPBi < LNIPBi. After going on diversion, the state of the system is reviewed every t 
time units, represented by genes 4, 7 and 10 for policies type 1, 2 and 3, respectively. 
 The Doff parameter (represented in genes 3, 6 and 9) is a threshold used to decide the removal of the 
diversion status at a review point. If policy is 1, then the diversion status is removed if NQi < LNQi. If poli-
cy is type 2, then diversion is removed if NBi < LNBi. If the policy is type 3, then diversion is removed if 
NIPBi > UNIPBi. Note that for all the policies the threshold U is greater than the threshold L. Policy type 3 
has the U and L interchanged because of the meaning of the state variable (number of available beds in 
the IP). 
 An example of an SF AD policy is: “set the diversion status if there are at least 15 patients waiting in 
the ED, reevaluate every hour after going on diversion and remove the diversion status if there are 5 or 
less patients waiting”. This policy is encoded as: 
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Gene 1 2 3 4 5 6 7 8 9 10 

Variable 1 15 5 60 Null Null Null Null Null Null 

 
 In this example, genes 5 to 10 can take any value and the simulation code does not take them into ac-
count because the first gene specifies the type of policy. 

4.4 Multi-Objective Genetic Algorithm 

This research implements the NSGA-II algorithm (Deb et al. 2002). This algorithm selects the survivor 
chromosomes based on a front number and a crowding distance. The front number of a specific policy P 
is related to the number of policies which dominate P (domination count). The nondominated policies of a 
set of policies have front number equal to one. Then, policies in front one are removed from the total set 
and the process repeats. The new set of nondominated policies is assigned to front two. The process re-
peats until a front number is assigned to all the policies. The crowding distance is related to the diversity 
of the policies. The crowding distance of a specific policy P is an estimation of the perimeter of the cu-
boid formed by the nearest policy neighbors of P. The policies with larger crowding distance are more 
likely to be included in the parent selection since diversity encourages exploring areas with low density of 
policies.  

5 CASE STUDY: ECDS WITH THREE HOSPITALS 

The AD and destination policies presented in Section 4.2 are used in a case study that comprises three 
hospitals. Two configurations of random locations are presented; one of them assumes that the ECDS is 
in a 10x10 squared-miles area (Random 1), while another assumes that the area is 20x20 squared-miles 
(Random 2).  
 The hospital built for this research is a generic hospital that incorporates data from published papers 
and other sources. Based on the generic hospital, two configurations of relative size are used in the exper-
imentation: one assumes the same relative size (1:1:1) and another assumes different sizes for all the hos-
pitals, one of them has 10% more arrivals than the generic and another 20% more arrivals than the generic 
(1:1.1:1.2). The combinations of scenarios and strategies are summarized in Table 1. 

Table 1: Scenarios and strategies used in the experimentation process. 

Scenarios Strategies 

Location (H1, H2, H3) Relative Size 
(H1: H2: H3) 

Diversion 
Policies 

Destination 
Policies 

Random 1: (1.7, 9.2), (4.8, 3.8) & (8.5, 7.3) 1:1:1 No AD NH 
Random 2: (19.2, 6.4), (6, 10.5) & (12.3, 18.9) 1:1.1:1.2 Simple AD LCH 

  Optimized SF-AD  
 

 The results for the case study are shown in Table 2. It includes the average-patient non-value added 
time per hospital for each strategy, the sum of the non-value added time in the system, the standard devia-
tion and the percentage of time spent on diversion in each hospital. More than one solution can be seen 
for the SF AD strategies because the multi-objective GA can produce multiple Pareto solutions. 
 For each scenario, the strategies that allow AD outperform the No AD strategy. Thus, AD can reduce 
the total average-patient non-value added time. Furthermore, the SF AD policy proposed in this paper 
produce Pareto improving solutions in most of the scenarios. The Simple AD policy have better perfor-
mance than No AD, but the SF AD is better than the Simple policy. 
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 Table 2: Results from the experimentation process 

*Dominates No AD strategy; **Dominates Simple AD strategy; ***Dominates No AD and Simple AD 
strategies 
 
 Regarding the destination policies, LCH hospitals outperform NH. In addition, LCH can balance the 
performance across hospitals, reducing the standard deviation of the average patient non-value added 
time. 
 The reduction in the average-patient non-value added time using AD policies depends on the destina-
tion policy implemented. Thus, if NH is used, then the Simple AD policy reduces the total average-patient 
non value-added time by 19.56% and the SF AD reduces it by 22.64%. If LCH is used, then the reduction 
produced by Simple AD and SF AD are 4.79% and 13.33% respectively. In any case, the gaining of using 
intelligent diversion is significant compared to No AD. 
 An important aspect to highlight related to the destination policy is that the case study assumes an ur-
ban area for the hospitals. If the analysis is conducted in a rural area, it is very likely that contradictory re-
sults would be observed. However, AD is not recommended in rural areas because the significant increase 
in transportation would cancel the potential benefits of AD and it would jeopardize the health condition of 
the patients. 

    
Average-Patient NVT 

(mins)     
Percentage of time on 

diversion 

Scenario Strategy H1 H2 H3 
Total 
NVT 

Std. Dev 
NVT H1 H2 H3 

  No AD - NH 21.28 155.63 45.29 222.21 71.65       
  Simple AD - NH 25.55 86.00 44.03 155.59 30.98 6.33 22.43 11.36
  SF AD - NH 67.26 52.54 27.58 147.38 20.06 8.77 33.38 21.55
 Random 1 SF AD - NH* 20.47 101.09 36.96 158.52 42.59 10.45 23.43 16.64
 1:1:1 No AD - LCH 54.86 41.47 36.74 133.08 9.40       

Simple AD - LCH 37.12 43.32 40.73 121.17 3.12 6.24 10.01 7.67 
SF AD - LCH 36.48 42.78 37.67 116.93 3.35 7.57 0.82 5.41 

  SF AD - LCH* 53.56 36.56 29.76 119.88 12.26 9.50 32.10 26.37
  No AD - NH 25.24 273.94 160.93 460.11 124.52       
  Simple AD - NH 46.87 197.28 144.58 388.73 76.32 2.24 22.63 19.05
 Random 1 SF AD - NH 71.34 155.17 148.48 374.99 46.59 12.92 31.63 25.43
 1:1.1:1.2 No AD - LCH 132.93 123.55 119.53 376.01 6.88       

Simple AD - LCH 125.77 126.18 123.65 375.61 1.36 3.35 5.61 5.95 
SF AD - LCH*** 117.39 106.46 111.13 334.98 5.48 2.89 18.71 13.25

  No AD - NH 34.12 144.28 26.26 204.66 65.99       
  Simple AD - NH 38.97 81.91 32.92 153.79 26.71 10.45 22.31 8.24 
  SF AD - NH 43.66 75.64 33.92 153.21 21.82 10.55 24.57 8.90 
 Random 2 SF AD - NH* 26.37 104.73 25.56 156.66 45.48 13.89 22.68 11.21
 1:1:1 No AD - LCH 58.40 43.88 37.62 139.90 10.66       

Simple AD - LCH 42.06 46.15 41.27 129.48 2.62 7.56 10.42 6.84 
SF AD - LCH** 34.34 36.89 40.07 111.30 2.87 9.71 15.58 3.40 

  No AD - NH 50.57 317.08 131.81 499.47 136.60       
  Simple AD - NH 83.50 238.65 137.97 460.12 78.71 3.46 18.11 12.57
  SF AD - NH** 83.18 226.75 123.35 433.28 74.07 3.92 18.14 12.31
 Random 2 SF AD - NH 155.39 189.56 103.21 448.17 43.49 5.59 23.71 17.65
 1:1.1:1.2 No AD - LCH 168.27 156.33 150.16 474.76 9.21       

Simple AD-LCH* 159.98 153.01 149.22 462.20 5.46 3.41 4.52 4.65 
SF AD - LCH 76.71 61.11 290.24 428.05 128.02 44.70 55.61 3.30 

  SF AD - LCH* 151.06 131.86 149.27 432.19 10.61 10.67 20.80 15.48
  SF AD - LCH*** 153.12 144.20 141.33 438.66 6.15 3.60 9.91 5.70 
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6 CONCLUSIONS 

This paper presented a centralized design of AD policies using GA and simulation to evaluate the perfor-
mance. The AD policies are combined with destination policies in an ambulance flow control framework 
that allows the allocation of ambulance patient in an ECDS. The findings suggest that the centralized de-
sign of diversion policies and effective destination rules can reduce the time that patients spend in subop-
timal care, including the walk-in patients. 
 The results of the experimentation show that the proposed SF AD policies outperform not diverting at 
all and they produce better results than a simple AD policy. These observations imply that an intelligent 
strategy for implementing AD in a region can smooth the patient flow in the entire ECDS. The improve-
ment depends on the destination policy that accompanies the AD policy.  The LCH destination policy 
outperforms NH. However, this might hold only in urban settings, like the one assumed in this research. 
 The centralized design of AD policies assumes a high level of collaboration among hospitals to im-
prove the patient safety. This might be an issue in the real setting, but the efforts shown in the literature 
suggest that healthcare organizations are willing to work together to bring benefits to their systems. 

Even though the model used for this research considers a generic hospital built from data obtained in 
the literature, the effectiveness of the proposed methodology does not depend on the model but in the en-
coding of the AD policy and the evaluation of the system. 
 Future extensions of this research include the optimization of multiple-factor AD policies, the evalua-
tion of a destination policy that includes transportation and crowding factors simultaneously and the op-
timization of the destination policy using simulation-optimization. 

A INPUT DATA FOR GENERIC HOSPITAL 

The generic hospital described in Section 3 was built using C++ with information published in different 
sources. The main sources of are: Cochran and Bharti (2006), Cochran and Roche (2009) and CDC 
(2010). Figure 5 depicts the pattern of the arrivals considered for the model. The pattern observed in the 
arrival rate is also identified in other papers and official reports across the United States (Burt, McCaig, 
and Valverde 2006; CDC 2008). Note that ambulance arrivals comprise 15% of all the arrivals to an ED 
according to Figure 7. This percentage is consistent with the averages published by the CDC (2010). 
Green (2006) proposes a set of arguments to assume Poisson process for the arrivals to healthcare sys-
tems. Hence, this paper assumes Poisson process for all its arrivals. In order to schedule ambulance arri-
vals to an appropriate hospital, the transportation time is estimated by xM(l, Hi), where M(l, Hi) is the 
Manhattan distance between the emergency location and the selected hospital, and  is the transportation 
time per mile. This paper assumes a distribution for , such that  ~ Normal(1.25, 0.5). This implies that 
the average transportation time is 1.25 minutes per mile, which is similar to the data presented by Google 
Maps as transportation time per mile in Maricopa County, AZ.  The severity level assigned to each pa-
tient depends on the arrival mode. Table 3 presents the percentages of each severity level.  

The mean treatment time per severity level is shown in Table 4. This paper assumes that the treatment 
time follows an Erlang distribution with shape parameter of 3. 

After ending treatment in the ED, the patients can be admitted to the IP unit with a probability that 
depends on the severity level. These probabilities are presented in Table 5. The overall admission per-
centage is 15% which is in the range the average seen in metropolitan areas in the United States (CDC 
2010). 

Direct admissions to IP occur according to a Poisson process with a mean of one admission per hour, 
which is similar to the total external arrival rates of the hospital analyzed in Cochran and Bharti (2006). 
The treatment time in the IP is also assumed to be an Erlang distribution with shape parameter equal to 3 
and a mean of four days, which is similar to the data found by Cochran and Bharti (2006) and close to 
mean length of stay in IP units according to the CDC (2010). 
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Figure 5: Arrival rate to a single ED 

Table 3: Percentages for severity mix 

Arrival Mode 
Severity Level Ambulance Walk-Ins Overall 
1 15 2 3.95 
2 42 16 19.90 
3 30 40 38.50 
4 10 30 27.00 
5 3 12 10.65 
Overall 15 85 

Table 4: Mean Treatment Times in the ED 

Severity Level Mean Treatment 
Time (min) 

1 273 
2 273 
3 140 
4 106 
5 30 

 Table 5. Admission probabilities to IP 

Severity Level Admission Percent-
age 

1 70 
2 34 
3 10 
4 5 
5 3 
Overall 15 

 
 In order to model the LWOT patients, this paper incorporates an approach presented by Miller, Fer-
rin, and Shahi (2009). The LWOT routine consists of removing patients from the queue if they have not 
been placed in a bed within 24 hours. This paper assumes that LWOT patients go home or visit a non-
emergency physician; therefore, they are not scheduled to arrive to another hospital in the model. 
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 The hospitals in the model have 20 beds in the ED and 200 IP beds. The number of beds considered 
for the ED is similar to the median in the United States (CDC 2006) and the size of the IP unit is suitable 
for a medium-size hospital.  
 The simulation length for the research is fixed to six months after a warm-up period of one month and 
ten replications per strategy are considered. These parameters were defined after a set of pilot runs to ob-
tain precise estimation of the performance measure of interest. In addition, Common Random Numbers 
(Banks et al. 2010) are used to expose the different strategies to similar conditions and reduce the noise 
among them. 
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