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ABSTRACT 

In the U.S., commercial and residential buildings and their occupants consume more than 40% of total 
energy and are responsible for 45% of total greenhouse gas (GHG) emissions. Therefore, saving energy 
and costs, improving energy efficiency and reducing GHG emissions are key initiatives in many cities and 
municipalities and for building owners and operators.  To reduce energy consumption in buildings, one 
needs to understand patterns of energy usage and heat transfer as well as characteristics of building struc-
tures, operations and occupant behaviors that influence energy consumption.  We develop heat transfer 
inverse models and statistical models that describe how energy is consumed in commercial buildings, and 
simulate the impact of energy saving changes that can be made to commercial buildings including struc-
tural, operational, behavioral and weather changes, on energy consumption and GHG emissions.  The 
analytic toolset identifies energy savings opportunities and quantifies the savings for a large portfolio of 
public buildings. 
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1 INTRODUCTION 

In the United States, 40% of the nation’s total energy consumption occurs in commercial and residential 
buildings (U.S. Dept of Energy 2006).  The buildings also contribute to 45% of the country’s greenhouse 
gas (GHG) emissions, which are linked directly to global climate change (EPA ESPM 2009).  Global 
warming, caused by gradually increasing concentrations of GHG in the atmosphere, is one of the most 
significant crises that humans face today.  Already, it is impacting our lives, for even small changes in the 
Earth’s average temperature can increase the occurrences of severe weather conditions such as storms, 
floods and droughts, stimulate drastic climatic changes in all ecosystems, and initiate adverse impact on 
the health and lives of humans and other species.  
 The majority of greenhouse gases are emitted when fossil fuels are burned to produce heat and elec-
tricity.  Once in the atmosphere, these gases, which include carbon dioxide (CO2), methane (CH4), chloro-
fluorocarbon (CFC), Tropospheric (ground level) ozone (O3), nitrous oxide (N2O) and water vapor (H2O), 
create a “greenhouse effect” by trapping the thermal energy reflected off of the Earth’s surface (Silver & 
DeFries 1991).  Out of all of the listed gases, 99% of the total greenhouse gas emissions consist of CO2, 
while a little less than the remaining 1% consists of CH4 and N2O together (EPA ESPM 2009a).  Since a 
clear majority of GHG emissions consists of CO2, the term carbon dioxide equivalent (CO2e) is a com-
mon unit used to represent the weighted sum of the greenhouse impact of CO2, CH4, and N2O emissions 
(EPA ESPM 2009).   
 Today, the CO2e level serves as a significant instrument to all environmentalists, since emissions con-
tinue to rise.  In fact, GHG emissions have been increasing rapidly for decades.  In the year 1990, the total 
GHG emission was measured at 20.9 gigatons (Gt); however, by the year 2007, this number sharply in-
creased to approximately 28.8 Gt.  Research suggests that, by the year 2020, the amount of total GHG 
emissions is expected to rise to roughly 34.5 Gt, and by the year 2030, to 40.2 Gt, assuming that current 
trends in energy consumption continue.  Similarly, research predicts that by the year 2030, CO2e in the 
atmosphere will have increased from 400 ppm (parts per million) (measured in year 2010) to 1,000 ppm, 
thereby potentially increasing the global average temperature of the Earth by 6oC, or 10.8oF (OECD/IEA 
2009).  Such an increase in the Earth’s global temperature would certainly lead to massive climatic 
changes, unimaginable natural disasters, and irreparable damage to the planet as a whole (OECD/IEA 
2009).   
 Therefore, action must be taken.  If we all participate in reducing global energy consumption and suf-
ficient changes in government policies are made worldwide, the increase in the atmosphere’s CO2e may 
be contained to a new target for CO2e of 450 ppm by 2030, rather than 1,000 ppm, and a global average 
temperature increase may be contained to around 2 oC (or 3.6 oF), rather than to 6oC (or 10.8oF).  Howev-
er, scientists believe that if action is not taken within the next few years, this goal will end up completely 
out of reach (OECD/IEA 2009).  The majority of the world’s population either lives or works in a build-
ing; therefore, everybody has a responsibility and a role to play in reducing energy consumption, control-
ling GHG emissions, and confronting climate change and its potential impacts.  End-use energy efficiency 
can contribute to more than 50% of total global energy conservation (OECD/IEA 2009).   

Saving energy, improving energy efficiency and reducing greenhouse gas (GHG) emissions are key 
initiatives in many cities and municipalities and for building owners and operators. For example, New 
York City (NYC)'s government spends over $1 billion a year on energy on their approximately 4,000 
buildings (e.g., public schools, prisons, court houses, administrative buildings, waste water treatment 
plants, etc.), and is committed to reducing the City government's energy consumption and CO2 emissions 
by 30% by 2030 from 2005 levels through an initiative called plaNYC (City of New York 2007).  NYC 
plans to invest, each year, an amount equal to 10% of its energy expenses in energy-saving measures over 
the next 10 years.  The largest segment of NYC government buildings are the 1,400 K-12 public schools 
serving 1.1 million students and covering about 150 million square feet.  The New York City Department 
of Education was interested in understanding how energy efficient their buildings are, what factors con-
tribute to inefficiencies, what are the opportunities for improvement given budget constraints, and how 
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much they can contribute to saving energy and reducing GHG emissions toward NYC’s plaNYC initia-
tive. 

Another example is McMaster University in Hamilton, Ontario, Canada.  The City of Hamilton’s 
Corporate Energy Policy passed in 2007 aims to achieve a 20% reduction in the energy intensity of City-
owned facilities and operations by 2020 from 2005 levels, or equivalently a 1.5% reduction in energy per 
year.   Vision 2020 is Hamilton’s initiative for a strong, healthy, and sustainable city shared by citizens, 
City Council, businesses and organizations (hamilton.ca 2008).  Vision 2020 is based upon four main 
principles consisting of fulfillment of human needs, maintenance of ecological integrity, provision for 
self-determination through public involvement in the definition and development of local solutions to en-
vironmental and development problems, and achievement of equity with the fairest possible sharing of 
limited resources.  McMaster University, the 5th largest employer in Hamilton, spans 300 acres of proper-
ty, has 60 buildings including a hospital with a 10 megawatt co-generation plant, and serves about 25,000 
full-time students.    McMaster was the first Ontario university to develop a sustainable building policy 
and has achieved four LEED® certified buildings on its campus, with three more registered for certifica-
tion.   McMaster University was interested in understanding both energy demand and supply aspects such 
as how energy efficient their buildings are, what factors contribute to inefficiencies, what operational 
schedules are effective for co-generation plant to supply electricity to the university hospital building ver-
sus purchasing electricity from the local utility, and how much they can contribute to saving energy and 
reducing GHG emissions toward Hamilton’s Vision 2020 and Corporate Energy Policy.  
 In order to reduce energy consumption in buildings, however, one needs to understand patterns of en-
ergy usage and heat transfer as well as characteristics of building structures, operations and occupant be-
haviors that influence energy consumption.  This understanding can be aided through development of sci-
entific models which are based on physics, mathematics and statistics.  The models can then be used to 
simulate the impact of possible changes that can be made to buildings on energy consumption, energy 
costs and GHG emissions, and provide decision support for making buildings more energy efficient. The 
changes can be structural changes such as retrofits (e.g., new boiler, insulation, windows or roof), opera-
tional changes such as operating hours, behavioral changes such as running appliances at different times 
of the day when electricity prices are lower, and external changes such as weather factors.  The models 
can also be used for optimizing the changes that can be made to the buildings given an energy conserva-
tion target. Developed along this effort is the IBM Building Energy and Emissions Analytics (i-BEETM) 
Toolset, a new strategic planning analytical tool which assesses, benchmarks, diagnoses, tracks, forecasts, 
simulates and optimizes energy consumption in building portfolios.  As initial efforts of this initiative, 
IBM collaborated with the City University of New York (IBM 2011a) to analyze energy use in the portfo-
lio of K-12 public school buildings in New York City, and McMaster University (IBM 2011b) to analyze 
energy use in the portfolio university campus buildings and to identify energy saving opportunities. 
 The rest of the paper is organized as follows.  In Section 2, the data flow and analytics of the building 
energy analytics toolset are presented.  In Section 3, the heat transfer model and inverse modeling ap-
proach for estimating heat transfer coefficients are described.  Then, Section 4 shows the novel statistical 
models that integrated multiple regression models and a time series model of building energy.  In Section 
5, examples of simulation and optimization are shown.  Finally, closing remarks and future research areas 
are provided in Section 6. 

2 DATA FLOW AND ANALYTICS OF BUILDING ENERGY ANALYTICS TOOLSET 

The building energy models in i-BEETM are developed from data coming from multiple sources.  Figure 1 
describes how various data are collected and assembled into a common database and used for deriving 
models and analytics. 
 One type of data used for models is data coming from building management system (BMS) such as 
temperature, relative humidity and flow rate of supply air and return air from/to air handling units (AHU) 
and variable air volume (VAV) boxes, which provide warm or cool air into various rooms inside build-
ings.  Data collected from various sensors such as temperature, humidity and occupancy are also used.  
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The sensor data can be recorded and collected through the BMS.  Data can also come from meters and 
sub-meters that measure energy use such as electricity, natural gas, steam and chilled water for the whole 
building or part of the buildings or equipment.  Other data elements include: energy bills, e.g., monthly 
bills for electricity, natural gas and steam consumption; building characteristics such as gross floor area 
(GFA), age of building, number of occupants, wall area, window area, roof area, number of floor, % of 
building cooled and heated, operating hours, number of computers and other equipment such as refrigera-
tors, freezers etc; thermal loads and plug loads; weather data for historic and current conditions such as 
temperature, humidity, solar radiation and wind; and real-time electricity prices from the local utility.  Da-
ta from the Environmental Protection Agency (EPA) can also be used for calculating source energy and 
greenhouse gas (GHG) emissions for which a building is responsible (EPA 2009).  Site energy is the 
amount of energy consumed by a building for heating, cooling, lighting, plug loads, and so on.  Source 
energy  is the amount of energy required to generate and transport the energy requirements of the build-
ing. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Data flow and analytics 

 The i-BEETM data described above is organized into a database in a data warehouse, which is designed 
through a data model that defines the relationship between data elements.  The data from the database is 
used in populating three fundamental base models: heat transfer inverse model, multivariate regression 
model, and time series model.  The models are described below in the following sections. These three 
base models are also calibrated as new data sets are brought into the database in such a way that the mod-
el stays accurate even if the building energy performance degrades over time.   In addition to the model, 
basic statistical analyses including temporal and spatial analysis, and GHG emissions calculations are 
done for the buildings in the portfolio.  Using the three base models in an integrated way, various analytic 
tasks can be performed.  One is anomaly detection for energy use for each building.  This capability iden-
tifies abnormal energy consumption for a building or a part of the building by comparing actual energy 
consumption with predicted energy consumption and calculating upper and lower control bounds.  Anoth-
er task is benchmarking, which computes energy performance indicators of each building for each energy 
type and for each type of energy loads (e.g., base load, heating load and cooling load), and identifies un-
der-performing buildings, which can be candidates for energy efficiency improvements.  Another task is 
forecasting future energy consumption in the short-term (i.e., for the next 24 hours) and longer-term (e.g., 
for the next few months).  Another task is simulation (what-if analysis) of changes that could be made to 
building structures, operations and occupant incentives on energy consumption and GHG emissions.  Fi-
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nally, several types optimization can also be done as explained in the sections below.  All the analytics 
and reports are accessible to users through an analytics dashboard. 

3 HEAT TRANSFER MODELING AND INVERSION 

In this section, we describe how thermal energy is used to provide a comfortable climate, e.g., tempera-
ture and humidity, inside a building using thermal physics principles.  Figure 2 shows a simplified view 
of heat transfer in a building.  Building occupants would like to have comfortable temperature and humid-
ity inside the building,  However, since buildings are not perfectly insulated nor blocked from sun light, 
warm and humid climate conditions outside a building come into the building during the summer season, 
and cold and dry air comes into the building during the winter season making the inside climate uncom-
fortable for the occupants.  In order to compensate for the influence of outside climate, heating ventilation 
and air conditioning (HVAC) systems including boilers, air conditioners, chillers and AHUs are used to 
provide warm or cool air into the building to maintain a comfortable climate.  Typically heat transfer from 
outside air into the house involves heat transfer through walls, windows, roof and the ground (founda-
tion).  The heat transfer includes heat conduction (e.g., heat flows through wall materials), heat convec-
tion (e.g., heat flows through the air from the wall into the inside space of a house), solar radiation (e.g., 
solar energy into the outside wall or into the inside wall or furniture through windows), infiltration of out-
side air into the house through cracks around windows, doors and opened windows and doors, and latent 
heat (e.g., heat of vaporization and heat of condensation of moisture in the air).  From the HVAC side, 
chillers and boilers produce steam, hot water or chilled water, which is then transferred to the buildings 
where heat exchangers convert them into warm and cold air with a certain supply temperature, humidity 
and flow rate, and blow them to each zone of the building using AHUs and other fan systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Simplified view of heat transfer in a building 

The heat transfer can be simplified as the following set of equations: 

 
OsolOambzq

wall

wall
OIwall

O
wallpwallwall QTTAh

d

V
TTk

dt

dT
CV  )()(

2,  (1) 

 
IsolIzzq

wall

wall
IOwall

I
wallpwallwall QTTAh

d

V
TTk

dt

dT
CV  )()(

2,  (2) 
 

 
latentwzambzsyssys

z
zz mWWmWWm

dt

dW
V   )()( inf  (3) 

Chillers
Boilers

window
Zone 1 Zone 2

Infiltration

Conduction

Solar 
Radiation

(inner wall)Solar 
Radiation
(outer wall
window)

Convection

Sensible
Heat

Supply
(T, RH%, FR)

Return
(T, RH%, FR)

(Zone) T, RH%

(OSA)
Tamb, RH%

Convection

AHU
HEX

919



Lee et al. 
 

 
latentwstrucsenszambpzsyspsys

z
pzz QQQTTCmTTCm

dt

dT
CV   )()( inf  (4) 

 
Equation (1) is enthalpy balance on the outer wall, (2) is enthalpy balance of the inner wall, (3) is mass 
(moisture) balance inside the building (zone), and (4) is enthalpy balance inside of the building (zone).  
Here,  

sysambIOz TTTTT ,,,,  are temperatures of zone, outer wall, inner wall and outside air (ambient) 

and HVAC  system 

zwall  ,   are densities of wall and the zone (inside air), 

wallroofwinwallzwallz dAAAAVV ,,,,,, are volumes of zone, wall; areas of the zone, wall, windows, roof; 

thickness of wall, 

pwallp CC ,,    are specific heat of wall and inside air, 

roofqwinqwallqqwall hhhhk ,,, ,,,,  are coefficients of heat conduction of wall, heat convection coefficient of    

     the overall zone, wall, window and roof, 

sysmm  ,inf   are flow rates of infiltration and system (HVAC) 

OsolIsol QQ 
 ,  are rates of solar radiation hitting inner wall and outer wall, 

strucQ    is the heat flow from outside to inside the building through the building 

structure (e.g., wall, window and roof), 

latentwlatentwlatentw HmQ      is the heat flow of latent heat, 

sensQ     is the heat flow of sensible heat, 

)( zsyspsyssys TTCmQ     is the heat flow from HVAC system into the building. 

 
 For heat transfer inverse modeling of buildings, often there isn’t enough sensor data or meter data to 
allow for estimation of all the physical parameters that support the complexity of the heat transfer model 
(e.g., equations).  Therefore, the heat transfer equations above can be simplified, and heat transfer coeffi-
cients are often expressed in terms of R-values and U-values, i.e., winroofwall URR ,, , which are heat re-

sistances of wall and roof, and heat transfer coefficient of window. 
In equations (1) - (4), the parameters that are not known are inf,,,, ,,,,, mhhhhk roofqwinqwallqqwallf  which 

represent heat conduction coefficient of the wall, heat convection coefficients of the building envelope, 
wall, window and roof, and infiltration coefficient of the building envelope.  The methods for estimating 
these kinds of parameters through measured data is called inverse modeling (Beck and Woodbury 1998).  
The procedure for estimating parameters for inversion modeling goes as follows: 

 
1. Guess initial values of the parameters  
2. Compute expected energy consumption from heat transfer equations, calcQ  

3. Compute the residue (difference between calculated & measured),  meascalc QQ   

4. Find the parameter values  that minimize the sum of residue  



N

i
meascalc QQ

1

2)(  

Depending on the availability of data for the building, the observed data might not allow for the esti-
mation of all parameters.  For the portfolio of commercial buildings analyzed, we generated an innovative 
procedure to address the issue.  First, we derive a static heat transfer model by integrating the differential 

920



Lee et al. 
 

equations described above by integrating them over heating seasons and cooling seasons. Then, using the 
energy consumption data, we estimate the overall heat transfer coefficient and solar contribution for each 
building.  Lastly, a clustering method is used to separate the overall heat transfer into thermal resistance 
of the wall, roof, and window for a collection of similar buildings.  The details of this approach will be 
published in a separate paper (An et al. 2011). 

4 STATISTICAL MODELS 

We developed statistical methods to help understand the energy usage patterns for the portfolios of New 
York City’s K-12 public school buildings and campus buildings of McMaster University. The Variable 
Base Degree Day (VBDD) regression model (ASHRAE 2009) is a popular approach to analyze energy 
consumption, which assumes an independent error structure for the regression model. The assumption 
may not be realistic in practice, especially for our application with a large portfolio of buildings. A new 
method, which incorporates building heterogeneity and the dependent error structure, is thus developed. 
 We developed a multi-step statistical analysis procedure, which combines the multivariate regression 
model, the VBDD regression model and the Auto Regressive Integrated Moving Average (ARIMA) mod-
el (Brockwell and Davis 2006), to assess energy use and identify energy saving opportunities for large 
portfolios of buildings. In the first step, we build a regression model which correlates the energy con-
sumption with building characteristics. The energy related building characteristics are then identified 
through the stepwise variable selection technique. The results are valuable in providing building energy 
performance scores for the whole portfolio. Additionally, it can predict the energy consumption of build-
ings of similar characteristics. In the second step, to accommodate building heterogeneity, we build 
VBDD regression models separately for each building.  For VBDD model, the total monthly energy usage 
data for building i , in period t is denoted ity , and is modeled as:  
 

it
b

iti
b

itiiit THDDhTCDDcby  )()(= )()(                                       (5) 
 

where ib  is the base load usage, ic  is the cooling coefficient, ih  is the heating coefficient, and it  are the 

error terms reflecting the month-to-month variations that can not be explained by base, heating or cooling 
usage. We further restrict that 0>ib , 0>ic  and 0>ih .  The heating degree day (HDD) and the cooling 

degree day (CDD) for building i  in month t  are defined as  

 ,)(=)( )(

1=

)(  itd
b

i

td

d

b
it TTTHDD  and .)(=)( )(

1=

)(  b
iitd

td

d

b
it TTTCDD  

Here, itdT  is the outdoor temperature for building i  on day d  of month t , },{1, ni  , },{1, mt  , 

},{1, tdd  , and )(b
iT  is the balance-point temperature for building i. )( )(b

it THDD  and )( )(b
it TCDD  

are the cumulative heating and cooling energy usage for month t  when the balance point temperature is 

set to be )(b
iT .   

These models are used to separate the base load energy consumption from the weather dependent us-
age. The results in this step consist of the base temperature estimates, as well as the estimated coefficients 
for HDD and CDD for all buildings. In the third step, we further conduct root cause analysis by building 
the multivariate regression models for the results from the VBDD model, from which the performance 
scores can be derived for base load, heating, and cooling.  The multivariate regression model takes the 
form  

      ipipiii xxxy   2211=                                                            (6) 

where iy is the quantity of our interest, typically referred to as the response variable, and ipi xx ,,1   are 

the p  predictor variables, and p ,1  are the regression coefficients and i  is the error term. 
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 Finally, in the last step, we model the dependent error structure through the ARIMA model.  Recall 
that 

it̂ ,
 mt ,1,=  , are the estimated error terms from the VBDD models (5).  The time series model-

ing is conducted for each individual building independently. Firstly, we remove the seasonal patterns by 
using a regression model, with

 it̂  being the response variable and the 12 monthly seasonal factors being 

the predictor variables. To avoid the collinearity issue, we set the monthly seasonal factor for December 
equal to 0. We denote the error terms from (5) after removing the seasonal patterns by 

it
~ . Then, we 

model the dynamic structure of
 it

~  by the autoregressive integrated moving average (ARIMA) model. 

The ARIMA model is developed to model time series data, for better understanding the present data and 
accurately forecasting future data points (Brockwell and Davis 2006). Despite its popularity in statistical 
literature, the ARIMA model has been rarely used in the context of building energy, partly because of its 
complex modeling schemes. Nevertheless, the ARIMA model provides a more flexible, possibly non-
stationary structure to model building energy patterns, which is essential for simultaneously modeling of a 
large number of buildings.  ARIMA takes a form 

iti

q

iti

p

LLL  )(1=~))(1(1
=1=1










                                                    (7) 

where L  is the lag operator, 1,
~=~

tiitL  ; p , d , q  are non-negative integers and are the orders of auto-

regressive, integrated, and moving average parts of the model; },1,=,{ pi   and },1,=,{ qi   

are the parameters associated with the auto-regressive and moving average parts of the model; and it  are 

mutually independent standard normal random variables.  The ARIMA models are the most general class 
of models for forecasting a time series which can be stationarized by transformations such as differencing. 
In fact, the order of the integrated part d  reflects the trend of the data (e.g., 0=d  no trend, 1=d  linear 
trend, 2=d  quadratic trend, etc.), while p  and q  control how fast the auto-correlation decays.  
 The technique provides an integrated analysis for building heterogeneity, the weather dependent pat-
terns and the temporal dependent patterns. It has wide applicability in anomaly detection, forecasting, root 
cause analysis for building energy portfolios.  The technique is described by the schematic given in Fig-
ure 3. The details of the techniques are explained in Liu et al. (2011). 

Figure 3: Integrated statistical approach 
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5 SIMULATION AND OPTIMIZATION 

The models for building energy are used for simulation and optimization.  As shown in Figure 4, the 
models are developed using the collected building information such as data from meters, sensors, energy 
bill, weather and building characteristics.  For simulation, different types of changes that influence the 
building energy consumption can be simulated by computing estimated changes (hopefully reduction) of 
energy consumption, costs and GHG emissions.  One or more of these changes can be entered into the 
models, and one or more models compute the estimated energy consumption, costs and GHG emissions.  
The first types of changes that can be simulated are building structural changes such as retrofits, which 
include improving insulation of building envelope, replacing boilers, changing single pane windows to 
double pane, and installing shading to the window.  The second types of changes are building operational 
changes such as decreasing operating hours of buildings, changing the set point for heating or cooling, 
running electric appliances at different times of the day, and so on.  The other types of changes are ones 
related to behavior or building occupants, who may shut off lighting when they leave a room, refraining 
from opening windows when heaters or air-conditioners are in operation, or turning off personal comput-
ers (PCs) before leaving the building or going to bed.  Finally, external changes such as specific weather 
conditions including temperature, humidity and solar radiation can also be simulated to understand their 
impact on energy consumption, costs and GHG emissions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Model-based simulation and optimization 

     The models can also be used for optimization tasks.  Often, building owners or operators have 
mandates or targets for energy savings, peak demand level, GHG emission reductions or budget for retro-
fitting.  In this case, the models can be used to determine what changes should be made for specific build-
ings at specific times to achieve the target in presence of constraints such as comfort level of occupants 
and limited resources.  As illustrated in Figure 4, when information flows from left to right, simulation 
analyses are conducted to determine the impact of changes.  When information flows from right to left to 
determine the effective changes to achieve energy saving goal, optimization analyses are conducted. 
 In this section, we describe a couple of examples of simulation.  The first example is simulation of 
building insulation changes on energy consumption.  i-BEETM computes thermal coefficients of individual 
buildings in the portfolio, such as R values for walls and roof, U value of windows and their infiltration 
coefficient, infm .  When a building is picked for analysis from the analytic dashboard, as shown in Figure 
5, all those thermal coefficients are displayed and thermal energy for each month for a whole year is 

Models:

Heat Transfer Model

Regression Model

Time Series Model

Structural Changes
(Retrofitting etc.)

Data
(Meters, Sensors, Energy Bills,

Weather, Building Characteristics .) 

Operational Changes
(occupied hrs, set points,

scheduling appliances etc.)

Behavioral Changes
(shading, shutting lights, 

Window opening, PC etc..)

Energy Consumption,
Cost,

GHG Emission

Simulation

Optimization (with constraints)

External Changes
(Weather etc.)
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computed and shown.  Then, a user changes one or more of the coefficients.  In the example in Figure 5, a 

user changes the R-value of the roof from 16.68 to 40 ]/[ 2 BtuhourFft o   by hypothetically increasing 
insulation of the roof of the building.  The toolset computes the energy savings by month and for the 
whole year.  The yearly thermal energy consumption decreases by 325,792 kBtu from 8,124,482 kBtu to 
7,798,690 kBtu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Simulation of building insulation change 

The second example of simulation is for changing the thermostat set point of the building during the  
heating season.  As shown in Figure 6, for another building in the portfolio, the heating set point is 
changed from 65 oF to 62 oF.  The corresponding impact is computed as a decrease of yearly energy con-
sumption by 653,703 kBtu from 5,045,111 kBtu to 4,391,408 kBtu. 

 
 
 
 
 
 

Figure 4: Simulation of Set Point of Heating or Cooling 

 
 
 
 
 
 
 
 
 
 

Figure 6: Simulation of thermostat set point 
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There are several optimization capabilities that are developed for i-BEETM.  These optimizations utilize 
the three base models described above.  In this paper, we briefly described the optimization capabilities 
due to the limited space in the paper, but details of optimization capabilities will be described in a subse-
quent paper. One such optimization capability is for optimal retrofit planning.  This optimization tool de-
termines which buildings should be retrofitted, and which retrofit should be done given a limited budget 
for the whole building portfolio, e.g., K-12 schools, and certain goals for energy reduction and GHG 
emissions that should be met.   
 Another optimization capability in i-BEETM is the optimal scheduling of energy consuming activities.  
The price of electricity changes drastically during the day although individual residential building owners 
or tenants of commercial building may not see the dynamics of the price in their electricity bill.  However, 
typically commercial building owners or managers pay electricity bills based on how much electricity is 
used during various times of the day and also by the peak demand.  In addition, consuming electricity dur-
ing a peak demand time such as early afternoon would have negative environmental impact since the local 
utility company may have to operate additional power plants to meet the peak demand thus emitting more 
GHG.  This optimization capability determines the best ways of scheduling energy consuming activities 
(e.g., laundry, dishwashing, after school activities) so that the peak demand is lowered and energy is used 
when the price is lower.  Other optimization capabilities include the optimal operation of onsite genera-
tion and co-gen and energy storage; the optimal capacity sizing of HVAC equipment; the optimal energy 
pricing structure for modifying behaviors of building owners and tenants, i.e., demand response and op-
timal contracting of energy purchase. 

6 CLOSING REMARKS 

Since buildings are responsible for 40% of the U.S.’s total energy consumption and 45% of its total GHG 
emissions, all of us, who live and work in buildings have a responsibility and role to play in reducing en-
ergy consumption and controlling the GHG emissions, confronting climate change and its potential im-
pacts.  Science and mathematics can play an important role in helping us accurately assess how we con-
sume energy in buildings and what we can do to save energy, make buildings energy efficient and reduce 
GHG emissions.  In this paper, we introduced a building energy analytics toolset that is based on a novel 
integrated approach that combines thermal physics models, statistical models and mathematical models.  
We applied the new toolset for two portfolios of commercial buildings; one for NYC K-12 public school 
buildings and another for McMaster University campus buildings, and deployed the toolset on IBM’s 
cloud-based computing environment successfully. Energy savings, energy efficiency and GHG emissions 
from buildings have become critical issues, and therefore there are many opportunities to be explored to 
make an impact.  Let’s build smarter buildings together. 
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