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ABSTRACT

We employ discrete event simulation to evaluate the performance of deadlock-prone multithreaded programs,
either general-purpose software or parallel simulators, under a novel technique for deadlock-avoidance
control recently proposed in the literature. The programs are modeled by a special class of Petri nets,
called Gadara nets. We propose a formal simulation methodology for Gadara nets. We then use simulation
to analyze two deadlock-prone multithreaded programs, where we study system performance in terms of
safety, efficiency, and activity level, both before and after deadlock-avoidance control is applied. We further
conduct a sensitivity analysis to investigate the effect of key parameters on the program’s performance.
We discuss the implications of the above results on the practical implementation of control strategies that
prevent deadlocks in multithreaded programs.

1 INTRODUCTION

The past decade has witnessed a fundamental revolution in the computer industry. Uniprocessors in computers
have now been gradually supplanted by multicore processors. In order to exploit the full capability of
multicore architectures, performance-conscious developers are spending significant efforts to parallelize
applications. This trend has also been witnessed in the field of simulation, where parallel simulation
techniques are being deployed to enhance computational capacity and efficiency (Heidelberger and Nicol
1996, Mutschler 2006, Zuberek 2009). With the increasing complexity of simulation models driven by the
demand for higher accuracy, and the prevalence of multicore architectures in computer hardware, computer
programmers and simulation practitioners will be expected to become adept at parallel programming in
the near future. Parallel programming, however, is very hard, as reasoning about concurrency is extremely
challenging for human programmers. We are facing a problem: multicore architectures are making parallel
programming unavoidable but concurrency bugs are making it costly and error-prone. Ensuring failure-free
execution of concurrent programs is a notoriously difficult problem, but an increasingly important one.
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An important class of failure in concurrent software, including parallel simulations, is circular-wait
deadlock, where a set of tasks are waiting for one another indefinitely and no progress can be made.
The deadlock problem incurred by event message processing in parallel discrete event simulation has
been investigated previously, and various conservative solutions were proposed; see, e.g, (Fujimoto 1990).
Conservative algorithms were further evaluated and compared in (Bagrodia and Takai 2000). A circular-wait
deadlock can also be induced by lack of resources due to contention among concurrent tasks. For instance,
let us consider two tasks, 1 and 2, where both require exclusively holding resources A and B to complete
their jobs. It is easy for situations to arise in which, e.g., task 1 has acquired A and needs B, while task 2
holds B but requires A; these tasks are deadlocked and neither can perform useful work. (Krishnamurthi
et al. 1994) presented a deadlock detection algorithm in simulation models by using a linked list structure
of resources and tasks. Various algorithms have been reported for deadlock analysis using graph theoretic
models; see, e.g., (Woodward and Mackulak 1997, Venkatesh et al. 1998, Cheung et al. 2009).

We are interested in multithreaded programs that use shared data, a common paradigm for general-
purpose concurrent software. This programming technique has also been employed in multithreaded
simulators (Hsu, Pino, and Bhattacharyya 2008, Mutschler 2006, Zuberek 2009). In this programming
paradigm, programmers use lock primitives, such as mutual exclusion locks (or “mutexes”), to protect
shared data. Inappropriate use of locks can lead to the circular-mutex-wait (CMW) deadlock problem
described above. It is useful to delineate the two levels at which CMW deadlocks may arise in the context
of this paper: the program source code itself, and the system being simulated in the case of simulation
analysis. Our investigations pertain to deadlocks that may arise at either of these two levels. At the program
level, the aforementioned tasks are the concurrent threads that are executing, and the resources are sections
of shared data in memory. In this case, mutexes prevent threads from accessing the same data concurrently,
thus allowing threads to update the shared data in an orderly manner. Misuse of mutexes by programmers
can lead to CMW deadlocks. Case Study 1, presented in Section 4.1, addresses this type of program-level
deadlock. At the system simulation level, the aforementioned tasks and resources can model various entities
in different contexts. For example, in flexible manufacturing system simulation, the tasks can be parallel
assembly lines, and the resources can be machines processing the parts of a product; in healthcare system
simulation, the tasks can be concurrent patient flows, and the resources can be physicians, nurses, or
medical equipment. In multithreaded simulations, these shared resources are protected via mutexes by the
tasks that first acquire them. If the system design is such that deadlocks due to shared resources can arise,
and no proper efforts are made to avoid them, then these deadlocks can potentially manifest themselves as
CMW deadlocks when the system is being simulated. Case Study 2, presented in Section 4.2, addresses
the deadlock problem at this level. A similar analytical approach has also been employed to study software
contention in computer systems (Roy et al. 2008).

In our ongoing Gadara project, we employ Petri nets to systematically model, analyze, and con-
trol multithreaded programs with lock allocation and release operations (Wang et al. 2008, Liao et al.
2010). The architecture of the Gadara methodology is shown in Figure 1, and involves the novel
paradigm of controlling the execution of the multithreaded program by instrumenting it with opti-
mal (i.e., maximally permissive) control logic that is synthesized using recent results from the con-
trol theory of discrete event systems (Cassandras and Lafortune 2008). Petri nets are a commonly
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Figure 1: Gadara architecture

used modeling formalism for discrete event sys-
tems; a Petri net model captures the concurrency
of the dynamics of a multithreaded program while
avoiding enumerating its state space. The Gadara
methodology works for general-purpose multi-
threaded software; in particular, it can be applied
to multithreaded simulators. In this latter con-
text, the deadlock-avoidance control logic syn-
thesized in the Gadara methodology applies to
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CMW deadlocks at both the aforementioned pro-
gram and system levels. In the Gadara project, we have used Petri nets to model, analyze, and control
several general-purpose large software programs, such as OpenLDAP, BIND, and Apache (Wang et al.
2008). We will study a nontrivial deadlock example from OpenLDAP in Section 4.1.

In the context of discrete event simulation, in contrast to (Mueller, Alexopoulos, and McGinnis 2007)
where Petri nets have been used in the simulation modeling phase to prevent deadlocks, we focus on
existing simulation models and their associated multithreaded programs, which may be deadlock-prone.
Also, in contrast to (Woodward and Mackulak 1997, Venkatesh et al. 1998), where graph theoretic models
are used for deadlock detection and resolution, we not only detect deadlocks via formal methods in Petri
nets, but also synthesize maximally permissive control logic to provably prevent potential CMW deadlocks.
Here, maximal permissiveness means that the control logic will restrict concurrency only when necessary
to eliminate deadlock. The development of this control technique has been reported in (Liao et al. 2010).
Our prior works have focused on the class of untimed Petri nets and mainly studied logical level properties,
e.g., deadlock-freeness. In this paper, we extend our models to the class of stochastic timed Petri nets and
use them to investigate the quantitative performance of programs, before and after control, via discrete
event simulation. Our simulation analysis principally investigates: the impact of the synthesized control
logic on program’s performance; the effect of key parameters on the program before and after control; and
the tradeoff between aggressive and conservative deadlock-avoidance control strategies. More importantly,
our study provides a general simulation-based methodology to evaluate the performance of multithreaded
programs, when deadlock-avoidance control logic is applied. Therefore, our contributions are both in terms
of modeling methodology and analysis methodology for the problem under consideration.

Our main contributions are as follows. (i) We propose a simulation methodology for a special class of
stochastic timed Petri nets, which model multithreaded programs (including multithreaded simulators) with
lock allocation and release operations, and provide a systematic framework for the synthesis of optimal
deadlock-avoidance control logic. (ii) We conduct simulation analysis on the Petri net models of programs
before and after deadlock-avoidance control, and study the performance metrics related to safety, efficiency,
and activity level via output data analysis. (iii) We further conduct sensitivity analysis on these Petri net
models, and investigate the effect of key parameters on the programs and the implication for deadlock-
avoidance control. The paper is organized as follows. We introduce relevant background in Section 2. The
proposed discrete event simulation model is described in Section 3. We present the simulation results and
analysis of two cases of deadlock-prone programs in Section 4, and conclude in Section 5.

2 PRELIMINARIES

We briefly overview the Gadara project and then introduce background material and relevant definitions.

2.1 Overview of the Gadara Project

As shown in Figure 1, the Gadara methodology contains four stages. (i) The program source code is
compiled into a graphical model, the control flow graph (CFG), that captures execution paths. (ii) The CFG
is translated into a Petri net model of the whole program, called Gadara net (to be introduced shortly), which
maps potential deadlocks in the program to a structural feature called resource-induced deadly-marked
siphons in the net. Therefore, potential deadlocks can be automatically detected and prevented, by searching
for these structural features in the net (a problem previously investigated), and seeking their elimination by
control at the next stage. (iii) Maximally permissive control logic is synthesized for the obtained Gadara
net (Liao et al. 2010), so that the aforementioned structural features will not be reachable in the controlled
Gadara net. (iv) The control logic is used to instrument the source code and manage lock allocation and
release at run-time to avoid deadlocks.
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2.2 Standard Definitions of Petri Nets

Due to space limitations, we assume readers are familiar with standard Petri net definitions, as in (Cassandras
and Lafortune 2008). We only present the definitions that are relevant to our discussion.
Definition 1 A Petri net dynamic system N = (P, T,A,W,M0) is a bipartite graph (P, T,A,W ) with
an initial number of tokens. Specifically, P = {p1, p2, ..., pn} is the set of places, T = {t1, t2, ..., tm} is
the set of transitions, A ⊆ (P × T ) ∪ (T × P ) is the set of arcs, W : A→ {0, 1, 2, ...} is the arc weight
function, and for each p ∈ P , M0(p) is the initial number of tokens in p.

The marking (a.k.a. the state) of a Petri net N is a column vector M of n entries corresponding to
the n places. As defined above, M0 is the initial marking. We use M(p) to denote the number of tokens
in place p under marking M . A transition t is enabled or fireable at M , if for any input place p of t,
M(p) ≥W (p, t). Based on Definition 1, we can further define a stochastic timed-place Petri net as follows.
Definition 2 A stochastic timed-place Petri net is a six-tuple N = (P, T,A,W,M0,V), where N =
(P, T,A,W,M0) is a Petri net, and, V : P → R

+ is a timing structure that associates places with
stochastic time delays.

2.3 The Gadara Net Model

In (Wang et al. 2009), we formally define a special class of Petri nets, called Gadara nets, to systematically
model multithreaded programs with lock allocation and release operations. We use NG to denote a
Gadara net. See (Wang et al. 2009) for the detailed definition and analysis of NG. We discuss its key
features using the example in Figure 2. NG in Figure 2 contains two process subnets: N1 and N2.
Each process subnet models a work process of the program. In NG, there are three types of places:

Figure 2: A Gadara net model of two threads
sharing three resources

(i) The set of idle places, denoted as P0 and shown in
purple; these places contain tokens that represent “idle”
threads waiting for future execution. At the initial state,
M0(p) > 0, ∀p ∈ P0. (ii) The set of operation places,
denoted asPS and shown in black; these places model the
main body of the program. Each operation place repre-
sents a set of lines of code executed by a thread. A token
in an operation place represents a thread executing these
lines of code. At the initial state, M0(p) = 0, ∀p ∈ PS .
(iii) The set of resource places, denoted as PR and shown
in blue, red, and green, model mutexes in the program.
A token in a resource place represents the availability of
the lock. At the initial state, M0(p) = 1, ∀p ∈ PR. Any
transition inNG either models a lock allocation or release
operation, or models a branch selection (e.g., if/else
as shown in Figure 4) in the program. Further, if all the
resource places were removed inNG, then any transition
will only have one input place and one output place,
which is due to the nature of the program we model.

In order to prevent deadlock states from being reach-
able, we synthesize monitor places (a.k.a. control places) to augment the original Gadara net, and obtain
the controlled Gadara net (Liao et al. 2010). The set of monitor places is denoted as PC . In essence,
monitor places are generalized resource places. The details about control synthesis are beyond the scope
of this paper; see (Liao et al. 2010) for further discussion.
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2.4 Stochastic Timed Gadara Net Model for Simulation Analysis

From Section 2.3, we know that the tokens in P0 ∪PS represent the threads and drive the dynamics of the
net, while the tokens in PR ∪PC represent the availability of (generalized) resources. This implies that for
the purpose of simulation of NG, we only need to consider delay times associated with idle or operation
places, which represent thread waiting or execution times. More specifically, based on Definition 2, in a
stochastic timed-place Gadara net, the timing structure is: V : P0 ∪ PS → R

+.
In general, timed Petri nets can have delays associated with transitions or places, which results in

timed-transition Petri nets or timed-place Petri nets, respectively. From a theoretical viewpoint, these
two subclasses of nets are expressively equivalent (Sifakis 1980). In timed-transition Petri net models
of physical systems, transitions usually represent actions in the system that take time to complete, while
places and tokens usually represent the pre-conditions of the execution of the actions, which are not directly
related to time. In contrast, in the proposed timed-place Gadara net models of multithreaded programs,
we only need to assign time delays to idle and operation places, because these places and tokens therein
are used to model thread executions, which take time to complete; transitions are used to model branches
or lock allocations and releases, which can be completed in the program instantaneously (when enabled).
In this paper, we assume that all the delay times follow exponential distribution. However, our proposed
simulation model can be applied to any general distribution.

3 THE DISCRETE EVENT SIMULATION MODEL

We first define our simulation model, and then introduce the performance metrics in the simulation analysis.

3.1 Basic Components

We follow the simulation framework proposed in Section 1.3.2 of (Law 2007), with necessary extensions
to incorporate the special features in Petri nets. The basic components of our simulation model are defined
as follows. The system being simulated is the Gadara net NG, which is obtained from a multithreaded
program, possibly a multithreaded simulation program for an underlying physical system of interest (recall
the discussion in Section 1 about the two levels of deadlocks considered in this paper). The system state
is the marking (or state) of NG. An event is the firing of a transition in NG. An event is denoted as a
two-tuple (τ, t), where τ is the scheduled event time, and t is the transition scheduled to fire at time τ .

We maintain an enhanced event list in our simulation. This is due to a special dynamic feature in Petri
nets: a transition, which is scheduled to fire at some time, say τ , can be disabled in the net at τ due to
lack of tokens in its input place. Moreover, since it corresponds to a pending action of the multithreaded
program we study, this scheduled event cannot be discarded, but rather, it should be “backlogged” and
fired whenever it becomes enabled after τ . Any element in the enhanced event list is an event and is
denoted as a two-tuple (τ, t) as defined above. As shown in Figure 3, the proposed enhanced event list is
divided into two parts: (i) Future Event List (FEL), that records the scheduled events for future execution;
(ii) Backlogged Event List (BEL), that records the backlogged events to be executed once they become
enabled under a “First-Come First-Served” discipline. Other relevant approaches dealing with this situation
include rescheduling a new time for the disabled transition once it becomes enabled, and maintaining
different event chains as in General Purpose Simulation System (GPSS).

Figure 3: Enhanced event list

The main function invokes several routines
throughout the simulation, including initialization
routine, timing routine, event routine, and report
generator. Due to space limitations, we have to
omit their specifics. Here, we further describe the
event-scheduling scheme that is customized for the
special features of NG as discussed in Sections 2.3
and 2.4. At the beginning of the simulation, for
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each token in any idle place p ∈ P0, the simulation
program schedules a (future) time to fire the output
transition of p. During the simulation, when a to-
ken enters an operation place p ∈ PS , the simulation
program immediately schedules a (future) time to
fire the output transition of p. In both cases, the time
is scheduled according to the delay time distribution
associated with p. When p has more than one output transition (e.g., when the output transitions of p
model if/else), the simulation program first selects one of the output transitions of p, according to some
pre-specified probability distribution. Then, the simulation program schedules a time to fire the selected
transition according to the delay time distribution associated with p. Due to the nature of the problem,
our simulation falls into the class of terminating simulations. There are two alternative terminating events:
(i) E1 ={a transition is fired so that the system goes back to the initial state}; (ii) E2 ={a transition is
fired so that the system goes into a deadlock state}. The simulation terminates if either E1 or E2 occurs.
The set of potential deadlock states is computed off-line in Stage (ii) of the Gadara methodology described
in Section 2.1. This set is input to our simulation program for deciding the occurrence of event E2.

3.2 Performance Metrics

We are interested in the following three performance metrics. These metrics are measured for program
models before and after deadlock-avoidance control is applied. A comparison analysis between the original
uncontrolled program model and the controlled program model is conducted based on these metrics.

3.2.1 Measure of Safety

A program is safe if no deadlock ever occurs; otherwise, it is unsafe. Given a Gadara net model of a
deadlock-prone program, we want to measure the deadlock probability, Pd, of this program. Assume we
make n independent replications of the simulation. Let Xi be the random variable associated with the i-th
replication, which is defined as follows:

Xi =

{
0, if the i-th replication terminates with event E1;
1, if the i-th replication terminates with event E2.

(1)

According to Section 9.4.2 of (Law 2007), we know that an unbiased point estimator for Pd is: P̂d =

n∑
i=1

Xi

n .

3.2.2 Measure of Efficiency

We use the average total time the threads take to complete their tasks to characterize the efficiency of
the program. Thus, we measure the Mean Time To Finish (MTTF), given that no deadlock occurs in the
program. MTTF is estimated by mean termination times of the replications that terminate with event E1.

3.2.3 Measure of Activity Level

We use the average number of threads, which are simultaneously executing in the critical region, to
characterize the activity level of the program, which also reflects the program’s concurrency level. According
to the definition of Gadara nets, the critical region is captured by the set of operation places. Therefore,
the activity level, β, can be estimated as follows.

β̂ =
∑
p∈P0

M0(p)−
∑
p∈P0

Û(p) (2)

whereM0(p) is the initial number of tokens in place p, and where Û(p) is the expected time-average number
of tokens in place p given that no deadlock occurs in the program. In (2), the first term represents, at the
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initial state, the total number of threads waiting in the idle places; the second term represents, throughout
the simulation, the average number of threads waiting in the idle places. The difference of these two terms,
β̂, represents the average number of threads executing in the operation places throughout the simulation.

The measure Û(p), also known as the utilization of place p, can be estimated as: Û(p) = E
[∫ T

0 Mτ (p)dτ

T

]
,

where Mτ (p) is the number of tokens in place p at time τ and T is the termination time of a replication
that terminates with event E1. Note that T is a random variable, and the expectation is with respect to T .
Û(p) can be measured by standard techniques employed in the simulation analysis of queueing systems
for estimating average queue length or average server utilization.

4 CASE STUDIES

We present our simulation study for two deadlock-prone Gadara nets, both before and after control. The
sensitivity analysis reports the performance metrics introduced in Section 3.2 for a range of values of key
parameters. For each case, we carried out 20,000 replications. When comparing the before-control and
after-control nets in each example, we employ the Common Random Number (CRN) technique to facilitate
the comparison analysis. Due to space limitations, we focus on simulation analysis, and have to omit the
details about deadlock detection and control logic synthesis; see (Liao et al. 2010) for further discussion.

4.1 Case Study 1: A Deadlock Scenario in the OpenLDAP Software

Figure 4: A deadlock example in the
OpenLDAP Software

OpenLDAP is a popular open-source implementation of the
Lightweight Directory Access Protocol (LDAP). We built
the Gadara net model of version 2.2.20 of slapd, which is
a high-performance multithreaded network server program
of OpenLDAP, and has a confirmed CMW deadlock bug.
For the sake of discussion, we focus on the critical region
involved in this deadlock, and study its associated Gadara
net model, shown in solid lines in Figure 4. A deadlock will
occur if one token (representing thread 1) is in place p5 and
another token (representing thread 2) is in place p1. In this
scenario, thread 1 is holding lock B and waiting for lock A,
while thread 2 is holding A and waiting for B. The program
model after control is the entire net shown in Figure 4,
where the synthesized monitor place is shown with a dashed
line. In presence of the monitor place, the aforementioned
deadlock will not be reachable in the controlled model.

Recall that each operation place models a code segment
where a thread can execute. So the random delay time asso-
ciated with each operation place should reflect the execution
time of the involved thread. Methodologies for determining
the accurate execution time of code segments have been
developed by researchers in the area of real-time embedded
systems (Harmon, Baker, and Whalley 1994). One conven-
tional approach is to assume that the execution time of each
instruction is a constant. However, factors such as machine status can also add randomness to the execution
time. For the purpose of our present study, we will assume that the delay associated with each operation
place is exponentially distributed with mean equal to 1. At the beginning of each replication, we schedule
each token in p0 to fire t1 after a random delay time that is exponentially distributed with mean µ, which
is chosen to be 0.5 in this study. Simulations for other values of µ can be carried out in a similar manner.
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We employ sensitivity analysis to study the effect of the program parameter, namely branch selection
probability distribution, on the program’s performance. There are two branch selections in this example:
t4/t5 and t6/t7. If there is a thread in p3, we assume this thread will choose branch t4 with probability π4
and choose branch t5 with probability 1− π4. Similarly, if there is a thread in p4, we assume this thread
will choose branch t6 with probability π6 and choose branch t7 with probability 1 − π6. The deadlock
probability Pd of the uncontrolled model under various values of (π4, π6) is shown in Figure 5. We observe
that the smaller the values of π4 and π6 are, the larger the value of Pd is. This observation agrees with
our intuition: when π4 and π6 decrease, the thread holding lock B is more likely to enter the loop (p4, p5,
and p6) to acquire lock A, and thus more likely to enter a CMW deadlock. The deadlock probability of
the controlled model is always 0, which is verified by simulation.
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Figure 5: Pd of uncontrolled program
model under various values of (π4, π6)

The MTTF of the uncontrolled and controlled models,
under various values of (π4, π6), are shown in Figures 6(a)
and (b), respectively, where the z-axis is on a log-scale. We
observe that MTTF increases in controlled models. One
reason leading to the increase is the imposition of the syn-
thesized monitor place. Another important reason is that
the calculation of the statistics of MTTF before control only
takes into account those replications that did not deadlock,
and ignores the ones that deadlocked. In other words, MTTF
before control is “biased downwards” because it only consid-
ers deadlock-free replications. To quantify this comparison,
we further compute the overhead in MTTF, which is defined
as the ratio of the increase in MTTF after control and the
original MTTF before control. The overhead in MTTF is
shown in Figure 6(c). We see that π6, which directly affects the probability of entering the loop (p4, p5,
and p6), is the key factor in the MTTF performance of program models. There exists a threshold value
for π6, denoted as THπ6 . When π6 is smaller than THπ6 , MTTF in uncontrolled and controlled models
as well as the overhead in MTTF dramatically increase.
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Figure 6: MTTF under various values of (π4, π6): (a) Before control; (b) After control; (c) Overhead

The β of the uncontrolled and controlled models, under various values of (π4, π6), are shown in
Figures 7(a) and (b), respectively. We see that β decreases in controlled models. Similarly, we compute
the overhead in β, which is defined as the ratio of the decrease in β after control and the original β before
control. The overhead in β is shown in Figure 7(c). We also see that β decreases when π4 and π6 decrease.
This observation agrees with our analysis above. When π4 and π6 decrease, the uncontrolled model has a
higher deadlock probability, and the effect of the monitor place in the controlled model is more prominent,
thus the overall thread activity decreases. Note that in this situation, the overhead in β also decreases.
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Figure 7: β under various values of (π4, π6): (a) Before control; (b) After control; (c) Overhead

Remark 1 In practice, if the consequence of the potential deadlock is manageable, then we can operate
the monitor place to balance Pd against MTTF and β. When π4 and π6 are large, we know from Figure 5
that Pd is small in the uncontrolled model, thus we can turn off the monitor place, and avoid the overhead
in MTTF and β. As shown in Figure 7(c), the saved overhead in β in this case is relatively large.

4.2 Case Study 2: Two Threads Sharing Three Common Resources

Figure 8: A Gadara net model of two threads
sharing three resources: After control

The second case we will study is the Gadara net model of
a multithreaded simulator for a hypothetical concurrent
healthcare system. As shown in Figure 2 in Section 2.3,
the subnetN1 models the first patient flow, and the sub-
net N2 models the second patient flow. The resource
places rA, rB , and rC model the nurse, physician, and
medical equipment, respectively. The two patient flows
represent two prototype procedures of medical treat-
ment. Each flow consists of five treatment stages, as
modeled by the operation places. The requirement of re-
sources in each treatment stage is self-explanatory from
the Gadara net. As discussed in Section 1, the multi-
threaded simulator can use mutexes to prevent the above
three resources from being accessed concurrently. Thus,
the potential deadlocks of the system can manifest them-
selves in the multithreaded simulator at run time. There
are two potential deadlock scenarios in this example:
one deadlock occurs whenM(p11) =M(p23) = 1; an-
other deadlock occurs when M(p13) = M(p21) = 1.
(The unspecified operation places are empty by de-
fault; the marking of resource and idle places can be
uniquely determined based on the marking of opera-
tion places.) There are also three deadlock-free unsafe
states: (i) M(p11) = M(p21) = 1, (ii) M(p11) =
M(p22) = 1, and (iii) M(p12) = M(p21) = 1. When
the net is in any of these states, even if it is not in a deadlock, it will unavoidably enter a deadlock in the
future. Thus, we need to synthesize control logic to prevent all of the aforementioned states. The control
synthesis constructs three monitor places, as shown in dashed lines in Figure 8. The various combinations
of ON/OFF of these monitor places lead to eight different control strategies, as defined in Table 1.
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In the simulation, the delays associated with operation places are exponentially distributed. For the
five operation places p11 to p15 in N1, the mean parameters are 1, 2, 1, 5, and 12, respectively; for the five
operation places p21 to p25 in N2, the mean parameters are 3, 5, 1, 2, and 1, respectively. In addition, the
delays associated with p01 and p02 are exponentially distributed with means µ1 and µ2, respectively.

For the eight control strategies shown in Table 1, one can think of Strategy 1 as the most “aggressive”
control, since it turns off all three monitor places for better performance in terms of MTTF and β; on
the other hand, Strategy 8 can be considered as the most “conservative” control, since it turns on all
three monitor places, which guarantees deadlock-freeness in the controlled model at the price of degraded
performance for MTTF and β. We have conducted sensitivity analysis to study the effect of µ1 and µ2
on the program’s performance under these eight control strategies. Our goal is: given a tradeoff criterion
between Pd and MTTF (or β), find the best control strategy for any pair of (µ1, µ2).

Table 1: Definition of control strategies

Strategy Monitor pc1 Monitor pc2 Monitor pc3
1 OFF OFF OFF
2 OFF OFF ON
3 OFF ON OFF
4 ON OFF OFF
5 OFF ON ON
6 ON OFF ON
7 ON ON OFF
8 ON ON ON

To illustrate, let us consider the sensitivity
analysis results for Strategy 2 (i.e., pc3 only),
which are shown in Figure 9. To measure the
effectiveness of deadlock reduction of a cer-
tain control strategy, we introduce the deadlock
probability reduction rate, ρ, which is defined
as the ratio between the decrease in deadlock
probability due to this strategy in the controlled
model and Pd of the uncontrolled model. The
metric ρ of Strategy 2, derived from the re-
sults in Figure 9(a) and the counterpart of the
uncontrolled model, is shown in Figure 10. It
is interesting to see that when µ1 and µ2 are
small, by using Strategy 2, the monitor place pc3 alone can prevent most of the potential deadlocks.
Therefore, similar in spirit to the discussion in Remark 1, if the consequence of the potential deadlock is
manageable (e.g., one of the patients in deadlock can be rescheduled without jeopardizing his/her health),
then we can employ Strategy 2 (instead of the most conservative Strategy 8) to gain better MTTF and β
performance when µ1 and µ2 are small. Similar analysis can be carried out for all the other strategies; we
omit the details due to space limitations.
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Figure 9: Sensitivity analysis results for Strategy 2: (a) Pd; (b) MTTF; (c) β
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If one can specify a minimum allowed value for ρ, say ρ0, based
on the empirical analysis of system tolerance, then a possible tradeoff
criterion (between Pd and MTTF) for selecting a control strategy
is: given ρ0 and (µ1, µ2), find the best strategy such that (i) its ρ
is greater than ρ0, and (ii) its MTTF is as small as possible. Based
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on our sensitivity analysis results obtained above, the best strategy
at (µ1, µ2) can be found by first searching for the set of strategies
whose ρ is greater than ρ0, then selecting the one whose MTTF is the
smallest in this set. After conducting this search process for all pairs
of (µ1, µ2) of interest, we can construct a Control Strategy Map,
under the tradeoff between Pd and MTTF, on the µ1-µ2 plane as
shown in Figure 11(a). Using the above sensitivity analysis results,
we can construct various forms of Control Strategy Maps according
to specific needs. For instance, if we substitute Condition (ii) above by “(ii’) its β is as large as possible”,
then we can obtain a Control Strategy Map under the tradeoff between Pd and β, as shown in Figure 11(b).
For both maps in Figure 11, we chose ρ0 = 0.75. Further extensions are possible by using a requirement
in terms of a maximum allowed value for Pd, instead of Condition (i) above.
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Figure 11: Control Strategy Maps: (a) Tradeoff between Pd and MTTF; (b) Tradeoff between Pd and β

5 CONCLUSION

We have used discrete event simulation to study the performance of deadlock-avoidance control in deadlock-
prone concurrent programs that use mutexes for access to shared data. The given multithreaded program,
which could be a concurrent simulator itself, is modeled by stochastic timed-place Gadara Petri nets, a
special class of Petri nets introduced in our recent work. We proposed a formal methodology and data
structure for the simulation of stochastic timed-place Gadara Petri nets. We conducted simulation analysis
on two case studies and measured the performance metrics in terms of safety, efficiency, and activity level.
We further carried out a comparison analysis on the models before and after deadlock-avoidance control
logic is applied to the program. We reported results on the impact of key parameters and different control
strategies on the performance metrics. We also discussed the implications for the practical implementation
of control strategies to prevent deadlocks in multithreaded software.
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In the simulation, the delays associated with operation places are exponentially distributed. For the
five operation places p11 to p15 in N1, the mean parameters are 1, 2, 1, 5, and 12, respectively; for the five
operation places p21 to p25 in N2, the mean parameters are 3, 5, 1, 2, and 1, respectively. In addition, the
delays associated with p01 and p02 are exponentially distributed with means µ1 and µ2, respectively.

For the eight control strategies shown in Table 1, one can think of Strategy 1 as the most “aggressive”
control, since it turns off all three monitor places for better performance in terms of MTTF and β; on
the other hand, Strategy 8 can be considered as the most “conservative” control, since it turns on all
three monitor places, which guarantees deadlock-freeness in the controlled model at the price of degraded
performance for MTTF and β. We have conducted sensitivity analysis to study the effect of µ1 and µ2
on the program’s performance under these eight control strategies. Our goal is: given a tradeoff criterion
between Pd and MTTF (or β), find the best control strategy for any pair of (µ1, µ2).

Table 1: Definition of control strategies

Strategy Monitor pc1 Monitor pc2 Monitor pc3
1 OFF OFF OFF
2 OFF OFF ON
3 OFF ON OFF
4 ON OFF OFF
5 OFF ON ON
6 ON OFF ON
7 ON ON OFF
8 ON ON ON

To illustrate, let us consider the sensitivity
analysis results for Strategy 2 (i.e., pc3 only),
which are shown in Figure 9. To measure the
effectiveness of deadlock reduction of a cer-
tain control strategy, we introduce the deadlock
probability reduction rate, ρ, which is defined
as the ratio between the decrease in deadlock
probability due to this strategy in the controlled
model and Pd of the uncontrolled model. The
metric ρ of Strategy 2, derived from the re-
sults in Figure 9(a) and the counterpart of the
uncontrolled model, is shown in Figure 10. It
is interesting to see that when µ1 and µ2 are
small, by using Strategy 2, the monitor place pc3 alone can prevent most of the potential deadlocks.
Therefore, similar in spirit to the discussion in Remark 1, if the consequence of the potential deadlock is
manageable (e.g., one of the patients in deadlock can be rescheduled without jeopardizing his/her health),
then we can employ Strategy 2 (instead of the most conservative Strategy 8) to gain better MTTF and β
performance when µ1 and µ2 are small. Similar analysis can be carried out for all the other strategies; we
omit the details due to space limitations.
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Figure 9: Sensitivity analysis results for Strategy 2: (a) Pd; (b) MTTF; (c) β
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If one can specify a minimum allowed value for ρ, say ρ0, based
on the empirical analysis of system tolerance, then a possible tradeoff
criterion (between Pd and MTTF) for selecting a control strategy
is: given ρ0 and (µ1, µ2), find the best strategy such that (i) its ρ
is greater than ρ0, and (ii) its MTTF is as small as possible. Based
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