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ABSTRACT

We investigate the idea of using the information obtained by observing a real system while simulating the
real system to improve the accuracy of a prediction about the real system made based on the result of
the simulation. Our approach runs multiple simulators simultaneously in parallel, where parameters of a
simulation model are varied across the simulators. Based on the observation from a real system, some of
the simulators are replicated, and others are terminated. We verify the effectiveness of our approach with
numerical experiments. In addition, we provide a theoretical justification for our approach, using kernel
density estimation.

1 INTRODUCTION

Simulation is an effective way to make predictions of near future for complex systems, including transportation
systems (Nagel, Esser, and Rickert 1999, Cetin, Nagel, Raney, and Voellmy 2002) and atmospheric systems
(Molteni, Buizza, Palmer, and Petroliagis 1996, Toth and Kalnay 1997). The quality of the predictions
depends on the accuracy of the simulation model and the values of the parameters in the simulation
model. The accuracy of the values of the parameters can be improved with data assimilation (Lewis,
Lakshmivarahan, and Dhall 2006, Evensen 1994, Evensen 2009, Hunt, Kalnay, Kostelich, Ott, Patil, Sauer,
Szunyogh, Yorke, and Zimin 2004), where predictions with simulation are compared against what are
realized in the corresponding real system, and the values of the parameters are adjusted accordingly. (Craig,
Goldstein, Rougier, and Seheult 2001, Goldstein and Rougier 2004) formalized Bayesian forecasting using
simulators where the forecasts are adjusted by the past information of the real system. Notice, however,
that simulation of the complex systems are time-consuming particularly when a detailed simulation model
is constructed to make a prediction of high accuracy. As a result, the information used to fine-tune the
parameters of a simulation model or to adjust the forecasts might be outdated, or additional information
might become available, by the time predictions are made based on the results of the simulation. In this
paper, we investigate the new idea of incorporating the information that becomes available after simulation
starts into the simulation model to improve the quality of the predictions.

We consider Monte Carlo simulation of large scale systems. An example of such simulation is multi-
agent simulation (Shoham and Leyton-Brown 2008), including transportation systems (Nagel, Esser, and
Rickert 1999, Cetin, Nagel, Raney, and Voellmy 2002) and financial systems (Raberto, Cincotti, Focardi,
and Marchesi 2001). Another example of large-scale Monte Carlo simulation is in ensemble forecasting of
the weather (Molteni, Buizza, Palmer, and Petroliagis 1996, Toth and Kalnay 1997, Epstein 1969, Lorenz
1969). Notice that mesoscopic simulation of the weather (Treinish and Praino 2004) is quite time-consuming
even with today’s supercomputers. In general, a real system has many hidden variables that can be neither
observed nor explicitly modeled in simulation. Such hidden variables are often modeled as random noise
in simulation. As such, the class of Monte-Carlo simulation considered in this paper is quite broad.

Because Monte Carlo simulation is stochastic, multiple simulation runs with different random seeds are
needed to make a predication of high accuracy and to provide a statistical guarantee on the accuracy of the
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prediction. We will exploit this structure of multiple simulation runs to incorporate the latest information
into the results of simulation. The multiple simulations might be run in parallel or in sequence, but we
assume that sufficient computational resources are available to run the simulations in parallel.

The key idea in our approach is to run simulations in parallel not only with different random seeds but
also with different values of parameters. Depending on the information that becomes available while the
simulations are run, we will terminate some of the simulation runs and make independent copies of some
of the remaining simulation runs. The independent copies of a simulation run will typically use the same
values of parameters but different random seeds. Other ways are also possible, for example we can use
the value of parameters slightly differs from the original simulator.

Observe that the information obtained after the simulations start might indicate that some of the values
of parameters are more likely to represent the latest conditions of the real system than the others. Then we
should terminate those simulation runs that are based on the values of parameters that do not well represent
the real system and instead allocate more computational resources to other simulation runs by making their
independent copies. The independent copies will enhance the level of statistical guarantee on the prediction
made with the simulation runs based on the values of parameters that appear to well represent the latest
conditions of the real system. Besides, this reselection step can be viewed as parameter-tuning.

Terminating a simulation run does not always pay off, however, because all of the computational
effort devoted to a simulation run would be wasted. The results with a simulation run can provide useful
information even if the particular values of the parameters used by the simulation run do not exactly represent
the conditions of the real system. It is hence nontrivial which simulation runs should be terminated when
particular information becomes available.

We propose a specific algorithm that determines which simulation runs should be terminated and which
simulation runs should be used to replicate independent copies given the information that has become
available while the simulations are run (see Section 2). Our numerical study shows that the proposed
algorithm is effective in making predictions of high accuracy (see Section 3). The proposed algorithm and
the support for its effectiveness constitute the primary contribution of this paper. A secondary contribution
of this paper is a theoretical justification of the proposed algorithm. We will provide rationale for key steps
of the proposed algorithm, using kernel density estimation (see Section 4).

Note that the prior work such as (Craig, Goldstein, Rougier, and Seheult 2001, Goldstein and Rougier
2004) has investigated the idea of using the information obtained by observing a real system to calibrate
the predictions made based on the results of simulation. However, in the prior work, the observation of
the real system was made before running the simulation for making prediction about future. On the other
hand, in this paper, we investigate the idea of using the observation of the real system made during the
simulation. Using such latest information from the real system, we select simulation runs to be terminated
or to be copied, so that the predictions can be made based on the results of simulation runs that are more
likely to be close to the real system than others. We also use the observation from the real system to
calibrate the predictions in a way similar to the prior work. In the calibration, however, we assume no
specific parametric model of a real system for robustness. Our non-parametric approach is in contrast
to, for example, (Craig, Goldstein, Rougier, and Seheult 2001), where the calibration is made based on
the assumption that simulation output form a Gaussian process. As a result, their approach would not be
effective when an unexpected change happens in the real system or more simply when the real system
cannot be well modeled with a Gaussian process.

2 PROPOSED APPROACH

Consider a Monte-Carlo simulator that simulates a real system in super-real time. Specifically, the simulator
runs N > 1 times faster than the real system. The results with the simulator depend on the particular values
of specifiable parameters, θ , as well as on the particular realizations of random numbers inherent to the
simulator.
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Let S(t) be the vector of characteristic values of the state, which we will refer to as the characteristic
vector, of a simulator at simulation time t. Here, simulation time records the time that has passed in the
simulation since the simulation started. Namely, simulation time is N t when time t has passed in the real
world since the simulation started. For simplicity, we assume that real time is zero when simulation time
is zero. Notice that S(t) is a random vector for Monte-Carlo simulation. For example, in the case of traffic
simulation, S(t) might represent the number of vehicles in each region at simulation time t, where the
simulated space is classified into multiple regions.

Simulation is run until simulation time reaches T , and S(T ) is used to make a prediction about the
real system at time T , where observe that the prediction can be made at time T/N < T . Notice that S(T )
depends on the parameters θ that are estimated based on the information available only before simulation
starts. For simulation of a complex system with a detailed model, N is often small, and the θ might be
outdated at real time T/N, when the prediction is made.

In this section, we present our algorithm for using the latest information to improve the accuracy of
the prediction. In Section 2.1, we discuss the general framework of our algorithm. Key elements of the
algorithm are specified in Section 2.2 and Section 2.3.

2.1 General Framework of Our Algorithm

In our proposed approach, we run k > 1 simulators simultaneously in parallel. The simulator differs only
in their parameters. For i = 1, . . . ,k, let θi be the values of the parameters for the i-th simulator. Notice
that we can estimate the values of true parameters based on available information. When we have a high
confidence about the estimation, we would set each θi close to the estimated values. Otherwise, we would
set a few of θi close to the estimated values and set the others differently.

At some real-time t0, we observe the real system. Let s(t0) be the characteristic vector of the observed
state. Notice that s(t0) has the same semantics as the corresponding vector, S(t0), for a simulated system.
The observation might have been scheduled or triggered by some external conditions.

We make sure that the characteristic vector Si(t0) has been recorded for each i at real time t0/N < t0.
When the observation at time t0 is scheduled, it is straightforward to record Si(t0). Otherwise, Si(t) can be
recorded with sufficiently small intervals, so that Si(t ′0) is recorded for t ′0 ≈ t0. In the following, we assume
that the observation is scheduled for simplicity.

Following the observation at real time t0, we apply a step of reelecting simulation runs. For the purpose
of reselection, we will introduce weight wi for each simulator i. Each wi is determined based on the
distance, d(s(t0),Si(t0)), between s(t0) and Si(t0). In general, the closer Si(t0) is to s(t0), the larger the wi
is. Then we normalize wi such that

k

∑
i=0

wi = 1. (1)

We provide specific examples of the distance functions and the corresponding weights in Section 2.2, where
we also discuss examples of weights that depend not only on d(s(t0),Si(t0)) but also on other information
about the simulators. Now we take k independent samples from the distribution that assigns probability wi
on simulator i for i = 1, . . . ,k. Note that samples are taken with replacement, so that some of the simulators
are selected multiple times, and others are not selected at all. We represent these selected simulators with
{i∗ : i = 1, . . . ,k}.

Then we repeatedly copy all of the relevant information about a simulator to another, deleting the original
information of the latter simulator, until the set of k simulators becomes {i∗ : i = 1, . . . ,k}. After reordering,
we now have k simulators such that the i-th simulator has the parameters, θi∗ , and the characteristic vector,
Si(t0) = Si∗(t0−), where Si∗(t0−) denotes the characteristic vector of simulator i∗ immediately before the
reselection is conducted.

Each simulator i is resumed from the state having the characteristic values, Si(t0) = Si∗(t0−), using the
parameters, θi∗ , and independent random numbers. For some i and j, i∗ and j∗ denote the same simulator,
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so that Si(t0) = S j(t0). However, this does not mean that Si(t) = S j(t) for t > t0, because the two simulators
use independent random numbers.

Observe that the reselection step eliminates some of unreliable simulation runs and replicate some of
reliable ones in the following sense. Simulator i is more likely to be reliable than simulator j, if Si(t0) is
closer to s(t0) than S j(t0) is. Although the result from a Monte-Carlo simulation is random, the closeness
between Si(t0) and s(t0) is an indicator of the reliability of simulator i. Hence, the simulator i having a
large weight wi is more likely to be reliable than the simulators having small weights. As a result, we
are likely to select reliable simulators more often than the others. Note that this step works as parameter
tuning as well as the tuning of condition S(t0).

We can perform the reselection step multiple times before simulation time reaches T . Multiple reselection
steps can increase the accuracy of the prediction.

At real time T/N, we make a prediction about a real system based on the results from simulations,
specifically Si(T ) for i = 1, . . . ,k. We provide an example of an estimator of s(T ) in Section 2.3.

One of the important features of our algorithm is that we apply nonparametric approach; no assumptions
are made for real system. Another importance feature is that reselection step can be taken whenever possible.
These become effective especially when unexpected changes (e.g. traffic accsident) happen in real-system.
If we apply reselection step right after the changes, the prediction at later time wouldn’t far apart from the
real situation.

2.2 Examples of Weights

In this section, we provide examples of weight wi. A simple example of weight wi is

wi ∝ exp
(
−d(s(t0),Si(t0))

σ2

)
, (2)

for a distance function d and a constant σ . When the distance in Equation (2) is the Euclidean distance,
this weight is proportional to a Gaussian function.

It turns out that the following more general form can provide more robustness than Equation (2) and
allows us to make more accurate predictions in our proposed algorithm:

wi ∝

k

∑
j=1

f1

(
d1(Si(t1),S j(t1))

)
f0

(
d0(s(t0),S j(t0))

)
fθ

(
dθ (θi,θ j)

)
(3)

where t1 ≡N t0; f1, fθ , and f0 are decreasing functions; each of d1, dθ , and d0 denotes the distance between
the two arguments. For example, we can use the following weight:

wi ∝

k

∑
j=1

exp
(
−

d1(Si(t1),S j(t1))
σ12 −

d0(s(t0),S j(t0))
σ02 −

dθ (θi,θ j)

σθ
2

)
(4)

for constants σ1, σθ , and σ0. We will investigate the weight of the form (4) in the following sections.
An intuition behind superiority of Equation (3) and Equation (4) is that, unlike Equation (2), these

equations take into account the following possibilities. First, even if Si(t0) is not close to s(t0), simulator
i might be reliable if θi is close to θ j and S j(t0) is close to s(t0). Likewise, simulator i might be reliable
if its latest characteristic vector Si(t1) is close to S j(t1) and S j(t0) is close to s(t0). Also, even if Si(t0) is
close to s(t0), simulator i might not be reliable if θi is close to θ j (or Si(t1) is close to S j(t1)) and S j(t0)
is far from s(t0). In Section 3, we verify the effectiveness of Equation (4). And in Section 4, we describe
the theoretical justification of Equation (3) using Bayes’ theorem.

Note that Equation (3) reduces to Equation (2) if f1 and fθ are delta functions, and f0 is an exponential
function. Specifically, we obtain Equation (2) from Equation (3) by letting f1(d(Si(t1),S j(t1))) be 1 if i = j
and 0 otherwise, letting fθ (d(θi,θ j)) be 1 if i = j and 0 otherwise, and letting f0(x) = exp(−x/σ2) for
x = d0(s(t0),S j(t0)). Also, Equation (4) is a generalization of Equation (2) because in general exp(−x2/σ2)
approaches asymptotically to delta function δ (x) as σ → 0.
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2.3 Example of Prediction

In this section, we present examples of how to predict s(T ) from simulation results. At real time T/N, we
obtain Si(T ) for i = 1, . . . ,k. A simple way of predicting s(T ) is the ensemble average:

1
k

k

∑
i=1

Si(T ). (5)

We find that this simple ensemble average can lead to a sufficiently accurate prediction for some applications,
because we have already discarded unreliable simulators and replicated reliable ones at the reselection step.
Specifically, we will see in Section 3 the results of numerical experiments, where the prediction with the
ensemble average and the reselection step has higher accuracy that that without the reselection step.

The prediction with (5) might not always be sufficiently accurate. If the inaccuracy stem from the
fact that observation of real system is outdated by the time prediction is made, one could perform another
reselection step when the prediction is made (i.e., obtain s(T/N) at real time T/N). Then we calculate the
weights using s(T/N) and Si(T/N), following the instructions in Section 2.2 (particularly, Equation 3).
After the reselection with these weights, the ensemble average is calculated using (5), which we use as a
prediction of s(T ). The reselection incorporates the updated real time situation s(T/N) into the prediction
and can improve the accuracy of the prediction.

3 NUMERICAL EXPERIMENTS

Now we will study the effectiveness of our proposed approach with numerical experiments. To isolate
the effect of the proposed approach from the complications that can arise from simulation, we consider a
simple model of simulation.

Specifically, let the characteristic vector S(t) from simulation be a one-dimensional geometric Brownian
motion. That is,

S(t) = exp(µ t +σ Wt) (6)

for t ≥ 0, where Wt represents the Wiener process that has the following probability density function:

f (x) =
1√
2π t

exp
(
− x2

2 t

)
(7)

for −∞ < x < ∞. Here, µ and σ are parameters of the simulator. We assume that the characteristic vector
s(t) of a real system is normalized such that

s(t) = 1 (8)

for t ≥ 0.
Our interpretation is that σ represents the volatility of the results from the simulator, which is inherent

to the simulation model under consideration. We will fix σ at particular values in our experiments. On
the other hand, µ represents the accuracy of the estimated parameters of the simulation model. Namely, if
the simulation model has a parameter θ , and its estimated value θ̂ is used in the simulation, then we have
µ = θ̂ −θ .

We evaluate the error that our approach and standard approach, respectively, have in predicting s(T ). For
each data point, we repeat predicting s(T ) multiple times and calculate the average L2 error. Specifically,
let ŝi(T ) be the prediction by a particular approach in the i-th run. Then we define

error =

√
1
M

M

∑
i=1

(s(t)− ŝi(T ))
2, (9)

629



Suzuki and Osogami

1 2 4 8 16 32 100 500
# of simulators

0.0

0.5

1.0

1.5

2.0

2.5

e
rr

o
r

(a) error

1 2 4 8 16 32 100 500
# of simulators

0

20

40

60

80

100

re
la

ti
v
e
 e

rr
o
r

(b) relative improvement

Figure 1: Effectiveness of our approach with simple weight, where N = 2, T = 1.0, and σ = 0.01. (a)
Error with standard approach (dotted line) and error with the proposed approach (solid line). (b) Relative
error against the standard approach.

where M is the number of runs that are used to calculate the average. We will specify M in each experiment.
The first set of experiments study the error in our approach, using the simple weight introduced in

Equation (2). Specifically, in this experiment, we set

wi ∝ exp
(
−| log(s(t0))− log(Si(t0)) |2

σ2
w

)
, (10)

where σ2
w = 0.01. We find that our results are not very sensitive to the particular value of σ2

w.
Figure 1(a) shows the error in the prediction made with three different approaches. Here, we set T = 1.0

and N = 2, so that the simulator runs twice as fast as the real system. We fix σ = 0.01 and generate µ

from the standard normal distribution. Note that µ is generated independently for each run and for each of
the simulators running in parallel. Two solid lines (one with crosses and the other with circles) show the
error with our approach, where the horizontal axis shows k, the number of simulators running in parallel.
The solid line with crosses performs the reselection step at the time when the prediction is made (i.e.,
t0 = T/N). The solid line with circles performs reselection earlier (specifically, t0 = 0.2T/N). In both
cases, the prediction is made with the ensemble average of the k simulators as shown in Equation (5). The
dotted line show the error with the standard approach of running k simulators in parallel with no reselection
step, where the prediction is made with the ensemble average of the k simulators. Here, the error given
by Equation (9) is calculated with M = 100,000/k, which allows us to evaluate the error with sufficiently
high accuracy for our purposes.

Observe in Figure 1(a) that the error tends to decrease with k both with the proposed approach and
with the standard approach, but the error with the proposed approach (solid) decreases faster than that with
the standard approach (dotted). The error with our proposed approach (solid with crosses) can be made
smaller than 0.5 using only k = 4 simulators, while the standard approach (dotted) has the error greater
than 0.5 even with k = 500. To take a closer look, Figure 1(b) shows the relative error, where the error
with the standard approach is normalized at 100. In particular, when k = 500, we find that the error with
the standard approach (dotted) is 42 times larger than that with our proposed approach (solid with crosses).

In Figure 1, we can also see that the error can be made smaller by performing the reselection step at
the time when the prediction is made (solid with crosses) than by performing the reselection step earlier
(solid with circles). In particular, when k = 500, the error with t0 = 0.2T/N is 12 times larger than that
with t0 = T/N.
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(b) N = 3, T = 1.5
Figure 2: Sensitivity of the error with our approach to N and T .

Figure 2 shows the sensitivity of our results to the particular values of N and T . The settings for Figure 2
are the same as those for Figure 1 except that we set N = 3 in Figure 2(a) and T = 1.5 in Figure 2(b).

Observe that the error with our approach increases when we increase the speed of the simulator
from N = 2 (Figure 1(a)) to N = 3 (Figure 2(a)). The increase in the error stems from the fact that the
faster simulators (N = 3) make observation earlier (specifically, t0 = T/3 or t0 = 0.2T/3) than the slower
simulators (N = 2) in our settings. So that the results with the slower simulators are based on more recent
observation than the faster simulators. Notice that the results of the simulation are obtained more quickly
when we use the faster simulator (i.e., N = 3) rather than the slower simulator. Hence, one should not
conclude that the slower simulator is superior to the faster simulator simply because the slower simulator
has the smaller error in this experiment.

When T is large (Figure 2(b)), the accurate prediction becomes difficult with the standard approach
(dotted). Notice that the value of the error with the standard approach shown in Figure 2(b) is significantly
larger than those shown in Figure 1 and Figure 2(a). On the other hand, our approach (solid) successfully
reduces the error particularly with k ≥ 4.

When the volatility, σ , of the simulator is high, the accurate prediction can become difficult even with
our approach. The second set of experiments verifies the effectiveness of the weight of the form shown in
Equation (4) in this difficult case. Specifically, we consider a sophisticated weight as follows:

wi ∝

k

∑
j=1

exp
(
−
| log(Si(t1))− log(S j(t1)) |2

σ12 −
| log(s(t0))− log(S j(t0)) |2

σ02 −
|µi−µ j|2

σµ
2

)
(11)

with σ0
2 = 1, σ1

2 = 0.1 and σµ
2 = 3. Before we choose these particular values of σ0

2, σ1
2, and σµ

2, we
have tried several sets of values and found that these values result in smaller error than the others. Our
approach would benefit from a systematic technique for tuning these values.

In Figure (3), we use the same settings as those in Figure 1 except that we now set σ = 1.0. Similar
to Figure 1, the dotted line shows the error with the standard approach, and the two solid lines (one with
circles and the other with crosses) show the error with the proposed approach. The two dashed lines show
the error with the proposed approach using the sophisticated weight shown in Equation (11). Notice that
the reselection step is performed at the time when the prediction is made (i.e., t0 = T/N) for the dashed
line with crosses, and earlier (i.e., t0 = 0.2T/N) for the dashed line with circles. Here, the error given by
Equation (9) is calculated with a large value of M = 1,000,000/k to evaluate the error with sufficiently
high accuracy for our purposes.
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Figure 3: Effectiveness of the sophisticated weight, where N = 2, T = 1.0, and σ = 1.0.

Observe that the proposed approach with simple weight does not appear to have any advantage over the
standard approach if the reselection step is performed at t0 = 0.2T/N (solid line with circles), although it
is still effective if the reselection step is performed at t0 = T/N (solid line with crosses). The sophisticated
weight can reduce the error in such cases where the simple weight is not effective. To take a closer look,
Figure 3 shows the relative error, where the error with the standard approach is normalized at 100. Observe
that the sophisticated weight can reduce the error up to 30% as compared to the simple weight.

The effectiveness of the sophisticated weight for a large σ may be understood as follows. With a
large σ , the prediction of simulators has high variability, and fewer simulators have S(t0) that is close
to s(t0). Then the other information such as θi and Si(t1) becomes useful in evaluating the reliability of
each simulator. In Section 4, we provide a theoretical justification for the sophisticated weight shown in
Equation (4).

4 THEORETICAL JUSTIFICATION

In this section, we provide a theoretical justification for our approach, particularly our specific choices of
the weight given in Section 2.2 and the estimator given in Section 2.3. To account for these choices, we
assume that a realization of a characteristic vector, s(t), of a real system is a sample from a random vector
having a probability density function ps(t)(·). The purpose of our simulation is to estimate

E[s(T )]≡
∫

x ps(T )(x)dx, (12)

which can be used to predict s(T ).
A simulator is built to estimate E[S(T )]. We assume that simulator i having parameter θi produces a

characteristic vector, Si(t), having a probability density function pS(t)(· | θ = θi) for 0 ≤ t ≤ T . Prior to
running simulation, we can examine the likelihood of θ . Let pθ be the probability density function for the
prior distribution of θ . If we pick a sample from the random θ having pθ , then the characteristic vector,
S(T ), of the simulator using the sample θ has the following expectation:

E[S(T )] =
∫ ∫

x pS(T )(x | θ = z) pθ (z)dxdz =
∫ ∫

x pS(T ),θ (x,θ)dxdz, (13)

where pS(T ),θ denotes the probability density function of (S(T ),θ). Our approach can be justified when
we assume that the marginal distribution of S(T ) agrees with the distribution of s(T ).
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A naive approach would run k simulations with a common parameter, θ0, to obtain k characteristic
vectors, S(ω)

i (T ) for i = 1, . . . ,k. In this section, a sample from a random variable is denoted by appending
(ω) at the upper right of the random variable. Then E[s(T )] is estimated with

s̃(T )≡ 1
k

k

∑
i=1

S(ω)
i (T ). (14)

This naive approach might be justified if we can choose θ0 such that pS(T )(· | θ = θ0)≡ ps(T )(·). In this
case, s̃(T ) would be an unbiased estimator of E[s(T )].

Unlike the naive approach, our approach runs k simulations with varying parameters, θi for i = 1, . . . ,k.
This is because we do not have a complete knowledge about the parameter. Based on the prior knowledge
about pθ , we should choose those θi that has high value of pθ (θi) more likely than others. Notice, however,
that we should adjust our belief about the likelihood of the parameters after obtaining the characteristic
vector, s(ω)(t0), from the real system and comparing s(ω)(t0) to each S(ω)

i (t0). Namely, the simulators whose
characteristic vectors are close to s(ω)(t0) are more likely to have the right parameters than the others.

4.1 A Rationale for Weight

We can now provide a rationale for our reselection step with weight given by Equation (4). The reselection
step is performed at real time t0, and, by that time, we have obtained the information Ft0 from the
observation of a real system and from simulators. In particular, Ft0 includes s(ω)(t0), S(ω)

i (t0), and S(ω)
i (t1)

for i = 1, . . . ,k. Given Ft0 , we want to delete those simulators whose latest characteristic vectors have low
likelihood and replicate other simulators.

More specifically, our approach seeks to select k simulators, allowing repetition, such that the probability
that simulator i is selected is proportional to ps(t1),θ (S

(ω)
i (t1),θi |Ft0), where ps(t1),θ (·|Ft0) is the probability

density function of (s(t1),θ) given Ft0 . Namely,

wi ∝ ps(t1),θ (S
(ω)
i (t1),θi|Ft0) (15)

. We can show that the reselection using the weight given by Equation (4) corresponds to the case where
ps(t1),θ (·, · |Ft0) is estimated using a kernel density estimation with a Gaussian kernel.

To estimate ps(t1),θ (·, · |Ft0), we let F−
t0 denote the all of the information contained in Ft0 except the

information that s(t0) = s(ω)(t0). Then we have

ps(t1),θ (·, · |Ft0) = ps(t1),θ (·, · |F
−
t0 ,s(t0) = s(ω)(t0)) (16)

=
ps(t1),s(t0),θ (·,s(ω)(t0), · |F−

t0 )

ps(t0)(s
(ω)(t0) |F−

t0 )
, (17)

where ps(t1),s(t0),θ denotes the probability density function of (s(t1),s(t0),θ). We can estimate ps(t1),θ (·, · |Ft0)

by first estimating ps(t1),s(t0),θ (·, ·, · |F
−
t0 ) and using Equation (17). Notice that we need not estimate the

constant ps(t0)(s
(ω)(t0) |F−

t0 ) in Equation (17), because we only need to know what ps(t1),θ (·, · |Ft0) is
proportional to (recall Equation (15)).

We assume that s(t0) is not deterministic even after we observe an s(t0) from the real system (i.e., the
distribution of s(t0) given Ft0 does not have the support at a single point). Our interpretation is that the
observation s(t0) has a random noise, so that s(ω)(t0) is a sample from the random s(t0).

In the method of kernel density estimation, density function p(x) of every point x is estimated using
sample data x1,x2, · · · ,xk by

p(x) =
1
k

k

∑
i=1

k(x,xi), (18)
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where k(x,xi) is a kernel function that satisfies
∫ +∞

−∞
k(x,xi)dx = 1. In general, k(x,xi) is large when x and

xi are close to each other. A popular kernel function is a Gaussian kernel:

k(x,xi) ∝ exp
(
−|x− xi|2

σ2

)
, (19)

where | · | is the Euclidean distance and σ is a specifiable parameter. When x and xi are vectors, we
can also let σ be a vector, in which case the multiplication and division in Equation (19) are defined
component-wise. In our case, given the samples {(S(ω)

i (t1),S
(ω)
i (t0),θi) : i = 1, . . . ,k}, we can estimate

ps(t1),s(t0),θ (x,y,z |Ft0) with the following Gaussian kernel:

k
(
(x,y,z),(S(ω)

i (t1),S
(ω)
i (t0),θi)

)
∝ exp

(
−
|x−S(ω)

i (t1)|2

σt1
2 −

|y−S(ω)
i (t0)|2

σt0
2 − |z−θi|2

σθ
2

)
. (20)

By Equation (17), Equation (18), and Equation (20), we obtain

ps(t1),θ (x,z |Ft0) ∝
1
k

k

∑
i=1

exp

(
−
|x−S(ω)

i (t1)|2

σt1
2 −

|s(ω)(t0)−S(ω)
i (t0)|2

σt0
2 − |z−θi|2

σθ
2

)
. (21)

Observe that Equation (21) is a particular realization of Equation (4).
Kernel density estimation is not the only approach for density estimation, and other methods for

density estimation can be used in our approach as long as ps(t1),s(t0),θ (· |Ft0) can be estimated with the

available information, including {(S(ω)
i (t1),S

(ω)
i (t0),θi) : i = 1, . . . ,k}. Another popular method of density

estimation is k-Nearest-Neighbor (NN) density estimation method (Loftsgaarden and Quesenberry 1965).
An advantage of Kernel density estimation over k-NN density estimation is computational efficiency. Kernel
density estimation however might require fine-tuning of its parameters.

4.2 A Rationale for Estimator

Next, we provide a rationale for estimating E[s(T )] with the ensemble average (5). We consider the case
where we estimate E[s(T )] immediately after the reselection step at real time t0 (i.e., T = t1 = N t0). Because
we have obtained the information, Ft0 , our goal is to estimate

E[s(T )|Ft0 ] =
∫

x ps(T )(x|Ft0)dx. (22)

Conditioning on and integrating over θ , we obtain

E[s(T )|Ft0 ] =
∫ ∫

x ps(T ),θ (x,z |Ft0)dxdz. (23)

Now, recall that we have estimated wi in Section 4.1 so that it is proportional to ps(T ),θ (S
(ω)
i (T ),θi |Ft0).

Assuming that ps(T ),θ (S(T ),θ |Ft0) is estimated accurately, we can conclude that the ensemble average

1
k

k

∑
i=1

S(ω)
i∗ (T ) (24)

is an unbiased estimator of E[s(T )|Ft0 ].
Note that we apply the same formulation of Bayesian forecasting as (Craig, Goldstein, Rougier, and

Seheult 2001) in Equation (22) apart from the critical difference that Craig et al. use this formulation with
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past information that has been obtained before simulators start. Our approach and Craig et al. both estimate
the posterior density ps(T )(x|Ft0) in Equation (22). In (Craig, Goldstein, Rougier, and Seheult 2001), the
posterior density function is estimated under the assumption of Gaussian distributions, while we estimated
the posterior density with samples using nonparametric density estimation like Kernel density estimation.
This makes the proposed algorithm general, especially appropriate for those complex systems like traffic
simulation.

5 CONCLUSION

We have proposed an idea of terminating some of the simulation runs and replicating the others based on
the information obtained during the simulation (i.e., real-time data assimilation). Using a simple model of
simulation, we have shown that the accuracy of the prediction made with multiple runs of Monte Carlo
simulation can be improved with a simple algorithm of real-time data assimilation. We expect that this
paper initiates new lines of research toward an application of real-time data assimilation to improving the
accuracy of predictions made with simulation of complex real systems, including predictions about weather
and traffic conditions.

The simple algorithm studied in this paper has many deficiencies that need to be overcome when real-
time data assimilation is applied to simulation of more complex systems. For example, the sophisticated
weight (11) is justified with density estimation, which becomes difficult for a high dimensional space.
Hence, when the vector S(t) (respectively, θ ) has a high dimension, we might want to apply dimensionality
reduction to Sω(t1) (respectively, θ ) before (11) is used. Notice that a high dimensional S(ω)(t0) can help
in increasing the accuracy of prediction when the corresponding s(ω)(t0) is available, so that S(t) can have
a high dimension.

Our numerical experiments suggest that real-time data assimilation can tremendously improve the
accuracy of predictions made with simulation when it is applied appropriately. Our expectation is that
real-time data assimilation will become a key technique to make highly accurate predictions with simulation
of complex systems after many issues about real-time data assimilation are addressed.
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