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ABSTRACT

We study asymptotic properties of kernel estimators of an unknown density when applying importance
sampling (IS). In particular, we provide conditions under which the estimators are consistent, both pointwise
and uniformly, and are asymptotically normal. We also study the optimal bandwidth for minimizing the
asymptotic mean square error (MSE) at a single point and the asymptotic mean integrated square error
(MISE). We show that IS can improve the asymptotic MSE at a single point, but IS always increases
the asymptotic MISE. We also give conditions ensuring the consistency of an IS kernel estimator of the
sparsity function, which is the inverse of the density evaluated at a quantile. This is useful for constructing
a confidence interval for a quantile when applying IS. We also provide conditions under which the IS
kernel estimator of the sparsity function is asymptotically normal. We provide some empirical results from
experiments with a small model.

1 INTRODUCTION

Estimation (without importance sampling) of an unknown density function f has been studied extensively
in the statistics literature, starting with Rosenblatt (1956) and Parzen (1962). In addition to the density
being of interest in its own right, which motivates much of the work in this area, the problem also arises
in the context of estimating a quantile. Specifically, for 0 < p < 1, the p-quantile of a distribution F is
defined as ξp ≡ inf{x : F(x)≥ p}. The standard estimator of ξp satisfies a central limit theorem (CLT), with
asymptotic variance constant p(1− p)/ f 2(ξp), where f denotes the density of F ; e.g., see Section 2.3.3 of
Serfling (1980). Thus, it is also of interest to estimate 1/ f (ξp), which is known as the sparsity function,
as it allows construction of a confidence interval for a quantile.

Kernel estimation is a well-known technique of “smoothing,” which is accomplished by taking the
convolution of an estimator with a given kernel. The kernel is often (but not always) a symmetric, unimodal
density function, and the user also needs to specify a parameter h, known as the bandwidth, which needs to
shrink to 0 at an appropriate rate as the sample size grows to establish consistency of the kernel estimator.
For an overview of kernel estimation without importance sampling, see Wand and Jones (1995).

Obtaining a good estimate of the density in the tails of the distribution requires large sample sizes when
simulating with crude Monte Carlo (CMC), i.e., no variance reduction is applied. To address this issue,
we now consider kernel estimation of f when using importance sampling (IS), which can be especially
effective for studying such rare events; e.g., see Chapters V.1 and VI of Asmussen and Glynn (2007). In
this paper, we establish some asymptotic properties of IS kernel density estimators. We provide conditions
under which they are consistent at a single point and under which they are uniformly consistent. We also
study the asymptotic properties of their mean square error (MSE) at a single point and mean integrated
square error (MISE), which we exploit to determine the optimal bandwidth to minimize the asymptotic
MSE or MISE. We show that the asymptotic MSE at a single point can be reduced by applying IS, but IS
always increases the asymptotic MISE. We further give conditions when the IS kernel density estimator
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satisfies various CLTs, which we use to construct an asymptotically valid confidence interval for the density
at a fixed point. We also develop a consistent kernel estimator of the sparsity function when applying IS
and give conditions under which it satisfies a CLT. While many of our results on the IS kernel density
estimator generalize the work on non-IS kernel estimators of Parzen (1962), that paper does not consider
the estimation of the sparsity function.

The rest of our paper has the following layout. Section 2 reviews background material on naive (i.e.,
non-kernel) estimation of a density (Section 2.1), kernel density estimation without IS (Section 2.2), and
IS (Section 2.3). Section 3 presents the IS kernel density estimator and studies its asymptotic properties.
Section 4 contains empirical results from experiments with a small example. We provide some concluding
remarks in Section 5. The proofs are given in Nakayama (2011).

2 BACKGROUND

We start by providing some background material on naive density estimation with CMC, kernel estimators
using CMC, and importance sampling.

2.1 CMC Naive Density Estimator

Suppose that F is an absolutely continuous distribution function with density function f . We assume
F and f are unknown, and the goal is to use simulation to estimate f , either at a fixed value y or the
entire function. One (naive) approach for doing this is as follows. Let X1,X2, . . . ,Xn be independent and
identically distributed (i.i.d.) samples having density f . Then define the empirical distribution function

Fn(y) =
1
n

n

∑
j=1

I(X j ≤ y),

where I( ·) denotes the indicator function, which is 1 (resp., 0) if the argument is true (resp., false). Since

f (y) =
d
dy

F(y) = lim
h→0

F(y+h)−F(y−h)
2h

,

a natural estimator of f (y) is

fn(y) =
Fn(y+h)−Fn(y−h)

2h
(1)

for a constant h > 0, which is known as the bandwidth or smoothing parameter. We call fn the CMC naive
density estimator, which we note is a (central) finite-difference estimator of f (y); e.g., see Section VII.1
of Asmussen and Glynn (2007). In general, we want h to be small, and we assume that h = hn→ 0 as the
sample size n→ ∞. To simplify notation, we sometimes write h rather than hn.

2.2 CMC Kernel Density Estimator

Let
k(u) =

1
2

I(−1 < u≤ 1), (2)

which is the density function of a unif[−1,1] distribution, and note that we can rewrite fn(y) in (1) as

fn(y) =
1
n

n

∑
j=1

1
h

k
(

y−X j

h

)
. (3)

This suggests that we can replace k in (3) with another density function or more generally a function k
that integrates to 1. We call k a kernel, and we then define the CMC kernel density estimator as

f ∗n (y) =
1
n

n

∑
j=1

1
h

k
(

y−X j

h

)
=

1
n

n

∑
j=1

kh(y−X j),
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where kh(u) = 1
h k(u

h). Throughout this paper, all estimators with an asterisk are kernel estimators. When k
(and so also kh) is a density function, for a fixed sample X1,X2, . . . ,Xn, we see that f ∗n (y)≥ 0 for all y and∫

f ∗n (y)dy =
1
n

n

∑
j=1

∫
kh(y−X j)dy = 1, (4)

so f ∗n is a density function. (All integrals are taken over the entire real line.) However, when k is not a
density function, then f ∗n may not be a density.

We assume the following:
Assumption A1 The kernel k satisfies the following conditions:∫

k(x)dx = 1, (5)

sup
x
|k(x)|< ∞,

∫
|k(x)|dx < ∞, lim

|x|→∞

|xk(x)|= 0. (6)

Some examples of kernels satisfying Assumption A1 include

k(x) =
3
4
(1− x2)I(−1≤ x≤ 1), (7)

k(x) =
1

(2π)1/2 e−x2/2, (8)

k(x) =
3− x2

2(2π)1/2 e−x2/2. (9)

The functions in (7) and (8) are known as the Epanechnikov and Gaussian kernels, respectively. While
(7)–(8) are nonnegative and therefore densities, the function in (9) is negative at some points. For more
details on these and other kernels, see Chapter 2 of Wand and Jones (1995).

When Assumption A1 holds and f is continuous at y, Parzen (1962) shows that if h = hn→ 0 as n→∞,
then

E f [ f ∗n (y)]→ f (y), (10)

nhnVf [ f ∗n (y)]→ f (y)ρk,

as n→ ∞, where E f and Vf denote expectation and variance, respectively, under density f , and

ρk =
∫

k2(z)dz, (11)

which is finite under Assumption A1. If in addition nhn→∞, then the mean square error of f ∗n (y) satisfies

MSE[ f ∗n (y)]→ 0 (12)

as n→∞, so f ∗n (y)⇒ f (y) as n→∞, where “⇒” denotes convergence in distribution, which is equivalent
to convergence in probability when the limit is deterministic; e.g., see Section 25 of Billingsley (1999).

We can further give the rate of convergence in (12) under additional conditions:
Assumption A2 The kernel k satisfies

∫
xk(x)dx = 0 and

∫
x2|k(x)|dx < ∞.

When we further assume A2 holds and the second derivative f ′′ of f is continuous and bounded in a
neighborhood of y, then nhn→ ∞ implies

MSE[ f ∗n (y)] =
1

nhn
f (y)ρk +o

(
1

nhn

)
+h4

n

(
f ′′(y)

2
ηk

)2

+o(h4
n)
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as n→ ∞, where
ηk =

∫
x2k(x)dx. (13)

For details, see Parzen (1962) or Theorem 2.2 of Pagan and Ullah (1999).
An alternative way of looking at f ∗n is that it is the convolution of kh and Fn:

f ∗n (y) =
∫

kh(y− x)dFn(x). (14)

The empirical distribution function Fn assigns mass 1/n to each sample point X j, so we see that f ∗n is a
“smoothing” that spreads out each point mass over the support of the scaled kernel kh. Also, if k is a density
with mean 0, then f ∗n is the equally weighted mixture of n scaled densities kh with means X1,X2, . . . ,Xn.

2.3 Importance Sampling

Now suppose that rather than generating samples using the original density f , we apply importance sampling
using a change of measure having density function g (with respect to Lebesgue measure). Specifically,
assume that f is absolutely continuous with respect to g, i.e., g(x) = 0 implies f (x) = 0; see, e.g., p. 422 of
Billingsley (1999) for more details. Let L(x) = f (x)/g(x) denote the likelihood ratio evaluated at x. Then

F(y) =
∫

I(x≤ y) f (x)dx =
∫

I(x≤ y)
f (x)
g(x)

g(x)dx = Eg[I(X ≤ y)L(X)], (15)

where Eg denotes expectation under density g.
The representation in (15) suggests estimating F(y) as follows. First generate X1,X2, . . . ,Xn as i.i.d.

samples having density g. Then we can define an estimator of the distribution function F as

F̂n(y) =
1
n

n

∑
j=1

I(X j ≤ y)L(X j), (16)

which we call the IS estimator of F . Throughout this paper, all estimators with a hat are IS estimators.
We can then define an estimator of f (y) by taking a finite difference of F̂n:

f̂n(y) =
F̂n(y+h)− F̂n(y−h)

2h
,

which we call the IS naive density estimator.

3 IS KERNEL DENSITY ESTIMATOR

As in (14) a smoothed IS density estimator results from convolving a scaled kernel kh and F̂n:

f̂ ∗n (y) =
∫

kh(y− x)dF̂n(x) =
1
n

n

∑
j=1

L(X j)kh(y−X j),

which we call the IS kernel density estimator. Suppose for the moment that k is a density. Then since
L( ·)≥ 0, we have f̂ ∗n (y)≥ 0 for all y. But in contrast to (4), we see that∫

f̂ ∗n (y)dy =
1
n

n

∑
j=1

L(X j)
∫

kh(y−X j)dy =
1
n

n

∑
j=1

L(X j) 6= 1

in general, although Eg[L(X)] = 1, so f̂ ∗n is not a density function. We now study its asymptotic properties.
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3.1 Pointwise and Uniform Consistency

Let Vg denote variance under density g, and let

MSE[ f̂ ∗n (y)] = Eg[( f̂ ∗n (y)− f (y))2] =Vg[ f̂ ∗n (y)]+(Eg[ f̂ ∗n (y)]− f (y))2

be the mean square error of f̂ ∗n (y). The following result shows the MSE at a fixed point y asymptotically
vanishes when the bandwidth h is chosen appropriately.
Theorem 1 Suppose f is continuous at y, and k satisfies Assumption A1. If h = hn→ 0 as n→ ∞, then

Eg[ f̂ ∗n (y)]→ f (y) (17)

as n→ ∞. If in addition L is continuous at y and Eg[L2(X)]< ∞, then

nhnVg[ f̂ ∗n (y)]→ L(y) f (y)ρk (18)

as n→ ∞, where ρk is defined in (11). If in addition nhn→ ∞, then

MSE[ f̂ ∗n (y)]→ 0 (19)

as n→ ∞, so f̂ ∗n (y)⇒ f (y) as n→ ∞.
We next provide conditions under which f̂ ∗n is a uniformly consistent estimator of f , in the sense given

in the theorem below. To do this, let i =
√
−1, and define the Fourier transform of the kernel k to be

ψ(t) =
∫

e−itxk(x)dx, which exists for all t when k satisfies Assumption A1.
Theorem 2 Suppose that f is uniformly continuous and Eg[L2(X)] < ∞. Also, suppose k satisfies
Assumption A1,

k(x) = k(−x) for all x, k is continuous everywhere, and
∫
|ψ(t)|dt < ∞. (20)

Assume that hn→ 0 and nh2
n→ ∞ as n→ ∞. Then sup−∞<y<∞ | f̂ ∗n (y)− f (y)| ⇒ 0 as n→ ∞.

The kernels in (7)–(9) satisfy (20). But the uniform kernel (2) is not continuous.

3.2 Asymptotic MSE

We now want to study the rate of convergence of (19), which we will use in Section 3.3 to determine the
optimal bandwidth hn to minimize the asymptotic MSE. To do this we require the additional assumptions
on the kernel given in A2 so that we can determine the rate of convergence in (17).
Theorem 3 Suppose the conditions of Theorem 1 hold, and further suppose the kernel k satisfies
Assumption A2 and the second derivative f ′′ of f is continuous and bounded in a neighborhood of y. Then

Eg[ f̂ ∗n (y)]− f (y) = h2
n

f ′′(y)
2

ηk +o(h2
n), (21)

MSE[ f̂ ∗n (y)] =
1

nhn
L(y) f (y)ρk +o

(
1

nhn

)
+h4

n

(
f ′′(y)

2
ηk

)2

+o(h4
n), (22)

as n→ ∞ when hn→ 0 and nhn→ ∞, where ηk is given in (13).
Since Eg[ f̂ ∗n (y)] = E f [ f ∗n (y)], the bias of the IS kernel density estimator f̂ ∗n (y) is independent of the

change of measure applied. However, the variance of f̂ ∗n (y) does depend on the IS density g. We now
study the asymptotic MSE (AMSE), which is defined as just the highest-order terms of the MSE:

AMSE[ f̂ ∗n (y)] =
1

nhn
L(y) f (y)ρk +h4

n

(
f ′′(y)

2
ηk

)2

. (23)
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For the case of CMC, AMSE[ f ∗n (y)] is the same as (23) but with L(y)≡ 1. Thus, for a fixed kernel k and
bandwidth rate hn, the IS kernel estimator f̂ ∗n (y) has smaller AMSE than the CMC kernel estimator f ∗n (y)
if and only if L(y)< 1, or equivalently, f (y)< g(y).

Note that the AMSE in (23) at the point y is affected by the choice of the IS density g by only the
value of the likelihood ratio at y. Thus, there is the potential to significantly decrease the AMSE at y by
choosing g so that g(y)� f (y), subject to maintaining Eg[L2(X)]< ∞ so that our theorems remain valid.

Hong and Liu (2010) study a related problem of estimating the derivative of a distribution function
with respect to a model parameter θ , e.g., a customer arrival rate in a queueing system. Their estimator
is essentially a finite difference, and they use importance sampling to obtain only samples that lie in the
difference, which leads to a faster convergence rate. But the applicability of the approach seems limited.

Instead of studying the MSE of our estimators of f at only a single point y, we now examine a measure
of overall quality of the estimators of the entire density function. One such metric is the mean integrated
square error (MISE). For our IS kernel estimator, this is given by

MISE[ f̂ ∗n ] = Eg

[∫
( f̂ ∗n (y)− f (y))2 dy

]
=
∫

Eg
[
( f̂ ∗n (y)− f (y))2] dy =

∫
MSE[ f̂ ∗n (y)]dy,

where the interchange of expectation and integral is justified by Fubini’s theorem (Theorem 18.3 of
Billingsley 1999) since the integrand is nonnegative; thus, the MISE is the integrated MSE. We thus define
the asymptotic MISE (AMISE) as the integrated AMSE:

AMISE[ f̂ ∗n ] =
∫

AMSE[ f̂ ∗n (y)]dy =
ρk

nhn

∫
L(y) f (y)dy+

h4
nη2

k
4

∫
( f ′′(y))2 dy

=
ρk

nhn
Eg[L2(X)]+

h4
nη2

k
4

τ f , (24)

where τ f =
∫
( f ′′(y))2 dy, which we assume is finite. When instead applying CMC, we get AMISE[ f ∗n ] is

the same as (24) but with Eg[L2(X)] replaced with 1. But the Cauchy-Schwarz inequality implies

Eg[L2(X)]≥ E2
g [L(X)] = E2

f [1] = 1, (25)

where the inequality becomes equality if and only if g = f almost everywhere (a.e.), the latter condition
meaning that no IS is used. Thus, AMISE[ f̂ ∗n ] ≥ AMISE[ f ∗n ] with equality if and only if g = f a.e. We
then conclude that IS always does worse when estimating the entire density function, but IS can do better
when estimating the density at only a single point.

3.3 Optimal Bandwidth

We now want to determine the rate of the bandwidth hn that will minimize the AMSE of f̂ ∗n (y). Assume
that f (y)> 0 and f ′′(y)ηk 6= 0, so the two terms in (23) are nonzero. Differentiating (23) with respect to
hn and equating this to zero give the asymptotically optimal bandwidth

h?n =
(

L(y) f (y)ρk

( f ′′(y)ηk)2

)1/5

n−1/5. (26)

Substituting this into (23) then gives the optimal AMSE as

AMSE?[ f̂ ∗n (y)] =
[

5
4
(L(y) f (y)ρk)

4/5 ( f ′′(y)ηk)
2/5
]

n−4/5,

so at the optimal rate, the MSE of f̂ ∗n (y) decreases as n−4/5, which is strictly slower than the canonical rate
of n−1 typically arising for unbiased estimators. Note that this conclusion is obtained under the assumption
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that f ′′(y) 6= 0 and ηk 6= 0, the latter of which holds when the kernel is a density so ηk > 0. But by allowing
the kernel to take on negative values, as in (9), the rate at which the AMSE shrinks can be improved (and
can be made to be arbitrarily close to n−1); e.g., see Section 2.8 of Wand and Jones (1995).

We can similarly minimize the AMISE with respect to hn, although the analysis in the previous section
suggests that applying IS to estimate the entire density is not efficient. The optimal bandwidth to minimize
AMISE in (24) is

h?n =
(

ρkEg[L2(X)]

τ f η
2
k

)1/5

n−1/5, (27)

which corresponds to the optimal AMISE as

AMISE?[ f̂ ∗n ] =
[

5
4
(
Eg[L2(X)]ρk

)4/5
(τ f η

2
k )

1/5
]

n−4/5.

When CMC instead is applied, the optimal AMISE is the same except the Eg[L2(X)] is replaced with 1.
Of course, the asymptotically optimal bandwidths h?n in (26) and (27) are not directly implementable

since they depend on L(y), f (y) and f ′′(y), which are unknown. In the case of CMC, others have suggested
data-based methods to estimate the unknown quantities; e.g., see Section 3.6 of Wand and Jones (1995).

We now compare the AMSE and AMISE of kernel density estimators with IS and CMC when using
the optimal bandwidths. Define the ratios

R?(y) =
AMSE?[ f̂ ∗n (y)]
AMSE?[ f ∗n (y)]

= L4/5(y) and R̄? =
AMISE?[ f̂ ∗n ]
AMISE?[ f ∗n ]

= E4/5
g [L2(X)],

which we note do not depend on the kernel k. Thus, when estimating the density at a single point y
using the optimal bandwidths, the value of the likelihood ratio at y determines by how much the AMSE
changes when applying IS. If we instead focus on estimating the entire density function using the optimal
bandwidths, then the amount by which IS degrades the AMISE is determined by the second moment of
the likelihood ratio, which is never less than 1 by (25).

We now compute the values of R?(y) and R̄? for a simple example.
Example 1 Suppose that f is the N(0,1) density, where N(a,b2) denotes a normal random variable with
mean a and variance b2. Also, suppose that for IS, g is the N(ν ,1) density for some constant ν , so
L(x) = f (x)/g(x) = exp(−νx+ν2/2) and Eg[L2(X)] = exp(ν2)< ∞ for any ν . Table 1 presents the values
of the ratios R?(y) and R̄? for different values of y and ν . A ratio less than 1 means that the IS kernel density
estimator outperforms the CMC kernel density estimator. Note that R?(y) is sometimes much smaller than
1, so when estimating the density at a single point y, it is possible to obtain significant improvement using
IS. We also have R?(y)> 1 for some combinations of y and ν , so IS can also do worse at a single point.
However, R̄? is always greater than 1, so IS always does worse when estimating the entire density function.
For example, when estimating f (3), we can get a 1/0.027≈ 36-fold reduction in AMSE by applying IS
with ν = 3, but if we are interested in estimating the entire density function f , then applying IS with the
same ν is more than 1300 times worse than not applying it.

Table 1: IS can significantly reduce AMSE?, but it can also increase. AMISE? always increases with IS.

R?(y)
ν y = 0 y = 1 y = 2 y = 3 R̄?

1 1.49 0.670 0.301 0.135 2.23
2 4.95 1 0.202 0.041 24.5
3 36.6 3.32 0.301 0.027 1339
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3.4 Asymptotic Normality and Confidence Intervals

We now give conditions under which the IS kernel density estimator f̂ ∗n (y) satisfies central limit theorems.

Theorem 4 Suppose the conditions of Theorem 1 hold and that Eg[L2+δ (X)]< ∞ for some δ > 0. Then

(nhn)
1/2 ( f̂ ∗n (y)−Eg[ f̂ ∗n (y)]

)
⇒ N(0,L(y) f (y)ρk) (28)

as n→ ∞. If in addition the conditions of Theorem 3 hold and nh5
n→ 0, then as n→ ∞,

(nhn)
1/2 ( f̂ ∗n (y)− f (y)

)
⇒ N(0,L(y) f (y)ρk). (29)

The CLT in (28) is centered at the mean of f̂ ∗n (y), which in general is not equal to f (y) because of the
bias. Hence, (29) is more practically useful. Also, the asymptotically optimal rates in (26) and (27) do not
satisfy nh5

n→ 0, so we are not guaranteed that the CLT in (29) holds for the optimal bandwidths.
We now describe how to construct a confidence interval for f (y) based on the CLT (29). When f is

the density of the output of a complicated simulation and IS is employed using density g, it is likely the
case that g(y) is unknown (or difficult to compute). Thus, g(y) and correspondingly L(y) = f (y)/g(y),
which appears in the asymptotic variance in (29), need to be estimated to construct confidence intervals
based on the CLT. We can estimate g(y) using g∗n(y) =

1
n ∑

n
j=1 k′h′n(y−X j), which is the standard kernel

density estimator of g at y with kernel k′ and bandwidth h′n. Here, X1,X2, . . . ,Xn are the same samples
from density g used to construct f̂ ∗n (y), and k′ and h′n could be the same as or different from the kernel k
and bandwidth hn used in f̂ ∗n (y). Standard kernel theory (Parzen 1962) shows that g∗n(y)⇒ g(y) as n→ ∞

when g is continuous at y, k′ satisfies (5)–(6) and h′n→ 0 and nh′n→ ∞ as n→ ∞. Thus, Theorem 1 and
Slutsky’s theorem (e.g., p. 19 of Serfling 1980) imply Ln(y)≡ f̂ ∗n (y)/g∗n(y)⇒ f (y)/g(y) = L(y) as n→∞.
Consequently, using the CLT (29), we can form an asymptotically valid 100(1−α)% confidence interval
for f (y) as (

f̂ ∗n (y)± z1−α/2

(
Ln(y) f̂ ∗n (y)ρk

nhn

)1/2)
,

where Φ(z1−α/2) = 1−α/2 and Φ is the distribution function of a N(0,1).

3.5 Estimating the Sparsity Function

Suppose that we are interested in estimating the p-quantile ξp = F−1(p)≡ inf{x : F(x)≥ p} of F for a fixed
0 < p < 1. Glynn (1996) develops an IS quantile estimator ξ̂p,n,1 = F̂−1

n,1 (p), where F̂n,1 = F̂n defined in (16).

He also considers another IS quantile estimator ξ̂p,n,2 = F̂−1
n,2 (p), where F̂n,2(y)= 1−n−1

∑
n
j=1 I(X j > y)L(X j).

The first (resp., second) quantile estimator ξ̂p,n,1 (resp., ξ̂p,n,2) is more appropriate to use when p≈ 0 (resp.,
p≈ 1). Glynn shows that if Eg[L3(X)]< ∞ and f (ξp)> 0, then the following CLTs hold:

√
n[ξ̂p,n,`−ξp]⇒ N(0,β 2

p,`), (30)

as n→ ∞ for `= 1,2, where

β
2
p,1 =

Eg[I(X ≤ ξp)L2(X)]− p2

f 2(ξp)
, (31)

β
2
p,2 =

Eg[I(X > ξp)L2(X)]− (1− p)2

f 2(ξp)
. (32)

Chu and Nakayama (2011) prove (30) holds for ` = 1 (resp., ` = 2) when the moment condition on the
likelihood ratio is relaxed to Eg[I(X < ξp + γ)L2+δ (X)] < ∞ (resp., Eg[I(X > ξp− γ)L2+δ (X)] < ∞) for
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some γ > 0 and δ > 0. If we have consistent estimators of the numerator and denominator in (31) (resp.,
(32)), then we can construct a confidence interval for ξp based on (30) for ` = 1 (resp., ` = 2). Tukey
(1965) calls 1/ f (ξp) the sparsity function at p, which Parzen (1979) names the quantile density function.

Chu and Nakayama (2011) develop consistent estimators of the numerators and denominators in (31)
and (32). To handle the denominator, note that d

d p F−1(p) = 1/ f (ξp), and their estimator of the sparsity
function is the finite difference

F̂−1
n,` (p+hn)− F̂−1

n,` (p−hn)

2hn
, (33)

for `= 1,2, which they show is consistent for bandwidth hn = cn−1/2 for any constant c 6= 0. Moreover,
under the further assumption that f is continuous at ξp, then (33) is consistent when hn→ 0 and nh2

n goes
to a positive constant or ∞ as n→ ∞. We now consider IS kernel estimators of f (ξp) and 1/ f (ξp).

Theorem 5 Suppose f (ξp)> 0 and f is continuous in a neighborhood of ξp. Also, assume Eg[L2+δ (X)]<∞

for some δ > 0, and k satisfies Assumption A1 and (20). If hn→ 0 and nh2
n→ ∞ as n→ ∞, then

f̂ ∗n (ξ̂p,n,`)⇒ f (ξp) and
1

f̂ ∗n (ξ̂p,n,`)
⇒ 1

f (ξp)
,

as n→∞ for `= 1,2. In addition, suppose the assumptions of Theorem 3 hold for y = ξp, the characteristic
function φ(t) = E f [eitX ] of f satisfies

∫
|tφ(t)|dt < ∞, and

∫
|tψ(t)|dt < ∞. Then if nh4

n→∞ and nh5
n→ 0,

(nhn)
1/2
(

f̂ ∗n (ξ̂p,n,`)− f (ξp)
)
⇒ N(0,L(ξp) f (ξp)ρk),

(nhn)
1/2

(
1

f̂ ∗n (ξ̂p,n,`)
− 1

f (ξp)

)
⇒ N

(
0,

L(ξp)ρk

f 3(ξp)

)
,

as n→ ∞ for `= 1,2.
Csörgő and Révész (1981), Theorem 5.5.2, establish the almost sure (uniform) consistency of the

analogous kernel estimator for f (ξp) for CMC. Falk (1986) proves a CLT for a different type of kernel
estimator for 1/ f (ξp) when applying CMC; his proof technique expresses F−1

n as F−1 evaluated at the
empirical CDF of n i.i.d. uniform(0,1) samples, but this approach does not generalize when applying IS.
Liu and Yang (2011) develop a bootstrap estimator of the IS asymptotic variance β 2

p,1 in (31), and they
show under alternative hypotheses (e.g., Eg[L4+δ1(X)]< ∞ and Eg[|X |3+δ2 ]< ∞ for some δ1,δ2 > 0) that
their estimator satisfies a CLT with rate n−1/4, which is slower than the rate (nhn)

−1/2 in the CLTs in
Theorem 5.

4 EMPIRICAL STUDY

We now present some results from running experiments to construct confidence intervals (CIs) for a quantile
of a small stochastic model when applying IS using the methods in Section 3.5. The model we consider is
a stochastic activity network (SAN), previously studied by Hsu and Nelson (1990) and Chu and Nakayama
(2011). The SAN consists of d = 5 independent activities, where each activity i has lifetime Ai, which
is exponential with mean 1. The SAN has q = 3 paths, and B j denotes the set of activities on path j,
where B1 = {1,2}, B2 = {1,3,5}, and B3 = {4,5}. Let Tj = ∑i∈B j Ai be the length of the path j, and let
X = max j=1,...,q Tj be the length of the longest path, which is the time to complete the project modeled by
the SAN. Our goal is to estimate and construct a 90% CI for ξp, the p-quantile of X . The CDF of X is
F(x) = 1+(3−3x−x2/2)e−x+(−3−3x+x2/2)e−2x−e−3x for x≥ 0. In our experiments, we used sample
sizes n = 100×4r, r = 0,1,2,3, and we estimated coverage (and average half widths) of the constructed
CIs from 104 independent replications.
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We experimented with p≈ 1, so we used the IS quantile estimator ξ̂p,n,2. We applied IS via an approach
described in Chu and Nakayama (2011). Based on an idea in Juneja, Karandikar, and Shahabuddin (2007)
for estimating tail probabilities in SANs, the IS measure is a mixture of q measures, where the jth measure
in the mixture exponentially tilts the activities on path j, and activities not on path j retain their original
distribution. We determine the tilting parameter for each path by applying an idea suggested by Glynn
(1996). For further details, see Chu and Nakayama (2011).

To construct CIs for ξp we employed various methods to estimate λp ≡ 1/ f (ξp) from (32). We used IS
kernel estimators 1/ f̂ ∗n (ξ̂p,n,2) with the uniform kernel (2), the Epanechnikov kernel (7), and the Gaussian
kernel (8). (In contrast to (7) and (8), kernel (2) does not satisfy (20), so Theorem 5 does not assure its
consistency.) In our tables below, these correspond to columns labeled “Unif. kernel”, “Epan. kernel”, and
“Gauss. kernel”, respectively. Also we applied the central finite-difference (CFD) estimator in (33) of Chu
and Nakayama (2011). Columns labeled “Exact λp” are for CIs constructed using the exact value of λp.
In all our IS CIs, we used the same estimator of the numerator of (32). We also ran the same experiments
with CMC for comparison.

For CFD, issues arise when p is close to 1, the bandwidth hn shrinks slowly, and the sample size n is
small. In this case, we can have p+hn ≥ 1, but then the CFD estimator would evaluate the inverse of the
estimated CDF at a point outside of its domain (0,1). Therefore, when this occurs, rather than evaluate F̂−1

n,2
at q1,n≡ p+hn and q2,n≡ p−hn, we instead evaluate at q1,n = 1−(1− p)/10 and q2,n = 2p−1+(1− p)/10,
the second point chosen so that q1,n and q2,n are symmetric about p. Some adjustment of this type must
be done to ensure that the inverted estimated CDF is evaluated at points within its domain, but it can lead
to poor estimates of the sparsity function for reasonably large sample sizes n. This seems to be due to the
fact that when applying the adjustment, q1,n and q2,n may not be approaching p for the range of n with
which we are experimenting. But the validity of the CFD requires that q1,n−q2,n→ 0, which may only
occur when n is very large. See Chu and Nakayama (2011) for more details.

Table 2 gives the results from experiments for p = 0.99. Comparing the columns for exact λp (which
do not depend on the bandwidth) for CMC and IS shows that IS reduces average half widths by more than
a factor of 4, demonstrating the effectiveness of our IS scheme. We experimented with CFD and kernel
estimators having bandwidths hn = 0.5n−v for v = 1/2, 1/3 and 1/5. For CFD, the coverage for v = 1/2
does better than the other values of v. Also, v = 1/2 gives better estimates on average of λp for CFD, as
seen by comparing the average half widths for CFD with those for exact λp. But for the kernel estimators
of λp, v = 1/5 (which is the asymptotically optimal value in (26) for minimizing MSE of the kernel
density estimator) outperforms v = 1/2 and 1/3 when n is smaller. When v = 1/2, the kernel methods
have undercoverage even for n = 6400 (and is especially poor for CMC), but our consistency theory for
the kernel estimator of λp in Theorem 5 does not cover the case when v = 1/2. (The asymptotic theory for
CFD in Chu and Nakayama 2011 allows for 0 < v≤ 1/2.) For small n, the Gaussian and uniform kernels
do better at estimating λp than the Epanechnikov kernel, but all of the kernel estimators perform about
equally for large n when v = 1/3 and 1/5. Additional experiments (not shown) estimating more extreme
quantiles with p = 1− 10−e for e > 2 show that CFD gives as bad or even higher overcoverage, while
kernel estimators for v = 1/3 and 1/5 give close to nominal coverage when n≥ 1600. Thus, it seems that
for extreme quantiles, kernel estimators can produce CIs with closer to nominal coverage than CFD.

5 CONCLUDING REMARKS

This paper analyzed kernel density estimators when importance sampling is applied. We provided conditions
under which IS kernel density estimators are pointwise and uniformly consistent. The estimators are also
asymptotically normal, and we developed asymptotically valid confidence intervals for f (y). We further
provided expressions for the asymptotic MSE and MISE, which we used to determine the optimal bandwidths
to minimize these asymptotic measures for a given IS density. One conclusion is that IS can improve
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Table 2: For CIs for the 0.99-quantile when using CMC and IS, coverage levels are closer to nominal (0.9)
for kernel estimators than for CFD, and average half widths (given in parentheses) for kernel estimators
are closer than CFD to those for exact λp.

hn = 0.5n−1/2

CMC IS
Unif. Epan. Gauss. Exact Unif. Epan. Gauss. Exact

n CFD kernel kernel kernel λp CFD kernel kernel kernel λp

100 0.507 0.092 0.060 0.116 0.945 0.981 0.544 0.425 0.579 0.873
(1.109) (0.154) (0.104) (0.188) (2.025) (0.712) (0.220) (0.158) (0.239) (0.445)

400 0.924 0.182 0.122 0.222 0.915 0.989 0.700 0.617 0.721 0.897
(1.430) (0.150) (0.102) (0.180) (1.012) (0.372) (0.174) (0.133) (0.174) (0.232)

1600 0.981 0.346 0.250 0.400 0.906 0.991 0.778 0.733 0.802 0.901
(0.824) (0.139) (0.096) (0.161) (0.506) (0.188) (0.110) (0.093) (0.105) (0.117)

6400 0.936 0.545 0.420 0.587 0.898 0.941 0.829 0.809 0.841 0.897
(0.291) (0.121) (0.086) (0.132) (0.253) (0.068) (0.059) (0.054) (0.056) (0.059)

hn = 0.5n−1/3

CMC IS
Unif. Epan. Gauss. Exact Unif. Epan. Gauss. Exact

n CFD kernel kernel kernel λp CFD kernel kernel kernel λp

100 0.507 0.196 0.132 0.230 0.945 0.981 0.688 0.612 0.715 0.873
(1.109) (0.312) (0.214) (0.367) (2.025) (0.712) (0.342) (0.265) (0.340) (0.445)

400 0.924 0.429 0.309 0.474 0.915 0.989 0.808 0.770 0.827 0.897
(1.430) (0.352) (0.248) (0.395) (1.012) (0.372) (0.226) (0.200) (0.215) (0.232)

1600 0.981 0.660 0.569 0.684 0.906 0.991 0.859 0.841 0.867 0.901
(0.824) (0.333) (0.251) (0.343) (0.506) (0.188) (0.118) (0.113) (0.114) (0.117)

6400 0.989 0.775 0.727 0.795 0.898 0.991 0.879 0.872 0.882 0.897
(0.403) (0.236) (0.201) (0.226) (0.253) (0.094) (0.059) (0.058) (0.058) (0.059)

hn = 0.5n−1/5

CMC IS
Unif. Epan. Gauss. Exact Unif. Epan. Gauss. Exact

n CFD kernel kernel kernel λp CFD kernel kernel kernel λp

100 0.507 0.331 0.231 0.373 0.945 0.981 0.764 0.713 0.777 0.873
(1.109) (0.520) (0.367) (0.585) (2.025) (0.712) (0.415) (0.348) (0.390) (0.445)

400 0.924 0.622 0.525 0.648 0.915 0.989 0.859 0.838 0.864 0.897
(1.430) (0.601) (0.450) (0.620) (1.012) (0.372) (0.232) (0.222) (0.223) (0.232)

1600 0.981 0.776 0.735 0.796 0.906 0.991 0.881 0.873 0.883 0.901
(0.824) (0.466) (0.401) (0.441) (0.506) (0.188) (0.117) (0.115) (0.115) (0.117)

6400 0.989 0.851 0.831 0.860 0.898 0.991 0.890 0.888 0.890 0.897
(0.403) (0.252) (0.242) (0.244) (0.253) (0.094) (0.059) (0.058) (0.058) (0.059)
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(relative to CMC) the AMSE when estimating the density at only a single point y, with L4/5(y) being the
factor by which the AMSE changes when applying IS with the optimal bandwidth. But IS always does
worse (in terms of AMISE) when estimating the entire density function, and E4/5

g [L2(X)]≥ 1 is the factor
by which the AMISE increases when using IS with the optimal bandwidth. We also developed a consistent
kernel estimator of the sparsity function when applying IS, which is useful for constructing a confidence
interval for a quantile when using IS, and also gave conditions under which this estimator satisfies a CLT.
We included some empirical results from experimenting with a small model. The results suggest that kernel
estimators of the sparsity function λp may lead to better CIs for extreme quantiles than the CFD estimator
of Chu and Nakayama (2011).

We are currently investigating kernel density estimation when applying other variance-reduction tech-
niques, such as control variates; e.g., see Chapter V of Asmussen and Glynn (2007). Section 3.5 considers
a “plug-in” kernel estimator of the sparsity function λp, and we are now studying other kernel estimators
of λp, such as those considered in Falk (1986) for CMC.
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