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ABSTRACT

Given an output process generated by a steady-state simulation, we give expressions for the mean-squared
error (MSE) of several well-known estimators of the associated variance parameter. The variance estimators
are based on the method of nonoverlapping batch means and on the method of standardized time series
applied to overlapping batch means. Under certain conditions, the resulting expressions are used to minimize
the MSE with respect to the batch size, where the optimal batch size is expressed as a function of the
simulation run length and certain moment properties of the output process. The ultimate objective is to
exploit these results to construct new variance estimators with improved accuracy and efficiency, and to
provide useful guidelines on setting the batch size in practice.

1 INTRODUCTION

An important problem in steady-state simulation output analysis involves the analysis of estimators associated
with the mean. In particular, suppose that {Y1,Y2, . . .} is the output process generated by a discrete-event
simulation; and further suppose that this process is stationary with steady-state mean µ =E[Yi] for i= 1,2, . . . .
Examples of such processes include the following: (a) a Markov chain whose initial condition is sampled
from the chain’s steady-state distribution; (b) a Markov chain with an arbitrary initial condition that has
been have been sufficiently warmed up; and (c) successive cycle times for entities flowing through a large
queueing-network model of a production or communication system that has been sufficiently warmed up.
The tried-and-true estimator for µ is obviously the sample mean based on n consecutive observations,
Y n ≡ n−1

∑
n
i=1Yi. Analysts might also be well-served to provide an estimator for Var(Y n), or almost

equivalently, σ2 ≡ limn→∞ nVar(Y n). The quantity σ2 is referred to as the asymptotic variance parameter
and, assuming it exists, is useful in making precision and confidence statements about the sample mean as
a point estimator for the unknown steady-state mean µ . This paper studies the performance of estimators
for σ2 with attention given to their bias, variance, and mean-squared error (MSE). Our emphasis will be
on estimators that are based on what have come to be known as the methods of nonoverlapping batch
means (NBM) (Schmeiser 1982), overlapping batch means (OBM) (Meketon and Schmeiser 1984), and
standardized time series (STS) (Schruben 1983).
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This article is organized as follows. We present background material in Section 2, mainly consisting
of a description of certain standard variance estimators that will be used to push the discussion forward.
The main MSE results for more-general variance estimators are given in Section 3. The slides for the oral
presentation of this article are available online via www.ise.ncsu.edu/jwilson/files/wsc11mse.pdf [accessed
October 25, 2011].

2 BACKGROUND

The goal in this section is to set the stage for some general results by first discussing some specific variance
estimators that have found some popularity in the steady-state simulation output analysis literature —
namely, the NBM, OBM, and STS area estimators. These estimators all employ the use of batching, as
will be explained below. We discuss generalizations of these results to other estimators in Section 3.

2.1 Nonoverlapping Batch Means Estimator

Suppose we break the steady-state simulation-generated output {Yj : j = 1,2, . . . ,n} of length n into b
contiguous, nonoverlapping batches of observations, each of length m, where we assume for ease of
exposition that n = bm. Thus, the observations {Y(i−1)m+k : k = 1,2, . . . ,m} constitute the ith batch for
i = 1,2, . . . ,b. In the sequel, we always take b≡ n/m so that b always represents the ratio of the sample
size to the batch size; and when we work with nonoverlapping batches as in this subsection, b also equals
the number of batches.

The quantities Y i,m ≡ m−1
∑

m
k=1Y(i−1)m+k, i = 1,2, . . . ,b, are the nonoverlapping batch means; and

under mild moment and mixing conditions, these batch means become approximately i.i.d. normal random
variables as the batch size m increases. This justifies the use of the scaled sample variance of the batch
means as the NBM estimator for σ2 (Glynn and Whitt 1991, Steiger and Wilson 2001),

N (b,m) ≡ m
b−1

b

∑
i=1

(Y i,m−Y n)
2 ⇒

σ2χ2
b−1

b−1
,

where the symbol ⇒ denotes convergence in distribution as m→ ∞, and χ2
ν is a χ2 random variable

with ν degrees of freedom. Under mild conditions, several papers (e.g., Chien, Goldsman, and Melamed
1997, Goldsman and Meketon 1986, Song and Schmeiser 1995) show that the expected value of the NBM
estimator is of the form

E[N (b,m)] = σ2− γ1(b+1)
mb

+O(1/m2), (1)

where: (a) the “Big-Oh” notation g(m) = O(h(m)) means that for some finite constants C and m0, we have
|g(m)| ≤C|h(m)| for all m≥ m0; and (b) the constants

γ
`
≡ 2

∞

∑
k=1

k`Cov[Y1,Y1+k] for `= 1,2, . . . (2)

provide a convenient characterization of the covariance structure of the process {Yj : j = 1,2, . . .}. Similarly,
the NBM estimator’s variance is given by

lim
m→∞

(b−1)Var[N (b,m)] = 2σ
4 for fixed b. (3)

2.2 Overlapping Batch Means Estimator

Now we form n−m+1 overlapping batches, each of size m, from {Yj : j = 1,2, . . . ,n}. Specifically, the
ith overlapping batch is composed of the observations {Yi+k : k = 0, . . . ,m−1}, for i = 1,2, . . . ,n−m+1;
the ith overlapping batch mean is Y O

i,m ≡ ∑
m−1
k=0 Yi+k/m, for i = 1,2, . . . ,n−m+1. The OBM estimator for
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σ2 is the scaled sample variance of the (highly correlated) overlapping batch means (cf. Meketon and
Schmeiser 1984),

O(b,m) ≡ nm
(n−m+1)(n−m)

n−m+1

∑
i=1

(Y O
i,m−Y n)

2.

Under mild conditions, Goldsman and Meketon (1986) and Song and Schmeiser (1995) (among others)
show that

E[O(b,m)] = σ2 +
γ1(b2 +1)
mb(b−1)

+O(1/m2). (4)

Further, following the lead of Meketon and Schmeiser (1984), Damerdji (1995) finds that for large batch
size m and sample-to-batch-size ratio b,

lim
m→∞

Var[O(b,m)] =
(4b3−11b2 +4b+6)σ4

3(b−1)4 ∼ 4σ4

3b
as b→ ∞. (5)

The OBM estimator has about the same bias as, but only 2/3 the variance of the NBM estimator.

2.3 Standardized Time Series Estimators

Schruben (1983) defined the standardized time series from nonoverlapping batch i by

Ti,m(t) ≡
bmtc(Y i,m−Y i,bmtc)

σ
√

m
for t ∈ [0,1] and i = 1,2, . . . ,b,

where b·c is the floor function and Y i, j ≡ j−1
∑

j
k=1Y(i−1)m+k is the jth cumulative sample mean from batch

i, for i = 1,2, . . . ,b and j = 1,2, . . . ,m. Schruben then proposed what is known as the area estimator for
σ2, which corresponds to the squared area under the STS from each batch,

A ( f ;b,m) ≡ 1
b

b

∑
i=1

Ai( f ;m),

where

Ai( f ;m) ≡

[
1
m

m

∑
k=1

f (k/m)σTi,m(k/m)

]2

for i = 1,2, . . . ,b,

and where the weight function f (·) satisfies the conditions∫ 1

0

∫ 1

0
f (s) f (t)

(
min(s, t)− st

)
dsdt = 1 and d2

dt2 f (t) is continuous at every t ∈ [0,1]. (6)

Under a mild functional central limit theorem assumption (cf. Alexopoulos et al. 2007), it turns out that
A ( f ;b,m)⇒ σ2χ2

b

/
b.

In addition, Goldsman, Meketon, and Schruben (1990) show that

E[A ( f ;b,m)] = σ2− [(F−F)2 +F2
]γ1

2m
+O(1/m2), (7)

where

F(s)≡
∫ s

0
f (t)dt for s ∈ [0,1], F ≡ F(1), F(u)≡

∫ u

0
F(s)ds for u ∈ [0,1], and F ≡ F(1).
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Further, under mild conditions, we have

lim
m→∞

bVar[A ( f ;b,m)] = 2σ
4. (8)

What makes the STS results particularly interesting is that there is a great deal of flexibility on the
choice of weight functions that satisfy Condition (6). For instance, Schruben’s original area estimator
used the constant weight f0(t) ≡

√
12 for all t ∈ [0,1], for which Equation (7) yields E[A ( f0;b,m)] =

σ2−3γ1/m+O(1/m2). A nice consequence of the flexibility of (6) is that it is easy to choose a weight
such that F = F = 0, which results in an estimator that is first-order unbiased for σ2. For instance, for the
weight f2(t)≡

√
840(3t2−3t +1/2), Aktaran-Kalaycı et al. (2007) derive the fine-tuned result

E[A ( f2;b,m)] = σ2 +
7(σ2−6γ2)

2m2 +O(1/m3). (9)

3 MAIN RESULTS

We now consider a generic variance estimator V̂ for the variance parameter σ2. Suppose that the bias of V̂
is of the form Bias(V̂ ) = c/mk for some constant c, batch size m, and k > 0, where we continue to ignore
smaller-order terms. Further suppose that the variance of V̂ is of the form Var(V̂ ) = v/b for some constant
v and sample-to-batch-size ratio b = n/m. Table 1, which summarizes Equations (1)–(9), shows that the
bias and variance results for the NBM, OBM, and STS area estimators adhere to the assumed forms. In
fact, a number of other variance estimators from the literature have these forms of bias and variance; see
Section 4.

Table 1: Approximate bias and variance for different estimators of σ2.

Estimator Bias Variance

N (b,m)
γ1(b+1)

mb
2σ4

b−1

O(b,m)
γ1(b2 +1)
mb(b−1)

(4b3−11b2 +4b+6)σ4

3(b−1)4

A ( f0;b,m)
3γ1

m
2σ4

b

A ( f2;b,m)
7(σ2−6γ2)

2m2
2σ4

b

In such cases, the MSE of V̂ as an estimator of σ2 is

MSE(V̂ ) = Bias2(V̂ )+Var(V̂ ) =
c2

m2k +
v
b
. (10)

Following the lead of Goldsman and Meketon (1986) and Song and Schmeiser (1995), we will minimize
this quantity (at least asymptotically for large values of the run length n and hence for large m = m(n) and
b = b(n)). To do so, we take b(n) = αnδ and m(n) = n1−δ/α , for some appropriately chosen parameters
α > 0 and 0 < δ < 1; and with this parameterization, we have

MSE(V̂ ) ∼ α2kc2

n(1−δ )2k
+

v
αnδ

as n→ ∞, (11)
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where the symbol ∼ means “is asymptotic to” so that the ratio of the left-hand side of (11) to its right-hand
side approaches one as n→ ∞.

The following heuristic argument motivates our formulation of the batch size m? =m?(n) that minimizes
MSE(V̂ ) for large n. Differentiating the right-hand side of (11) with respect to δ , setting the result equal
to zero, and rearranging terms, we have the relation

n2k−δ (2k+1) ∼ 2kα2k+1c2

v
as n→ ∞. (12)

Because the right-hand side of (12) does not depend on n, the exponent 2k−δ (2k+1) of the run length
n on the left-hand side of (12) must be exactly zero, which in turn implies that the right-hand side of (12)
must be exactly one; and thus for the asymptotically optimal values of δ and α , we must have

δ
? =

2k
2k+1

and α
? =

( v
2kc2

)1/(2k+1)
. (13)

Therefore we obtain the asymptotically optimal batch size of

m?(n) =
n1−δ ?

α?
=

(
2kc2n

v

)1/(1+2k)

(14)

and the asymptotically optimal sample-to-batch-size ratio of

b?(n) = α
?nδ ?

=
( v

2kc2

)1/(2k+1)
n2k/(2k+1) . (15)

Substituting the values of m?(n) and b?(n) into Equation (10) yields the asymptotically optimal MSE,

MSE?(V̂ ) =

(
vkc
nk

) 2
1+2k
[(

1
2k

) 2k
1+2k

+(2k)
1

1+2k

]
= (1+2k)

[
c
( v

2nk

)k
] 2

1+2k

. (16)

Table 2 gives approximate asymptotic optimality results for all the variance estimators considered in
this article based on Equations (13) through (16). Notice that the OBM estimator’s optimal MSE is lower
than that of the NBM estimator, which in turn is lower than that of the STS area estimator with uniform
weight function f0(·) — results that are well known in light of Goldsman and Meketon (1986) and Song
and Schmeiser (1995). For all three of these variance estimators, the optimal MSE declines as n−2/3. By
contrast, the optimal MSE of the STS area estimator with first-order unbiased weight function f2(·) declines
as n−4/5; and this latter property strongly suggests that further significant improvements in the estimation
of σ2 are achievable.

Table 2: Approximate asymptotic bias and variance for different estimators.

Estimator k c v m? MSE?(V̂ )

N (b,m) 1 γ1 2σ4
(

γ2
1 n

σ4

)1/3

3
(

γ1σ4

n

)2/3

O(b,m) 1 γ1
4σ4

3

(
3γ2

1 n
2σ4

)1/3

2.289
(

γ1σ4

n

)2/3

A ( f0;b,m) 1 3γ1 2σ4
(

9γ2
1 n

σ4

)1/3

6.240
(

γ1σ4

n

)2/3

A ( f2;b,m) 2
7(σ2−6γ2)

2
2σ4

[
49(σ2−6γ2)

2n
2σ4

]1/5

4.740
[
(σ2−6γ2)σ

8

n2

]2/5
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4 AUGMENTATIONS AND CONCLUSIONS

The discussion in the current paper has only considered a few basic estimators — NBM, OBM, and certain
elementary STS area estimators. The idea was to show how to obtain optimal MSE expressions for a
reasonably large class of estimators for σ2; and to show that certain first-order unbiased estimators have
optimal MSEs that are significantly better than their competitors. Of course, many other estimators fit into
the MSE paradigm discussed herein, including additional STS area estimators (e.g., Foley and Goldsman
1999) and STS Cramér–von Mises estimators (Goldsman, Kang, and Seila 1999). In addition, we are
currently investigating methods to produce minimum-MSE linear combinations of estimators for σ2 (e.g.,
Aktaran-Kalaycı et al. 2009).

One might notice that all of our expressions for the optimal batch size and optimal MSE involve
quantities such as σ2 and γ

`
that will undoubtedly be unknown in practice. Song (1996) developed methods

for estimating the ubiquitous ratio γ2
1/σ4 for a variety of processes, including moving average processes

and autoregressive processes, and Sherman (1995) proposed an alternative MSE-minimization strategy that
does not rely on the estimation of γ2

1/σ4. Analogous technology will have to be developed to estimate
other unknown quantities involving γ

`
and σ2. In any case, when acceptable estimates can be obtained,

then one can plug those estimates into the appropriate entries of Table 2.
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