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ABSTRACT

Piecewise-constant Poisson process rate functions are easy to estimate and provide easy random-process
generation. When the true rate function is continuous, however, a piecewise-constant approximation
is sometimes unacceptably crude. Given a non-negative piecewise-constant rate function, we discuss
SMOOTH (Smoothing via Mean-constrained Optimized-Objective Time Halving), a quadratic optimization
formulation that yields a smoother non-negative piecewise-constant rate function having twice as many time
intervals, each of half the length. I-SMOOTH (Iterated SMOOTH) iterates the SMOOTH formulation to
create a sequence of piecewise-constant rate functions having an asymptotic continuous rate function. We
consider two contexts: finite-horizon and cyclic. We develop a sequence of computational simplifications for
SMOOTH, moving from numerically minimizing the quadratic objective function, to numerically computing
a matrix inverse, to a closed-form matrix inverse obtained as finite sums, to decision variables that are
linear combinations of the given rates, and to simple approximations.

1 INTRODUCTION

Poisson processes are a classic family of point-process models. Such models are often used to model
random arrivals to a system, with each random point being the time that a customer arrives. For simplicity,
we refer to arrivals without implying that arrival processes in time are the only application.

A particular model instance is parameterized by its nonnegative rate function {λ (t);0≤ t < ∞}. The
number of arrivals N in a time interval [ti−1, ti] is Poisson with mean

µ =
∫ ti

ti−1

λ (t)dt.

More specifically, the mass function is

fN(n) =
e−µ µn

n!
,

for n = 0,1,2, . . . and zero elsewhere. The number of arrivals in non-overlapping time intervals are
independent.

In practice the rate function is often specified to be piecewise constant; that is,

λ (t) = λi for ti−1 < t ≤ ti

for i = 1,2, ...,k. We assume that λ (t0) = λ1.
We consider two contexts for the rate function. First, in the finite-horizon context the model’s time

horizon is finite at tk, with later times being irrelevant. Second, in the cyclic context, the time horizon
is defined to time infinity by cycling the rates, so that for any time t > t0 the rate λ (t) is used at times
t, tk + t,2tk + t, . . .. In the cyclic context, λ1 follows λk, as might happen if k = 7 and each time interval
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corresponds to a day of the week. In the finite-horizon context λ1 and λk are simply the first and last rates,
respectively, as might happen when the time intervals are rates estimated into the near-term future.

The piecewise-constant form is often a modeling assumption to approximate a continuous rate function.
Two advantages—rate estimation and random-process generation—balance the loss of modeling accuracy.
First, piecewise-constant rates are easy to estimate; ni arrivals in m realizations of the interval (ti−1, ti]
implies an estimate that

λ (t) =
ni

m(ti−1− ti)

for ti−1 < t ≤ ti.
Second, arrival times can be generated via the inverse transformation. Given an arrival at time s, the

next arrival is at the time t satisfying

u = 1− exp(−
∫ t

s
λ (v)dv),

where u is a uniform (0,1) random number. Equivalently,∫ t

s
λ (v)dv =−ln(1−u);

that is, the area under the rate function between times s and t is exponential with mean one. For piecewise-
constant rate functions, the cumulative rate function Λ(t) =

∫ t
0 λ (v)dv is piecewise linear, so solving for

time t in terms of the previous arrival time s and the random number u is straightforward, as discussed in
Klein and Roberts (1984).

We organize this paper as follows. In Section 2 we state the general problem of smoothing a given
piecewise-constant rate function. In Section 3 we discuss five measures of solution quality. In Section 4
we discuss our approach, which is to double the number of intervals each with half of the length; each
new pair of intervals has an average rate equal to the original interval. In Section 5 we discuss a simple
slope-matching heuristic for determining the new rate for each interval. In Section 6 we state objective
functions for the cyclic and finite-horizon contexts. Given k rates, we use these objective functions to
determine the 2k new rates, in a process that we refer to as SMOOTH (Smoothing via Mean-constrained
Optimized-Objective Time Halving), which when applied iteratively is I-SMOOTH. In Section 7 we derive
a sequence of solution methods, beginning with numerical solution of the mean-constrained quadratic
minimization problem using off-the-shelf software, then a matrix inversion, then a closed-form sum, and
approximations obtained by truncating the sums. In Section 8 we present four examples. Finally, we end
with a brief discussion of some additional issues, including the number of times, say n, to double the
number of intervals.

2 THE PROBLEM

Suppose that we are given the piecewise-constant rates λi corresponding to the time intervals (ti−1, ti] for
i = 1,2, . . . ,k. We consider only equal-length time intervals. Without lost of generality, we assume ti = i
for i = 0,1, . . . ,k. We are also given the modeler’s horizon context. If finite horizon, then t0 ≤ t ≤ tk; if
cyclic, then t0 ≤ t < ∞.

Our problem is to determine a new Poisson rate function, say τ , that is a “better” rate function than
λ , despite λ being the piecewise-constant Poisson rate function specified by the modeler. In this section
we discuss possible meanings of “better”.

First, we take as a constraint that the new rate function τ should maintain the essence of the specified
rate function λ . In particular, we require that for each time interval i = 1,2, . . . ,k the mean number of
arrivals remains unchanged: ∫ ti

ti−1

τ(t)dt =
∫ ti

ti−1

λ (t)dt.

470



Chen and Schmeiser

We ignore the origin of the given constant rates, which might be statistical estimates or might be part of a
designed experiment. Our goal is only to smooth the function over time; any statistical error in the given
constant rates will remain. For methods that estimate rate functions based on given data, see Kuhl and
Wilson (2000, 2001) and Leemis (1991).

Second, we take as a constraint that the solution should be nonnegative. Nevertheless, we ignore
negativity until Section 9.

Third, we take as a constraint that the solution should be symmetric in time, just as Poisson processes
are. That is, reversing the subscripts on λ1,λ2, . . . ,λk should result in reversing the time index of τ .

Our objective is that the new rate function is “smoother” than the piecewise-constant rate function λ ,
which requires a definition of “smoother”. We suppose that the true unknown rate function is continuous
and that τ should have less variation than λ , with possibly τ being continuous. Because the true rate
function is unknown, and because we don’t have data, the specific definition of an objective function is
part of the research problem.

We do know, though, that the definition of “smoother” needs to depend upon the rate context. For a
cyclic rate function, the value of τ(t0) should be close to the value of τ(tk). For the finite-horizon context,
the difference τ(t0)− τ(tk) is irrelevant.

3 SOLUTION QUALITY

In addition to the constraints of nonnegativity and maintaining the expected number of arrivals for each of
the k intervals, we need criteria for determining the quality of a given solution procedure and for comparing
multiple procedures.

The primary measure of a solution procedure is the quality of the smoothed rate function. Ideally, most
humans would look at the smoothed function and like it. In a computer implementation, however, some
definition of smoothness is needed; our definition is in Section 6.

There are many possible definitions of smoothness. We do not compare them here, but rather argue that
ours is intuitive, works well on various examples, and is reasonably easy to compute. If other definitions were
advocated, they could be compared by considering a particular true continuous rate function, computing
the expected number of arrivals for each time interval, providing the resulting expected values as the
piecewise-constant rate function λ , and applying the solution procedure to obtain the new rate function τ .
The deviation of τ from the true rate function would be a measure of the quality of the solution procedure.
Various true functions could be used, with a good procedure being robust to the particular function.

A second measure of a solution procedure is the work required to obtain the solution τ . A simple
procedure is better than a complicated procedure. Finding a tractable definition of smoothness is a good
start.

A third measure is the difficulty of explaining the method to a potential user, as well as the extent to
which the method’s explanation provides confidence. Here, again, the definition of smoothness is central.

A fourth measure is the amount of information requested from the user. In an ideal solution procedure,
nothing is requested beyond λ1, . . . ,λk and an indication of whether the rate is finite horizon or cyclic.

A fifth measure is, given the current arrival time s, the ease with which the next pseudo-random arrival
time can be generated.

4 APPROACH: DOUBLING THE NUMBER OF INTERVALS

Recall that we are given a Poisson process rate function λ (t) in the form of k nonnegative constants
λ1,λ2, . . . ,λk corresponding to the time intervals (ti−1, ti] for i = 1,2, . . . ,k, where the range of t depends
on the context: finite-horizon or cyclic.

Throughout this paper, we pursue the solution approach of returning a piecewise-constant rate function
with 2k pieces, each of length half that of the original intervals. A primary appeal of this approach is
that it can be applied a second time to obtain 4k and a third time to obtain 8k intervals. In the limit the
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approach yields a continuous approximation to the original k constant pieces without the need to specify a
functional form. For now, however, we consider only the single iteration of creating 2k rates given k rates.

The new rate function is

τ(t) =

{
λi− γi for ti−1 < t ≤ (ti−1 + ti)/2
λi + γi for (ti−1 + ti)/2 < t ≤ ti

for i = 1,2, . . . ,k. That is, if the left half of the rate of interval i is decreased by γi, then the right half
must be increased by γi for i = 1,2, . . . ,k. Any values of the decision variables γ1,γ2, . . . ,γk satisfy the k
constraints that the expected number of arrivals is unchanged for every interval.

Figure 1 illustrates the use of γ increments to update a sequence of finite-horizon piecewise-constant
rates. Two sets of rates are shown: the original six rates 3/4,5/4, . . . ,13/4 and the updated twelve rates
5/8,7/8, . . . ,27/8, which result from the increments γi = 1/8 for i = 1,2, . . . ,6. These increment values
are intuitively correct, in that constant jumps in the original rates result in constant jumps in the updated
rates. Repeatedly applying the same doubling process results in the continuous limiting rate function
τ(t) = 1/2+ t/2 for 0≤ t ≤ 6, the line that passes through the midpoints of the original piecewise-linear
rate segments. In Sections 5 and 6 we develop ideas for choosing γ values in situations where appropriate
values are less obvious. Section 8 contains three illustrative examples and one real-world example, with
figures.

Figure 1: The finite-horizon rates λi = 0.25+ i/2 for i = 1,2, . . . ,6 (shown as solid lines) and the twelve
rates obtained by doubling the number of intervals one time (shown as the dotted lines). The increments
shown are the intuitively correct values γi = 1/8, for i = 1,2, . . . ,6.

To obtain non-negative rates, the constraints |γi| ≤ λi for i = 1,2, . . . ,k must be enforced. These
constraints are satisfied by the intuitively correct γ increments in Figure 1. How to satisfy non-negativity
in general is discussed briefly in Section 9.

5 SLOPE MATCHING

This section is intended to provide motivation and intuition, but is not needed to understand the rest of the
paper. Therefore, the reader may wish to skip to the next section.

Before discussing our definition of smoothness in Section 6, we consider a “local” definition of
smoothness. The idea is simple: for each interval i, choose the value of γi to match the slope of λ near
interval i. The definition of slope is defined in terms of first differences, since the first derivative is zero
except at the jumps in λ .

In this sense, the slope of the original rate function, λ , at segment i is

λi+1−λi−1

2
,
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the difference in the λ values adjacent to segment i divided by the time difference between their midpoints.
Similarly, the slope of the new rate function, τ , is

(λi + γi)− (λi− γi)

1/2
,

the difference between the two new halves divided by the time difference between their midpoints.
Setting the two slopes equal yields the first-order slope-matching solution

γi =
λi+1−λi−1

8
. (1)

The end intervals, 1 and k, are treated according to whether the rate context is cyclic or finite horizon.
If cyclic, then λ0 = λk and λk+1 = λ1. If finite horizon, then the left-end rate is 2λ1−λ2 and the right-end
rate is 2λk−λk−1. that is, the slope is defined using only segments 1 and 2 or k−1 and k.

For equal-length intervals, the solution is also that obtained by fitting a quadratic through λi−1, λi, and
λi+1 and matching the fitted slope at the midpoint of segment i. This solution can be modified easily to
consider unequal-length segments.

The first-order slope-matching solution in Equation (1) can be extended to using multiple rate-value
differences. Again we take as motivation that rates that increase by a constant amount should result in a
straight line; that is, if λi+1−λi = δ for some sequence of intervals, then the increments γi should be equal
for those intervals.

Consider the lth-order solution obtained by using l differences. Then

γi =
l

∑
j=1

c(l)j (λi+ j−λi− j). (2)

From Equation (1), c(1)1 = 1/8, the value that yields a straight line. Ignoring end effects, the generalization
is, for interval i,

l

∑
j=1

c(l)j (λi+ j−λi− j) = 2δ/8, (3)

which yields
l

∑
j=1

jc(l)j = 1/8. (4)

For l > 1, there are many solutions that yield a straight line in the sense of γi values being the same for
multiple interval i. Of these solutions, we favor those with weights whose magnitudes decrease with lag
j. Some thought, maybe developed only with some experimentation, suggests that the weights should
alternate signs, with c(l)j being positive when j is odd. Also based on some experimentation, for 0 < r < 1
we assume the power series

c(l)j+1 =−rc(l)j . (5)

The power-series assumption leads to the following weights.

Result 1 For a sequence of rates with constant changes, the unique power-series weights that yield a
straight line are

c(l)1 =
(1+ r)2

8[1− (1+ l + rl)(−r)l]
(6)

and c(l)j = (−r) j−1c(l)1 for j = 1,2, ..., l.

In Section 7.2, we find that r = 1/3 yields an approximation to the solution of the more-precise
optimization formulation of Section 7.1.
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6 DEFINING SMOOTHNESS

For a continuous function f over the interval [a,b], a well-known definition of smoothness is the integral
of squared second derivatives

z =
∫ b

a

[
d2 f (t)

dt2

]2

dt. (7)

In this definition, a smaller value corresponds to a smoother function. Perfect smoothness is a straight line,
which has smoothness z = 0.

By analogy, for our piecewise-constant functions defined by λ
T ≡ (λ1,λ2, . . . ,λk), we define smoothness

by

zF =
k−2

∑
i=1

[λi+2−2λi+1 +λi]
2 (8)

when the problem horizon is finite and by

zC = zF +(λk−1−2λk +λ1)
2 +(λk−2λ1 +λ2)

2 (9)

when the problem is cyclic. The extra two terms in ZC arise from the interpretation that λk is followed by
λ1. These two terms are irrelevant to ZF because the given rates are interpreted to terminate at tk rather
than to cycle back to t0. Finite-horizon rates with constant step sizes λi+1−λi have perfect (i.e., zF = 0)
smoothness. Cyclic rate functions have perfect (i.e. zC = 0) smoothness only when all rates are equal.

Our objective function is to optimize the smoothness of the 2k pieces of the new rate function. At the
centers of the k original pieces are jumps of size

αi ≡ (λi + γi)− (λi− γi) = 2γi

for i = 1,2, . . . ,k. Between the k original pieces are jumps of size

βi ≡ (λi+1− γi+1)− (λi + γi)

for i = 1,2, . . . ,k−1; when the problem is cyclic, the kth such jump is

βk ≡ (λ1− γ1)− (λk + γk).

For notational simplicity, we follow the following convention for subscripts. When the context is cyclic,
we define λk+1 ≡ λ1 and γk+1 ≡ γ1; more generally, if a subscript is less than 1, then add k; if greater than
k, then subtract k. When the context is finite horizon, λ0 and λk+1 are given constants, specified as initial
and final rates to which the smoothed rate function should approach.

The smoothness of the 2k pieces is the sum of the squared differences of adjacent jump sizes. Let
γ ≡ (γ1,γ2, . . . ,γk)

T , the vector of decision variables. For the cyclic problem our objective function is to
minimize

zC(γ)≡
k

∑
i=1

(αi−βi)
2 +(βi−αi+1)

2,

a function of the 2k steps.
For the finite-horizon problem, the first and kth rates are not adjacent. We consider four cases, all

incorporated into minimizing the objective function

zF(γ)≡
k−1

∑
i=1

(αi−βi)
2 +(βi−αi+1)

2 + IL[(λ1− γ1−λ0)−α1]
2 + IR[αk− (λk+1−λk− γk)]

2.
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The four cases are obtained via the indicator functions IL and IR. If IL = IR = 0, then the smoothed curve
considers only the 2(k−1) second differences of the 2k new rates. If IL = 1 and IR = 0, then the smoothed
rate function is asked to link to the given initial rate λ0; if IL = 0 and IR = 1, then the smoothed rate
function is asked to link to the given final rate λk+1; if IL = 1 and IR = 1, then the smoothed rate function
is asked to link to both λ0 and λk+1.

In summary, we are given rates λi for i = 1,2, . . . ,k as well as possibly (for the finite-horizon context) an
initial rate λ0 and possibly a final rate λk+1. In the cyclic case as well as for each of the four finite-horizon
cases, we wish to solve for optimal values γ∗1 ,γ

∗
2 , . . . ,γ

∗
k of γ1,γ2, . . . ,γk to obtain the smoothed rate function

λi− γ∗i ,λi + γ∗i for i = 1,2, . . . ,k. As discussed in Section 7, all five minimization problems can be solved
exactly and efficiently.

All five cases can arise directly in practice. The cyclic context occurs, for example, when seven rates
are given for seven days of the week. The finite-horizon cases arise, for example, when the rate of organ
donation is assumed to increase every year. The four finite-horizon cases allow linking to an initial rate λ0
and/or a final rate λk+1.

We refer to the process of doubling the number of intervals by minimizing the smoothness objective
functions with SMOOTH. When SMOOTH is applied n times iteratively to obtain 2nk intervals, we refer
to I-SMOOTH.

7 OPTIMIZING SMOOTHNESS

We now consider the problem of minimizing zC or zF . The vector of decision variables is γ; the vector
of optimal decision variables is γ∗ ≡ (γ∗1 ,γ

∗
2 , . . . ,γ

∗
k ). When needed for clarity, we use γ∗

C
and γ∗

F
. In both

contexts, the smoothed rate function is composed of the 2k rates τ2i−1 = λi− γ∗i and τ2i = λi + γ∗i for
i = 1,2, . . . ,k.

First consider a trivial special case—the finite-horizon case where IL = IR = 0 and k = 1. Because there
are no terms in the summation, ZF = 0, which is not a function of the single decision variable, (γ

F
)1. We

declare (γ∗
F
)1 = 0 to be optimal and assume in the rest of this section that we are not discussing this case.

Because the objective functions are quadratic and convex, the unique minimal solutions can be obtained
reliably with existing numerical software. Examples include LSQLIN (MathWorks 2010) and HSQP (Betts
1980). Such routines have the advantage that nonnegativity can be integrated into the problem with simple-
to-state linear constraints. Our approach, however, is to defer discussion of the nonnegativity constraints
to Section 9 so that we can obtain easy-to-compute expressions for γ∗ when the non-negativity constraints
are not tight. Our unconstrained expressions for γ∗ require O(k2) computing effort and O(k) memory
requirements.

7.1 Optimal Interval Increments

Results 2 and 3 contain closed-form solutions for γ∗
C

and γ∗
F

. We obtained these results by writing the cyclic
and finite-horizon quadratic objective functions in matrix form and setting the first derivatives to zero. We
solved the resulting system of linear equations to obtain the solutions in terms of a matrix inverse. We
simplified the resulting matrix inverses using properties of circulant and symmetric matrices (Gray 1971)
for the cyclic context and tri-diagonal matrices (Yamani and Abdelmonem 1997) for the finite-horizon
context. The results follow after algebraic simplification.

Result 2 For interval i = 1, ...,k in the cyclic context, the optimal increment change is

(γ∗
C
)i =

2
(−3)k−1

b(k−1)/2c

∑
h=1

[
(−3)k−h−1− (−3)h−1

]
(λi+h−λi−h), (10)

where the empty summation for k = 1,2 implies that (γ∗
C
)i = 0.
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Result 3 For interval i = 1, ...,k in the finite-horizon context, the optimal increment change is

(γ∗
F
)i =

k+1

∑
j=0

wi, jλ j, (11)

where the weights wi, j = φi, j/{4
[
17IL+IR(3k−1)− (−1)IL+IR(31−k)

]
} for j = 0,1, . . . ,(k+1),

φi,0 = 12IL(−1)i
[
17IR(3k−i)+(−1)IR(3i−k)

]
,

φi,1 = (−1)i{17IL [1− (3+0.75IL)I(i 6= 1)]+(−1)IL [1− (3−1 +0.75IL)I(i 6= 1)]
}{

17IR [3k−i− (3k−i−1 +0.75IL3k−i)I(i = 1)]

+(−1)IR [3i−k− (3i+1−k +0.75IL3i−k)I(i = 1)]
}
,

φi,m = (−1)m−i(8)
[
17IL3m−2− (−1)IL3−m][17IR(3k−i)+(−1)IR(3i−k)

]
for m = 2, . . . ,(i−1),

φi,i = 8
[
17IL(−1)IR(32i−k−2)−17IR(−1)IL(3k−2i)

]
if i 6= 1 and i 6= k,

φi,m = (−1)m−i−1(8)
[
17IL(3i−1)+(−1)IL(31−i)

][
17IR(3k−m−1)− (−1)IR(3m−k−1)

]
for m = (i+1), . . . ,(k−1),

φi,k = (−1)k−i−1{17IL [(3i−1)− (3i−2 +0.75IR3i−1)I(i = k)]

+(−1)IL [31−i− (32−i +0.75IR31−i)I(i = k)]
}{

17IR [(3+0.75IR)I(i 6= k)−1]

+(−1)IR [(3−1 +0.75IR)I(i 6= k)−1]
}
,

φi,k+1 = 12IR(−1)k−i [17IL(3i−1)+(−1)IL(31−i)
]
,

and the indicator function I(A) equals 1 if logic A is true and 0, otherwise.

For both the cyclic and finite-horizon contexts, only Results 2 and 3 need to be computed. The
results require only O(k2) computing. Therefore, we avoid numerically minimizing the quadratic objective
functions. Better, we avoid computing the O(k3) terms required for computing the solution using the matrix
inverse. Result 3 includes all four finite-horizon cases by writing many terms using the indicators IL and
IR. Pre-computing a powers-of-three vector speeds computation time in Results 2 and 3.

Equation (10) shows the cyclic behavior of γ∗
C

, in which all the λ ’s with the same lag from γ∗’s have
the same weight (i.e., the h-lag weight of λi+h associated with (γ∗

C
)i is functionally independent of i).

Furthermore, the weight of λi for (γ∗
C
)i is 0.

Equation (11), compared with Equation (10), is more complicated because for each (γ∗
F
)i, the weights

of λ ’s are affected by the end rates and hence, depend on the value of i.

7.2 Asymptotic Approximation

When k is large, we can accurate approximations that are a bit simpler than γ∗
C

and γ∗
F

.

Corollary 1 In the cyclic context, when k is large the elements of γ∗
C

can be approximated using

(γ̃∗
C
)i =

2
9

b(k−1)/2c

∑
h=1

(−3)1−h(λi+h−λi−h)

for i = 1,2, . . . ,k.
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Corollary 2 In the finite-horizon context, when k is large the elements of γ∗
F

can be approximated using

(γ̃∗
F
)i =

k+1

∑
j=0

w̃i, jλ j,

where the weights are

w̃i,0 = (IL/17)(−3)2−i [1+(−17)−IRI(i = k)
]
,

w̃i,1 = 0.25(−3)−i{3− (1+2.25IL)I(i = 1)+3(−17)−IRI(i = k)
}{

[1− (3+0.75IL)I(i 6= 1)]+(−17)−IL
[
1− (3−1 +0.75IL)I(i 6= 1)

]}
,

w̃i,i−h = −2(−3)−h−1
[
1− (−17)−IL91−i+h I(2≤ i≤ b(k+1)/2c)

+(−17)−IR9i−k I(b(k+1)/2c+1≤ i≤ k−1)
]

for h = 1, . . . ,(i−2),

w̃i,i = 2(3|2i−k−1|−k)
[
−(−17)−IL I(2≤ i≤ b(k+1)/2c)
+(−17)−IR I(b(k+1)/2c+1≤ i≤ k−1)

]
,

w̃i,i+h = 2(−3)−h−1 [1+(−17)−IL91−i I(2≤ i≤ b(k+1)/2c)

−(−17)−IR9i+h−k I(b(k+1)/2c+1≤ i≤ k−1)
]

for h = 1, . . . ,(k− i−1),

w̃i,k = 0.25(−3)i−k−1 [3− (1+2.25IR)I(i = k)]{[(3+0.75IR)I(i 6= k)−1]

+(−17)−IR
[
(3−1 +0.75IR)I(i 6= k)−1

]}
,

w̃i,k+1 = −(IR/17)(−3)i+1−k [1+(−17)−ILI(i = 1)
]
.

Although the cyclic large-k approximation γ̃
∗
C

in Corollary 1 is simpler to state than the finite-horizon
large-k approximation γ̃

∗
F

in Corollary 2, the values are similar except for the finite-horizon’s end effects.
The lag-h weight in the cyclic approximation γ̃

∗
C

decreases by the factor 1/3 each time that |h| increases
by 1; the finite-horizon weights differ only a bit, except at intervals near the ends.

With a bit more error, computation effort can be reduced to O(k). Because large-|h| weights are
relatively small, weights with lags |h| greater than some value, such as four, can be set to zero. If four
is chosen, then the first omitted weight has magnitude about (2/9)(1/3)−4 = 2/729. The slope-matching
heuristic in Section 5 corresponds to truncating the weights after lag |h|= 1.

8 EXAMPLES

We now show the results of I-SMOOTH as applied to four examples. Each example is illustrated in a figure,
with the first subplots showing the original rate function, and subsequent subplots showing the smoothed
rate function after each application of SMOOTH.

Example 1 is given three rates, λ1 = 1, λ2 = 2, λ3 = 3 in the finite-horizon context, as plotted in the
“iteration 0” of Figure 2. The second subplot, “iteration 1”, shows six intervals. Notice that the first pair
of intervals has rates that average to λ1 = 1, the second pair averages to λ2 = 2, and the third pair averages
to λ3 = 3. The “iteration 2” subplot shows twelve intervals, each of length 0.25. Finally, the right-most
subplot “iteration 5” shows 96 intervals, each of length 1/32. This example illustrates a property that we
think desirable: the I-SMOOTH limiting rate function should be linear when the original rates have equal
jumps.

Example 2, illustrated in Figure 3, is the same as Example 1, except that the context is cyclic rather
than finite-horizon. Because the first and third intervals are adjacent, the rates converge as the subplots
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Figure 2: The original rate function and five I-SMOOTH iterations for Example 1. The finite-horizon
context with k = 3, λ1 = 1, λ2 = 2 and λ3 = 3.

move from three intervals in iteration 0, to six intervals in iteration 1, through 96 intervals in iteration
5. The limiting I-SMOOTH function is continuous, including at the times t = 0,3,6, . . . where the cycles
connect.

Figure 3: The original rate function and five I-SMOOTH iterations for Example 2. The cyclic context with
k = 3, λ1 = 1, λ2 = 2 and λ3 = 3.

Example 3, illustrated in Figure 4, is identical to Example 1, except that the rates are now λ1 = 0.1,
λ2 = 1.1, and λ3 = 2.1. Unlike Example 1, the limiting rate function is not linear, despite the constant jumps
between interval rates. The reason is that at each iteration the rate function is required to be non-negative
and to integrate to the original rate λi. The I-SMOOTH limiting function is again continuous, but the
limiting rate is zero for the time interval [0, 0.5].

Example 4 is a real-world example. The original piecewise-constant rates, shown in the first subplot
of Figure 5, are the 1988 through 2010 yearly live-donor kidney-donation numbers obtained from the
Organ Procurement and Transplantation Network web site (OPTN 2011). Because the actual donation-rate
function is not piecewise constant, but rather continuous with no jump at the new year, smoothing the
original function is reasonable. The second through fourth subplots show the progress of I-SMOOTH
iterations 1, 2, and 3, which have 46, 92, and 184 intervals respectively. Non-negativity is not an issue. For
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Figure 4: The original rate function and five I-SMOOTH iterations for Example 3. The finite-horizon
context with k = 3, λ1 = 0.1, λ2 = 1.1 and λ3 = 2.1. Here the limiting result is non-linear because of the
non-negativity constraints.

each of the original twenty-three intervals, the expected number of arrivals is unchanged from the original
piecewise-constant rates.

Figure 5: The original rate function and three I-SMOOTH iterations for Example 4. Yearly live-donor
kidney-donation data from 1988 through 2010.

9 DISCUSSION

Because of page limitations, we leave five topics undiscussed, other than brief comments here.
Other definitions of smoothness could be used, including the similar concept that minimizes the sum of

squared jump sizes. We prefer our definition largely because of a particular example: for the finite-horizon
problem, when the given rate constants have equal-sized jumps, our definition yields equal-sized jumps,
which are intuitively appealing.

Poisson rate functions must be non-negative. Other than including non-negativity as constraints in
numerical optimization, we have considered two ideas. The first is to smooth ln(λi), but that approach is
complicated by any zero rates. The second is to smooth unconstrained, check for negative rates, “push up”
the most negative rate to zero, and re-solve with that rate fixed at zero.
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We have no stopping rule for the number of times, say n, to double the number of rates. After doubling
the original k intervals n times, the user is left with 2nk piecewise-constant rates. The choice of n is
application dependent, but seldom will n be larger than eight.

The computations include powers of 3. The largest power is 32nk. Therefore, iterating many times
toward the limiting rate function eventually incurs numerical problems as well as substantial storage and
computing. Truncating the weights is an obvious solution to the numerical and computing problems.

After the n iterations, the 2nk rates can be “tipped” in a post-processor to obtain a piecewise-linear
rate function. Many heuristics come to mind, such as the slope matching of Section 5. Random-process
generation can proceed as in Klein and Roberts (1984).
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