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ABSTRACT

We speed up the Monte Carlo simulation of static graph reliability models by adding graph reductions to
zero-variance importance sampling (ZVIS) approximation techniques. ZVIS approximation samples the
status of links sequentially, and at each step we check if series-parallel reductions can be performed. We
present two variants of the algorithm and describe their respective advantages. We show that the method
satisfies robustness properties as the reliability of links increases. We illustrate theoretically on small
examples and numerically on large ones the gains that can be obtained, both in terms of variance and
computational time.

1 INTRODUCTION

Reliability analysis is a critical issue in many areas such as telecommunications, transportation systems,
and energy production plants, among others. We focus in this paper on static models, where time is not
an explicit variable. More specifically, we consider a non-oriented graph G = (N ,L ) where N is the
set of m nodes, and L = {1, . . . , `} is the set of links connecting the nodes. Nodes are assumed perfect,
in the sense that they never fail. Our goal is to compute the probability u(G ) that a given subset K of
the set of nodes is not connected, given that links may fail, with probability qi for link i (1≤ i≤ `), and
failures are assumed to occur independently across links.

Formally, if we denote by Xi the (Bernoulli) random variable such that Xi = 1 if link i ∈L works
(with probability 1−qi) and Xi = 0 otherwise, a random state vector is given by

X = (X1, . . . ,X`).

We define a function φ such that, for each state (or configuration) x = (x1, . . . ,x`) ∈ {0,1}`, φ(x) = 1 if
the set K is not contained in a single connected component of the graph, when connections are made by
links i for which xi = 1, and φ(x) = 0 otherwise. We then have

u(G ) = E[φ(X)] = ∑
x∈{0,1}`

φ(x)P[X = x] = ∑
x∈{0,1}`

φ(x)
`

∏
i=1

(qi(1− xi)+(1−qi)xi).

Computing this sum requires to evaluate φ for 2` terms. There exist exact combinatorial and bounding
techniques that allow to reduce the computational time (Rubino 1998), but computing u(G ) is known to
be a #P-complete problem in general (Ball and Provan 1982, Colbourn 1987).

Monte Carlo simulation is therefore a relevant method, at least for large graphs, to estimate u(G ).
Standard Monte Carlo consists in generating n independent copies of X (that is of the random graph),
labeled X (1), . . . ,X (n), and to take as an unbiased estimator of u(G ) the average value (1/n)∑

n
j=1 φ(X ( j)).
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¿From the Central Limit Theorem, one can obtain a confidence interval with confidence 1−α of half-width
cασ/

√
n, where cα is the 1−α/2 quantile of the standard normal distribution (with mean 0 and variance

1) and σ is the standard deviation of φ(X). For standard Monte Carlo, φ(X) being a Bernoulli random
variable, it is easy to check that σ2 = u(G )(1−u(G )).

But reliability analysis usually deals with rare events, i.e., rare cases such that the set of nodes in
K are not connected. This means a low probability u(G ), typically 10−9 and even less. In that case
the Central Limit Theorem cannot be applied except for a very large n, but even if it could, the relative
half-width of the confidence interval, cασ/(

√
nu(G )) is approximately cα/(

√
n
√

u(G )) and increases to
infinity as u(G )→ 0. It means that getting a given relative accuracy requires an increasing sample size as
the unreliability u(G ) decreases. This illustrates the inefficiency of standard Monte Carlo method to deal
with rare events. The rarity framework we will consider is when for each i ∈L , there are constants ai > 0
and bi ≥ 0 independent of ε such that

qi = aiε
bi . (1)

It can then be seen that u(G )→ 0 as ε→ 0 (L’Ecuyer et al. 2011). This type of parameterization is inspired
from Shahabuddin (1994), who applied it to the evaluation of highly reliable Markovian systems. Thus we
typically consider large but fixed topologies for which simulation is required, and look at an asymptotic
regime under which individual reliabilities decrease to zero.

There exists an extensive literature on the design of efficient Monte Carlo methods when dealing with
rare events; for a general overview, see for example Asmussen and Glynn (2007) and Rubino and Tuffin
(2009). The general idea is to design an estimator Y of the probability of interest (u(G ), for us) whose
relative error RE[Y ] = (Var[Y ])1/2/E[Y ] is “controlled” as E[Y ] = u(G ) gets closer to zero, in order to ensure
that the sample size required to get a given relative accuracy is also under control. An often considered
property of robustness to rarity is bounded relative error (BRE) verified by an estimator Y if RE[Y ] remains
bounded as u(G )→ 0, so that the sample size needed to get a specified relative accuracy is bounded
whatever the rarity of the event. An even better property is vanishing relative error (VRE), meaning that
RE[Y ]→ 0 when u(G )→ 0 (L’Ecuyer et al. 2010). Work-normalized versions of those properties have
also been defined in L’Ecuyer et al. (2010) and will be considered here.

Many techniques have been developed specifically for the network reliability problem we are looking
at; for a survey, see Cancela, El Khadiri, and Rubino (2009). The most notable ones are the recursive
variance reduction technique of Cancela and El Khadiri (2003), which applies recursive conditional Monte
Carlo, the turnip method (Gertsbakh and Shpungin 2010), whose basic idea is to replace the static model
by a dynamic one (using auxiliary variables) in which each link becomes operational at a random time and
the unreliability is estimated by the conditional probability that φ(X) = 1 given the order in which the links
become operational, the algorithm of Botev et al. (2011), based on the generalized splitting technique of
Botev and Kroese (2010) applied to a model with auxiliary variables, and the approximate zero-variance
importance sampling (ZVIS) of L’Ecuyer et al. (2011), summarized in the next section, which we propose
to improve. Among those techniques, the turnip and ZVIS are shown to satisfy BRE in general, and ZVIS
verifies VRE in several cases. ZVIS was also combined with conditional Monte Carlo in Cancela et al.
(2010). Some similitudes can be remarked between ZVIS and Ross (1994). In that paper, the author looks
at an estimator based on minimal cuts to reduce the variance and proposes to combine it with IS, but the
goal is not to approach the zero-variance importance sampling. Under our asymptotic regime, BRE can be
proved for this method though.

Our contribution in this paper is to add graph reductions to the (already efficient) ZVIS algorithm
of L’Ecuyer et al. (2011). Under this importance sampling scheme, links are sampled sequentially, the
probability that a link fails being dependent on the state of previously sampled links. But fixing the state
of a link can lead to some newly possible graph reductions. We consider series-parallel reductions defined
in Section 3. Those reductions, applied at each step, lead in most cases to variance reductions, but also to
computational time reductions even if it requires some work, because fewer links need to be sampled. We
describe two implementations, depending on whether the graph reduction is applied after computing the
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ZVIS approximation and sampling the link state, or the ZVIS approximation anticipates what would be
the reduced graph whatever the link state. We discuss their respective advantages, and illustrate the gains
numerically. We also show that, similarly to ZVIS, the combined method satisfy BRE in general. It can
satisfy VRE in some cases.

The paper is organized as follows. Section 2 recalls the ZVIS simulation method developed by L’Ecuyer
et al. (2011) and that we aim to improve here by using graph reductions. Section 3 describes the graph
reduction we use, and discuss how they can be efficiently combined with the IS scheme to get a larger
variance reduction than for ZVIS alone, because the unreliability can be better approached, combined with
a smaller computational time. The gains are illustrated theoretically on small toy examples and BRE is
shown to be satisfied. Section 4 presents the numerical results on a large example to illustrate the power
of the method, and we conclude in Section 5.

2 IMPORTANCE SAMPLING-BASED SIMULATION

We recall the method of L’Ecuyer et al. (2011). The idea is to generate the link states X1, . . . ,X`, in that
(arbitrary) order. Note that if we generate Xi = 0 (for 1≤ i≤ `) with probability

q̃i =
qiui+1(x1, . . . ,xi−1,0)

qiui+1(x1, . . . ,xi−1,0)+(1−qi)ui+1(x1, . . . ,xi−1,1)
, (2)

where ui(x1, . . . ,xi−1) is the unreliability of the graph given that X1 = x1, . . . ,Xi−1 = xi−1, then the unbiased
estimator φ(X)L(X) has a zero variance, where L(x) = ∏

`
i=1 Li(xi) and

Li(xi) = xi
1−qi

1− q̃i
+(1− xi)

qi

q̃i
.

In other words, if we sample the link states one after the other, taking into account in the sampling probability
the state of previous links according to (2), then the simulation always yields the exact result u(G ). In
this formulation, we have changed the probability measure, introducing a bias that is adjusted thanks to
the likelihood ratio L(X); this is an implementation of the importance sampling (IS) simulation technique
(Asmussen and Glynn 2007).

But sampling according to (2) requires the knowledge of unreliabilities ui(x1, . . . ,xi−1) ∀i ∈ {1, . . . , `},
and therefore the value u(G ) = q1u1(0)+(1−q1)u1(1) that we are trying to estimate. If we knew those
values, there would be no need for simulation. The principle is therefore to choose a simple-to-compute
approximation ûi+1(x1, . . . ,xi) of ui+1(x1, . . . ,xi) ∀i that we will plug into (2) in place of the ui+1(x1, . . . ,xi).
The approximation we use is called mincut-maxprob approximation. To define it formally, we need some
definitions and notations. For each i, given x1, . . . ,xi (assumed fixed), note by Gi = Gi(x1, . . . ,xi) the graph
obtained from G by removing all links j≤ i for which x j = 0 and forcing the links j such that x j = 1 to be
operational. A cut (or K -cut) in the graph Gi is a set of links (containing no link j ≤ i for which x j = 1)
such that if we remove them from Gi, not all the nodes in K are in the same connected component of
the resulting graph. A mincut (minimal cut) of Gi is a cut that contains no other cut than itself. Let Ci be
the set of mincuts in Gi. The probability of a cut γ ∈ Ci is defined as the probability that all links of the
cut fail. Let γi be a mincut of maximal probability in Ci. We use this probability as our approximation
ûi+1(x1, . . . ,xi) of ui+1(x1, . . . ,xi) at step i, and the IS is called the zero-variance importance sampling
(ZVIS) approximation scheme.

It is shown in L’Ecuyer et al. (2011) that when rarity comes from rare failure of individual links, i.e.,
under (1), then the ZVIS estimator verifies BRE in general as ε → 0, and can also satisfy VRE under
some additional conditions, satisfied by several network topologies. The intuition is that, thanks to our
approximation, and under our ε parameterization, the mincut-maxprob approximation ûi+1(x1, . . . ,xi) and
ui+1(x1, . . . ,xi) are of the same order in ε , meaning that our approximation is asymptotically valid.
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3 GRAPH REDUCTIONS TO DECREASE THE WORK-NORMALIZED VARIANCE

Each time a link state is generated by the ZVIS algorithm, the graph evolves according to these rules: at
step i (1≤ i≤ `),

• either Xi = 0 which means that the link is removed,
• or X1 = 1 which means that the link is fixed, and can then be removed by merging the two nodes

it links.

In each case, the graph topology is simplified (and modified). At each step i, we can therefore search if
graph reductions can be applied, in order to simplify the topology, and potentially gain in terms of variance
(by using a conditional expectation) and computational time (because the size of the graph is smaller).
This will be illustrated afterwards. Two types of graph reductions are investigated:

• Series reduction: Assume that node s ∈N has only two incident links, l1 and l2, connecting it to
nodes s1 and s2 respectively. If s 6∈K , node s can be removed and links l1 and l2 merged into a
single one, with unreliability q = 1− (1−ql1)(1−ql2). Remark that the case s ∈K can hardly be
treated without further topology information.

• Parallel reduction: if there are two (parallel) links l1 and l2 both connecting nodes s1 and s2, those
two links can be merged into a single one, with unreliability q = ql1ql2 .

We consider two different combinations of the reductions with the IS procedure. The first approach is
called the posterior reduction (PR) because it applies the reductions after the link state is sampled, while
the second is called the look-ahead reduction (LAR) because it anticipates what would be the reductions
whatever the link state, when computing the mincut-maxprob approximations. Of course, we also test if
the initial graph can be reduced. Each time we want to sample the state of a link i:

• for the PR, this link will be considered failed with probability

q̂(1)i =
qiûi+1(G r

i ,0)
qiûi+1(G r

i ,0)+(1−qi)ûi+1(G r
i ,1)

, (3)

where G r
i is the graph resulting from previous link samplings and reductions, and ûi+1(G r

i ,0)
(respectively ûi+1(G r

i ,1)) is the mincut-maxprob approximation of G r
i with link i state Xi fixed

to 0 (respectively 1). After the state of link i is determined, the link i is removed if Xi = 0 and
compressed if Xi = 1 (by merging the two nodes it joins, and again removing the link), we can search
for new reductions, leading to a new graph G r

i+1. We therefore end up with a direct application of
the zero-variance IS algorithm of L’Ecuyer et al. (2011), but applied to (potentially) successively
reduced graphs.

• For the LAR, we rather use as the probability that i is failed:

q̂(2)i =
qiûi+1(G r

i,0)

qiûi+1(G r
i,0)+(1−qi)ûi+1(G r

i,1)
, (4)

where G r
i,k for k ∈ {0,1} is the graph reduced after setting Xi = k, and ûi+1(G r

i,k) the corresponding
mincut-maxprob approximation. This requires to make two copies of the graph, setting Xi = 0 for
the first and Xi = 1 for the other, the two resulting graphs being reduced according to the above
rules, if possible. With respect to the first implementation, we therefore anticipate what would
be the reductions depending on the value of Xi. This is a type of one step look-ahead strategy.
Afterwards, when link i’s state is effectively sampled, we choose the appropriate already reduced
graph.

The gains we expect to obtain with those reductions come from different aspects:
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• Gain in terms of computational time: Reducing the graph means spending some time to search
for reductions, and to make copies of the graph. But it allows to decrease the number of links to
sample, and therefore the number of steps in the ZVIS algorithm and the number of mincut-maxprob
approximations that need to be computed, which may lead to substantial computational savings.
This is illustrated in Example 1 (below), for which cascading reductions occur.

• Gain in terms of variance: applying reductions allows to obtain a better mincut-maxprob approxi-
mation of the graph unreliabilities at the different steps, usually resulting in smaller variance. On
the other hand, the graph obtained after a reduction is in general different from a graph that would
be obtained without reduction (depending on the link ordering), and consequently it is not possible
to ensure that variance will be reduced, even though it usually is reduced.

• Comparing the two implementations, the LAR algorithm requires some additional time to make
copies of the graph and to perform twice more reductions at any given step. On the other hand,
computing the mincut-maxprob on an already reduced graph takes a shorter time than before
proceeding to a reduction. Moreover we usually get a better approximation of the zero-variance IS
with this procedure (see Example 1 below), which reduces the variance.

Potential gains, and the difference between the two implementations, are illustrated on the following toy
example.
Example 1 Consider the graph of Figure 1, where we want to compute the probability that the gray nodes
A and D are disconnected. Links are assumed homogeneous, with unreliability qi = ε for i = 1, . . . ,5. The
graph unreliability is u(G ) = 2ε2+2ε3−5ε4+2ε5. For this example, it is shown in L’Ecuyer et al. (2011)
that the zero-variance IS approximation already satisfies VRE. Note that none of the reductions described
above can be applied to this initial graph.

A

B

C

D

q1 = ε

q2 = ε

q4 = ε

q5 = ε

q3 = ε

Figure 1: Graph topology with five links and two nodes requiring to be connected.

• With our first implementation, we first sample link 1. In this case the mincut-maxprob approximations
are û2(G ,0) = ε and û2(G ,1) = ε2. This gives an IS probability ε2/(ε2 +(1− ε)ε2) = 1/(2− ε)
to have Xi = 0.

– If X1 = 1, the likelihood ratio when sampling this link is (2−ε). The graph can then be reduced
by compressing link 1, merging nodes A and B, then a parallel reduction of links 2 and 3 can
be applied, leading to a link with unreliability ε2. This new link is then in series with link 5,
leading to a reduction to a link with unreliability 1−(1−ε)(1−ε2) = ε+ε2−ε3. The resulting
graph is then just made of two parallel links between nodes: the one just determined and link
4, which can therefore be reduced to a graph with a single link with unreliability ε2 +ε3−ε4.
In this case, by IS, the link is necessarily considered failed (because û3(G r

2 ,1) = 0), and the
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likelihood is ε2 + ε3− ε4. This gives, with probability (1− ε)/(2− ε), the estimate

(2− ε)(ε2 + ε
3− ε

4).

– If X1 = 0 (with probability 1/(2−ε) under IS, leading to a likelihood ratio when sampling this
link ε(2−ε)), link 1 is removed. Links 3 and 4 are then in series and can be reduced, leading
to a new link of unreliability 1− (1−ε)2 = 2ε−ε2 which becomes a parallel link with link 5,
reduced then to become a link with unreliability 2ε2− ε3. But we then end up with two links
in series, the one just described, and link 2, which can be reduced to lead to a single link with
unreliability 1− (1− ε)(1−2ε2 + ε3) = ε +2ε2−3ε3 + ε4. Here again, under IS this link is
sampled as failed with probability 1, leading to the estimate

ε(2− ε)(ε +2ε
2−3ε

3 + ε
4)

with probability 1/(2− ε).
The second moment of the estimator, that we note E[(YPR)

2], is then

E[(YPR)
2] = (ε(2− ε)(ε +2ε

2−3ε
3 + ε

4))2 1
2− ε

+((2− ε)(ε2 + ε
3− ε

4))2 1− ε

2− ε
= 4ε

4 +o(ε4),

and, computing the relative variance, we get

E[(YPR)
2]− (u(G ))2

(u(G ))2 → 0 as ε → 0,

meaning that VRE is satisfied. Obviously, the successive reductions have diminished the number
of links to be sampled and the number of steps in the ZVIS algorithm, resulting in a time saving
that (usually) outweighs the additional time spent on applying the reductions.

• With the LAR implementation, the mincut-maxprob approximations are computed anticipating what
would be the reductions when Xi = 0 or 1. In that case, the reductions are the two just described in
the case of the first method. This yields û2(G1,0) = ε +2ε2−3ε3 +ε4 and û2(G1,1) = ε2 +ε3−ε4.
The probability that X1 = 0 is then

q̂(2)1 =
ε(ε +2ε2−3ε3 + ε4)

ε(ε +2ε2−3ε3 + ε4)+(1− ε)(ε2 + ε3− ε4)
.

– If X1 = 1, the likelihood ratio when sampling this link is (1−ε)/(1− q̂(2)1 ). The reduced graph
is the one with a single link, with unreliability û2(G1,1). This reduced link is considered failed
under IS with probability 1 (so the likelihood ratio is û2(G1,1)), leading to the estimate

1− ε

1− q̂(2)1

û2(G1,1) = (1− ε)û2(G1,1)+ ε û2(G1,0) = u(G ).

– If X1 = 0, the likelihood ratio when sampling this link is ε/q̂(2)1 . The reduced graph is the one
with a single link, with unreliability û2(G1,0). This reduced link is considered failed under IS
with probability 1 (so the likelihood ratio is û2(G1,0)), leading to the estimate

ε

q̂(2)1

û2(G1,0) = (1− ε)û2(G1,1)+ ε û2(G1,0) = u(G ).
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We therefore end up with an estimator always giving the exact result u(G ), that is, a zero-variance
estimator. Here too, the number of sampled links and ZVIS iterations are significantly reduced.
An important remark is that the approximations ûi+1(G r

i,k) in the LAR algorithm are better ap-
proximations of the searched graph unreliabilites than the ûi+1(G r

i ,k) in the PR algorithm. Indeed,
with LAR, reductions are applied before the approximations are computed, and the probability of a
mincut can correspond to the probability of a set of cuts with PR because cuts may be “grouped”.
This is what happens in our example when sampling the first link: for the LAR algorithm, the
mincut-maxprob approximations of the reduced graph are actually the exact unreliabilities of the
graph conditionally to the value of X1, which is not the case for the PR algorithm.

With full generality, the algorithms have the following robustness properties, as ε → 0.
Proposition 1 Our algorithms satisfy BRE.

Proof. The proof follows exactly the arguments of Theorem 2 (and Theorem 4) in L’Ecuyer et al.
(2011). It is indeed straightforward to check as in L’Ecuyer et al. (2011) that, for k ∈ {0,1} and ∀i,
ûi+1(G r

i ,k) = Θ(ui+1(G r
i ,k)) and ûi+1(G r

i,k) = Θ(ui+1(G r
i,k)).

Similarly to L’Ecuyer et al. (2011), VRE can also be verified under some conditions. This is actually
illustrated empirically on the numerical example below.

4 A NUMERICAL ILLUSTRATION

As a numerical illustration, we consider a graph often used as a benchmark for network reliability evaluation
techniques (Cancela et al. 2009). It is described in Figure 2, and made of 20 nodes and 30 links, with
the dodecahedron topology as shown. We consider the homogeneous case, where all links have the same
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2930

Figure 2: A dodecahedron graph with 20 nodes and 30 links.

unreliability ε , and we want to compute the probability that nodes A and B are disconnected. Links are
ordered somewhat arbitrarily, according to their numbering in the figure.

Table 1 shows the results obtained for the ZVIS, PR, and LAR algorithms from n = 104 independent
simulation runs and for three different values of ε . We see that the relative error in the fifth column
decreases with ε , which indicates (empirically) that VRE is verified for the three methods. The variance, in
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Table 1: Empirical results for the ZVIS, PR and LAR algorithms on the dodecahedron topology, obtained
from n = 104 independent simulation runs and three values of ε .

Method ε Estimate Variance Rel. Err. Time

ZVIS 10−1 2.8328×10−3 1.1048×10−5 1.1733 15.18
ZVIS 10−2 2.0677×10−6 1.1670×10−13 0.1652 14.35
ZVIS 10−3 2.0074×10−9 1.2714×10−20 0.0561 14.88
PR 10−1 2.8751×10−3 5.5452×10−6 0.8190 12.14
PR 10−2 2.0651×10−6 9.8889×10−14 0.1522 15.33
PR 10−3 2.0068×10−9 9.5548×10−21 0.0487 13.87
LAR 10−1 2.8778×10−3 3.9203×10−6 0.6880 10.29
LAR 10−2 2.0612×10−6 4.4955×10−14 0.1028 7.48
LAR 10−3 2.0051×10−9 2.4094×10−21 0.0244 7.55

the fourth column, is smaller when we use the two series-parallel graph reductions, via either PR or LAR,
compared with ZVIS alone. This is due to better mincut-maxprob approximations of the unreliabilities,
thanks to the reductions. The gain is larger for LAR than for PR, as was the case in Example 1. Computing
times (in seconds) are displayed in the sixth column. We find that despite the work required to clone the
graphs and search for reductions, both PR and LAR reduce the overall computing times, presumably due
to a decrease of the number of steps in the ZVIS algorithm (fewer links to be sampled). The average
number of series-parallel reductions per simulation run were actually about 11.1 for PR and 11.4 for LAR,
for the three values of ε . That is, the number of links that need to be sampled in the ZVIS method is
reduced from 30 to about 19, with either PR or LAR. The small difference between the two methods is
probably due to some configurations with more reductions are favored under LAR algorithm with respect
to PR, on this example. We also see from the last column of Table 1 that LAR is faster than PR, despite
the additional number of reductions performed in the look-ahead strategy, because the time to compute
the mincut-maxprob approximations is smaller on the look-ahead (reduced) graphs. Overall, by applying
PR or LAR, we gain both in terms of variance and computing time, hence a reduced work-normalized
variance (product of variance and time), with an advantage for LAR.

5 CONCLUSION

We have described how graph reductions can be combined with IS for a static graph reliability estimation
problem. We considered series and parallel link reductions. Two algorithms have been defined to get
an IS probability closer to the zero-variance one: One for which the reductions are applied after each
link sampling (PR), and the other one that anticipates what would be the reductions after the link state
determination (LAR). We have illustrated, theoretically on a small example and numerically on a larger
one, the gains that can be obtained, both in terms of variance and computational time. The additional work
to perform the reductions is more than compensated by the time savings from reducing the number of links
to be sampled (and thus the number of steps) in the ZVIS algorithm. We have also shown that BRE is
satisfied in general, and VRE in some cases, when the reliability of individual links goes to one.

As next step, we would like to include other types of reductions. For instance if there is a node s ∈N
of degree 1, i.e., if there is only one link connected to node s, then there are two possibilities:

• if s 6∈K , the state of the link attached to s has no influence on the graph unreliability, therefore,
it can be removed from L , and s removed from N ;

• if s ∈K , call G ′ the considered graph, q the unreliability of the link attached to s, and G̃ ′ the
reduced graph where node s is merged to its neighbor (the resulting node being still considered in
K ). By conditioning, it is easy to check that u(G ′) = 1− (1−q)(1−u(G̃ ′))). We can therefore
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merge again node s to its neighbor and focus on the estimation of u(G̃ ′). In that case, if we denote
by Y the random variable whose expectation is u(G ), and L the likelihood ratio when combining IS
and reductions up to reaching a reduction of a degree-1 node i in K , with G ′ the resulting reduced
graph. We then have

Y = L(1− (1−qi)(1−Y ′)).

We can proceed that way recursively, applying the algorithm for G ′, up to exhausting the links or
ensuring that the nodes in K are disconnected.
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