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ABSTRACT

Retrospective Approximation (RA) is a solution paradigm introduced in the early 1990s by Chen and
Schmeiser for solving one-dimensional stochastic root finding problems (SRFPs). The RA paradigm can be
thought of as a refined and implementable version of sample average approximation, where a sequence of
approximate problems are strategically generated and solved to identify iterates that progressively approach
the desired solution. While originally aimed at one-dimensional SRFPs, the paradigm’s broader utility,
particularly within general simulation optimization algorithms, is becoming increasingly evident. We discuss
the RA paradigm, demonstrate its usefulness, present the key results and papers on the topic over the last
fifteen years, and speculate fruitful future directions.

1 INTRODUCTION

The earliest reference to stochastic root finding — the question of identifying the solution to a nonlinear
system of equations with only a consistent estimator of the function involved — was in 1951 when Robbins
and Monro wrote an article (Robbins and Monro 1951) outlining an iterative procedure called stochastic
approximation (SA). This was soon followed by Kiefer and Wolfowitz’s work (Kiefer and Wolfowitz 1952)
presenting an analogous SA iteration for the context of simulation optimization, i.e., optimization with
only a consistent estimator of the objective function. (The name “simulation optimization” was coined
recently, and was not used by Kiefer and Wolfowitz in their original paper.) The six decades following
the publication of these two influential articles have seen enormous development in the general area of
SA, devoted primarily to providing insight on the theoretical properties of the SA iteration (Blum 1954,
Dvoretzky 1956, Fabian 1968), and to devising variations aimed at accelerating SA’s convergence primarily
through insight on the choice of the gain sequence (Kesten 1958, Andradóttir 1991, Andradóttir 1996,
Nemirovski and Shapiro 2004, Polyak and Juditsky 1992, Broadie, Cicek, and Zeevi 2010, Broadie, Cicek,
and Zeevi 2009, Spall 1998, Spall 2000, Bhatnagar and Borkar 1997, Bhatnagar and Borkar 1998). For
some overviews and entry points into this literature, see Lai (2003), Wasan (1969), Kushner and Yin (2003),
Spall (2003) .

Interestingly, it was not until 1991 that a fundamentally different and competing solution paradigm was
proposed for simulation optimization and stochastic root finding. Perhaps fueled by advances in deterministic
nonlinear programming alongside simulation methodology, or motivated by the need for a more reliable and
parameterless alternative to SA, Healy and Schruben (1991) proposed solving the simulation optimization
problem by a technique called “retrospective optimization.” The technique is simple in concept: generate
a sample-path realization (with a “large-enough” sample size) of the optimization problem at hand, and
use deterministic nonlinear programming techniques to solve the realized sample-path problem. In other
words, Healy and Schruben suggested using a (sampled) deterministic optimization problem as a surrogate
to the problem at hand, the solution to which provides an estimator to the true solution. The sample-path
approach proposed by Healy and Schruben had three crucial advantages: (i) it provided an opportunity to
exploit recent strides in deterministic nonlinear programming; (ii) the approach was simple in that it could
(in principle) be implemented by embedding and calling available deterministic solvers inside a simulation
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package; and (iii) it lent structural efficiencies because it naturally allowed the use of common random
numbers. Healy and Schruben gave several examples to demonstrate the power of the approach. Around
the same time, numerous other authors introduced identical or slightly varying techniques (Shapiro 2004),
seemingly in a quest for a Monte Carlo paradigm for solving the simulation optimization problem.

While all this interest in a sample-path paradigm for simulation optimization resulted in a much deeper
understanding of the asymptotic properties of the resulting solution estimators, it became evident over a
period of time that the “one shot sampling” implied by Healy and Schruben’s idea may frequently not
be viable. Specifically, suppose a user stipulates that a certain simulation optimization problem be solved
to identify a solution estimator with a stipulated quality, as measured by (say) its optimality gap. For
particular problem contexts, theoretical results (Shapiro 2004) suggested that the minimum sample size
(for generating the sample-path problem) needed for guaranteeing such a stipulated solution quality was
often so large as to be impractical. Implementation was thus cumbersome, causing it to fall out of favor
with many researchers, particularly in comparison with SA.

Then in 1994, the research landscape changed somewhat when Chen and Schmeiser (1994, 2001),
in the context of one-dimensional stochastic root-finding problems, presented retrospective approximation
(RA) as a certain refinement of Healy and Schruben’s proposal. Chen and Schmeiser’s key insight was that
instead generating and solving a single sample-path problem, why not solve a sequence of sample-path
problems generated with gradually increasing sample sizes? Each of the generated sample-path problems
could be solved with a deterministic solver to a specified accuracy, and its solution could form the initial
guess (“warm start”) to the subsequent problem. This strategy was attractive because it retained all the
advantages ((i), (ii), and (iii) above) of the originally proposed sample-path paradigm while circumventing
the sample sizing impasse faced by Healy and Schruben’s proposal. Efficiency was naturally built into the
paradigm, at least in principle: solving the early sample-path problems was computationally inexpensive
because small sample sizes were used, and solving the later sample-path problems was efficient because
the warm starts from the previously solved sample-path problems ensured that not many points had to be
visited before a solution was found.

This paper, intended as a tribute to RA, seeks to satisfy three objectives: (i) providing a deeper
understanding of RA; (ii) providing an overview of the key papers that have been written on RA in the
recent past; and (iii) reflect on current and future work surrounding RA. Towards (i), we present RA in
algorithm form, discuss methodological and implementation issues surrounding the components comprising
RA, and provide a listing of key theoretical results. Toward (ii) and (iii), we present a bibliography of
some of the important and recent papers that have been written on the topic. We also reflect on future
research directions within the RA context, and RA’s potential impact on problems lying outside simulation
optimization and stochastic root finding.

1.1 Key Notation

The following is a list of key notation and definitions adopted in the paper: (i) π∗ denotes the set of true
solutions to the stochastic root finding or simulation optimization problem; (ii) X∗k denotes a true solution
to the kth sample-path problem; (iii) Xk denotes the kth retrospective solution, i.e., the estimated solution to
the kth sample-path problem; (iv) Xn

p→X means that the sequence of random variables {Xn} converges to
the random variable X in probability; (v) Xn→ X wp1 means that the sequence of random variables {Xn}
converges to the random variable X with probability one; (vi) Xn

d→X means that the sequence of random
variables {Xn} converges to the random variable X in distribution; (vii) dist(x,Ω) = inf{‖x− y‖ : y ∈ Ω}
denotes distance between a point x ∈ IR and a set Ω; (viii) B(x,r) denotes a ball of radius r centered on x.

1.2 Organization

In Section 2, we formally present the stochastic root finding and simulation optimization problem statements.
This is followed by Section 3 where we discuss the RA paradigm, present the RA algorithm, answer frequently
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asked questions about RA, and list the most basic asymptotic properties. In Section 4, we provide an
overview of recent important works within the context of RA. Section 5 includes some concluding remarks.

2 CONTEXTUAL PROBLEM STATEMENTS

While conceivably much more general, the RA paradigm has been proposed and used only within the
contexts of the stochastic root finding problem (SRFP) and the simulation optimization problem (SOP).
These are the simulation-based analogues of the deterministic root finding and deterministic optimization
problems, respectively. Loosely speaking, an SRFP or an SOP results when the functions involved in
a deterministic root finding or optimization problem are available only through a consistent estimator,
e.g., a simulation model. Such a modeling framework is enormously attractive for “real-world” problem
contexts since all functions within the formulation can be specified implicitly, allowing the embedding of
any level of problem complexity. SRFPs and SOPs have found application in a wide variety of contexts
such as vehicular transportation networks, quality control, telecommunication systems, and health care.
See Andradóttir (2006), Spall (2003), Fu (2002), Barton and Meckesheimer (2006), Chen and Schmeiser
(2001), Ólafsson (2006) for entry points into this literature and overviews on the subject.

Formally, the SRFP is stated as follows.
Given: A simulation capable of generating, for any x ∈ D ⊂ IRq, an estimator Gm(x) of the function

g : D → IRq such that Gm(x)
d→g(x) as m→ ∞, for all x ∈D .

Find: A zero x∗ ∈D of g, i.e., find x∗ such that g(x∗) = 0, assuming that one such x∗ exists.
Similarly, the (global) version of SOP we will use in this paper is as follows.

Given: A simulation capable of generating, for any x ∈ D ⊂ IRq, an estimator Gm(x) of the function

g : D → IR such that Gm(x)
d→g(x) as m→ ∞, for all x ∈D .

Find: A global minimizer x∗ ∈D of g, i.e., find x∗ such that every x ∈D satisfies g(x)≥ g(x∗), assuming
that one such x∗ exists.

As stated, the SRFP and SOP make no assumptions about the nature of Gm(x) except that Gm(x)
d→g(x)

as m→ ∞. Also, the feasible set D is assumed to be known in the sense that the functions involved in the
specification of D are observed without error. Various slightly differing flavors of the SOP have appeared
in the literature. See for example Nemirovski and Shapiro (2004).

3 RA SOLUTION PARADIGM

For concreteness, we present the RA solution paradigm within the context of SRFPs and SOPs. In
understanding the RA solution paradigm, the notion of a sample-path problem is important. Loosely
speaking, a sample-path problem is an approximation to the problem under consideration, and results when
the (deterministic) functions involved within the SRFP or SOP are replaced by their consistent estimators.
So, for SRFPs, since the problem is to identify x = x∗ satisfying g(x) = 0, the corresponding sample-path
problem becomes:

Sm : find a zero X∗m ∈D of Gm, i.e., find X∗m such that Gm(X∗m) = 0.

Similarly, the sample-path problem for (global) SOPs is:

Sm : find X∗m ∈D such that Gm(X∗m)≤ G(x) for all x ∈D .

Given the definition above of a sample-path problem, the RA paradigm essentially involves generating
a sequence of sample-path problems with an increasing sequence of sample sizes, and solving them to
progressively stricter error tolerances. Since the sample sizes used for generating the sample-path problems
are chosen to be increasing, the resulting problems are better and better approximations (in a certain precise
sense) of the underlying problem of interest. When the paradigm works as intended, solving the sample-path
problem during the early iterations is efficient because of the small sample sizes and the large error tolerances
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in use. The later iterations are efficient because solutions from the preceding sample-path problems are
used as “warm starts” to the subsequent sample-path problems, and thus involve lesser exploration of the
search space, at least in principle.

3.1 RA Listing

We now formally list the RA paradigm. Note that the listing given below is generic to SRFPs and SOPs —
paradigms specific to SRFPs and SOPs are obtained by using the appropriate definition of the sample-path
problem.

RA Components:

(i) A procedure for solving the sample-path problem (Sm) to specified tolerance vector εk.
(ii) A rule to compute the sample size sequence {mk}.

(iii) A rule to compute the error-tolerance sequence {εk}.
(iv) A termination criterion, if any.
(v) A rule to compute the weights {wk j : j = 1,2, . . . ,k} during each iteration.

RA Logic:

0. Initialize the retrospective iteration number k = 1. Set m1,ε1.
1. Use RA component (i) to solve the sample-path problem (Smk ) to within error-tolerance εk. Obtain

a retrospective solution Xk.
3. Use component (v) to calculate the weighted solution Xk as some weighted sum of retrospective

solutions {Xi}k
i=1:

Xk =
k

∑
j=1

wk jX j.

4. Use component (iv) to decide whether to terminate. Return Xk as solution upon termination.
5. Use RA Components (ii) and (iii) to get mk+1,εk+1. Set k← k+1 and go to 1.

The RA framework becomes an implementable algorithm when specific choices are made for the five
algorithm components. We say more about choosing these algorithm parameters in the ensuing section and
in Section 4.

3.2 RA Discussion

In what follows, we discuss and clarify various aspects of the RA framework. These range from rigorously
defining specific notions (e.g., “error-tolerance”) used within the paradigm, to a broader discussion on why
and under what circumstances we expect the algorithms resulting from the paradigm to function efficiently.
Our discussion is in the form of answers to commonly raised questions/issues about particular aspects of
RA.

(a) What does it mean to solve a sample-path problem to within error-tolerance εk (Step 1)? To clarify
this, we first define the function q(·) as a real-valued function such that an arbitrary sequence of
“solutions” {yk},yk ∈ D satisfies q(yk)→ 0 if and only if dist(yk,π

∗)→ 0. The function q(·) is
chosen by the user, and has the interpretation of the quality of any given solution x∈D , with smaller
values implying a better quality. Also, suppose that the function qk(·) is a consistent estimator of q(·).
Solving the kth sample-path function to within tolerance εk then simply means obtaining a solution
Xk that satisfies qk(Xk) ≤ εk. As an example, when solving a stochastic root-finding problem, a
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reasonable choice of q(x) is q(x) := g(x), in which case qk(x) can be chosen as qk(x) := Gmk(x).
In local SO problems, a choice such as q(x) := ∇g(x), qk(x) := ∇̂Gm(x) is reasonable.

(b) Generating a sample-path problem. From the structure of the sample-path problem (Sm), it is clear
that generating a sample-path problem essentially amounts to generating the sample-path function
Gm(·). There are two predominant ways by which such generation happens. In a wide variety
of “real-world” simulation contexts, the generation of Gm(·) is implicit by which we mean that
obtaining the value of Gm(x) involves executing a simulation at the design point x and expending
m amount of computational effort. Executing the simulation at x thus provides only local function
information, e.g., the function value Gm(x) and possibly the gradient ∇Gm(x) of the function Gm(·)
at x. An example of such implicit construction is a queueing network simulation of a manufacturing
system, where Gm(x) represents the iid sample average of throughput over a fixed time horizon, and
for a particular routing policy x. By contrast, there are situations where construction of the function
Gm(·) is explicit. A typical example is when Gm(x) = m−1

∑
m
i=1 G(x,ξi) where ξi, i = 1,2, . . . ,m are

iid copies of a random variable ξ , and where the structural form of the function G(·, ·) is known. In
such a setting, we see that upon generating the random variables ξ1,ξ2, . . . ,ξm, the entire function
Gm(x) is explicitly constructed by “plugging” the obtained random variables ξ1,ξ2, . . . ,ξm into the
expression for G(x, ·) and then averaging.

(c) Why is the RA structure efficient? The efficiency of the RA paradigm relies crucially on two elements.
First, the RA structure is explicitly constructed so that solutions from the previous retrospective
iterations can be used as initial solutions when solving the subsequent sample-path problems. If
the paradigm works as intended, during the later iterations when the sample size m is large and the
sample-path function Gm(·) closely approximates the true function g(·), the warm starts will prove
to be extremely beneficial. The typical trajectory of RA algorithms will thus usually involve lots of
exploration when solving the sample-path problems during the early iterations, and progressively
less and less exploration during the later iterations when the sample size becomes larger. Second,
the fact that the sample size is fixed across design points x allows for the use of common random
random numbers within the RA framework, in the hope that any available structure within the
sample-path functions are not destroyed. Such structure is typically very useful when using a
generic numerical procedure to solve the generated sample-path problem.

(d) What if the sample-path problem does not have a solution? This is usually a nuisance that is
induced by the structure of the RA framework. This might be a problem particularly during the
early iterations when the sample size is small and the sample-path problem is poorly behaved.
Assuming there is no way to tell if a generated sample-path problem has a solution, some heuristic
such as having an upper bound on the total computational effort expended during an iteration is
a possible recourse. The only recourse when the sample-path problem is deemed unsolvable is to
move to the next iteration. Under mild conditions on the sample-path function Gm(·) and its limit
g(·), the sample-path problems will always have a solution for large enough sample size wp1.

(e) How are the sequence of sample sizes {mk} and the sequence of error-tolerances {εk} chosen?
The sequence of error tolerances {εk} and sample sizes {mk} explicitly control the total work
done and the quality of the obtained solution within the RA framework. Specifically, small εk
values demand more precision in solving the sample-path problems and correspondingly greater
computational effort during each iteration. Larger εk values, by contrast, reduce the total amount
of computational work during each iteration but correspondingly produce less precise sample-path
solutions. Likewise, larger sample sizes, while associated with increased total computational effort,
ensure better solutions owing to the fact that the corresponding sample-path functions approximate
the underlying limit function better. These trade-offs suggest the existence of a relationship between
the sequence of error tolerances {εk} and the sequence of sample sizes {mk} that is associated with
optimal algorithm evolution, however defined. It so happens that such an optimal relationship is
indeed characterizable, and leads to specific choices during implementation, when the generalized
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mean squared error is used as a measure of algorithm efficiency. We give a few more specifics on
such choice in Section 4 — a complete treatment is provided in (Pasupathy 2010).

(f) How are the weights {wk j} chosen? There is as yet no general theory on the choice of the weights
{wk j}. It can be shown that if the retrospective solutions Xk are unbiased, then the choice wki =m−1/2

i
is optimal in the sense that it minimizes the mean squared error of the resulting solution Xk. In
practice, however, the retrospective solutions {Xk} are often biased. In the SRFP context, it seems
reasonable that the weights should be inversely proportional to the estimated absolute magnitude of
the sample-path function at the retrospective solutions, i.e., wk j ∝ ‖Gm(X j)‖. Analogously, for the
local SOP context, choosing the weights to be proportional to the estimated gradient (or the actual
gradient, if available) of the sample-path function at the retrospective solutions seems reasonable,
wk j ∝ ‖∇Gm(X j)‖. The development of a rigorous theory that justifies such choices is still lacking.

3.3 Asymptotic Behavior

In this section, we provide a sense of the kind of convergence and rate guarantees that can be provided
for the sequence of solutions {Xk} obtained through the RA framework. For brevity, we state our results
only for the context of SRFPs. Corresponding results for the SOP context follow analogously and can
be found in Pasupathy (2010), Pasupathy and Kim (2011) and the references therein. An authoritative
and comprehensive survey of results applicable to sample-path algorithms (see Section 1) for SOPs can
be obtained through Shapiro (2004), Ruszczynski and Shapiro (2003). Extensions of these results to the
corresponding RA context is in most cases pretty straightforward and adds little further insight.

We first state a result that provides a guarantee on the convergence (to zero) of the sequence {g(Xk)},
i.e., the sequence of function values at the retrospective solutions returned by the RA paradigm. The proof
of the theorem is a straightforward application of the definition of uniform convergence.
Theorem 1 Assume

A1. The set of zeros π∗ ⊂D ⊂ IRq of the function g is nonempty;
A2. The sequence of sample-path functions {Gm(x)} is such that the set of zeros Π∗m of the function

Gm is nonempty as m→ ∞ a.s.;
A3. The functional sequence {Gm(x)}→ g(x) uniformly as m→ ∞ wp1.

Suppose the sequence of sample sizes {mk} and the sequence of error-tolerances {εk} in the RA paradigm are
chosen to satisfy {mk}→∞ and εk→ 0 as k→∞. Furthermore, assume that the sample-path problems (Smk)
are solved to obtain a retrospective solution Xk satisfying ‖Gmk(Xk)‖≤ εk. Then, ∆mk = supx∈Π∗mk

{‖g(x)‖}→
0 wp1. (Assume ∆mk = ∞ if Π∗mk

= /0.)
We note that the result above talks about the quality of the solutions returned by the RA paradigm only

in the function space. In other words, it says nothing about what happens to the distance of the retrospective
solution Xk from the set of true solutions π∗ as k→ ∞. To say something about such convergence, i.e.,
convergence in the design space, additional conditions need to be imposed. The following theorem shows
convergence in the design space after assuming the continuity of the function g(·) and the compactness of
the space D . A proof follows in a somewhat straightforward manner from standard results in sample-path
optimization.
Theorem 2 Assume

A1. The set of zeros π∗ ⊂D ⊂ IRq of the function g is nonempty;
A2. The sequence of sample-path functions {Gm(x)} is such that the set of zeros Π∗m of the function

Gm is nonempty as m→ ∞ wp1;
A3. The functional sequence {Gm(x)}→ g(x) uniformly as m→ ∞ wp1;
A4. The function g is continuous on D ; and
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A5. the set D is compact.

Suppose the sequence of sample sizes {mk} and the sequence of error-tolerances {εk} in the RA paradigm
are chosen to satisfy {mk}→∞ and εk→ 0 as k→∞. Furthermore, assume that the sample-path problems
(Smk) are solved to obtain a retrospective solution Xk satisfying ‖Gmk(Xk)‖ ≤ εk. Then, {dist(Xk,π

∗)}→ 0
wp1 as k→ ∞.

To characterize the rate of convergence of RA’s iterates, we now present a central limit theorem on
the sequence of retrospective solutions {Xk}. This result appears with proof in Pasupathy (2010). A more
general version of the same result is stated in Pasupathy and Kim (2011).
Theorem 3 Let the conditions of A.3 through A.5 of Theorem 2 hold. Furthermore, assume:

A.6 X∗m is the unique zero of the function Gm(x) as m→ ∞ wp1, and x∗ is the unique zero of g(x);
A.7 The functions Gm(x) and g(x) have non-singular derivatives ∇Gm(x),∇g(x) in some neighborhood

around x∗;
A.8 The sequence {∇Gm(x)} converges uniformly (elementwise) to ∇g(x) in some neighborhood around

x∗ wp1; and
A.9 A central limit theorem holds for Gm(x), i.e.,

√
m(Gm(x)−g(x)) d→N(0,Σ), where N(0,Σ) is the

Gaussian random variable with mean zero and covariance Σ.

Suppose the sequence of sample sizes {mk} and the sequence of error-tolerances {εk} in the RA paradigm
are chosen to satisfy {mk}→∞ and εk→ 0 as k→∞. Furthermore, assume that the sample-path problems
(Smk) are solved to obtain a retrospective solution Xk satisfying ‖Gmk(Xk)‖ ≤ εk.Then,

√
mk (X∗k − x∗) d→N

(
0,∇g(x∗)−1

Σ(∇g(x∗)−1)T ) .
4 A BIBLIOGRAPHY

In this section, we provide a brief account of the important work in the last fifteen years that relates to the
RA paradigm in direct and tangential ways. The objective of this exercise is providing a sense of versatility
of the RA idea, while also providing a glimpse of the issues that remain unresolved. This listing is by no
means comprehensive — please see references listed in the papers cited to get an exhaustive account.

Chen and Schmeiser (2001), stemming from Huifen Chen’s doctoral dissertation (Chen 1994), seems
to be the amongst the earliest papers to discuss the RA paradigm in complete detail. The RA paradigm
was presented in Chen and Schmeiser (2001) as a solution to the SRFP in one dimension. After presenting
the RA paradigm, the paper constructs an RA algorithm called Bounding RA by making specific choices
for the components listed in Section 3.1. The key idea in Bounding RA is the special structure of the
numerical procedure that is used to solve the sample-path problems (Smk) — the procedure exploits the
assumed structure of the underlying function g(·) to rapidly identify a retrospective solution Xk that satisfies
dist(Xk,Πmk)≤ εk during each iteration.

Jihong Jin (1998) designs RA algorithms, again by making specific choices for the components listed in
Section 3.1, for solving SOPs. The important idea in this work is the adaptation and use of the Nelder-Mead
algorithm for the numerical procedure within the RA paradigm.

Homem-de-Mello (2003) provides sufficient conditions for the schedule of sample sizes — essentially
a lower bound on the rate of increase — to guarantee that the iterates obtained from an RA paradigm is
consistent. (The paradigm treated in this paper is called a variable sample size method.)

Polak and Royset (2008) use a sequence of sample-path problems, akin to the RA paradigm, to solve
a class of local SOPs. The main contribution of this work is the construction and estimation of a model
of the computational effort involved in solving each of the sample-path problems. The model is then used
within an optimization framework to determine the schedule of sample sizes that should be used within
the proposed framework. Royset (2011) is a more recent paper along the same lines.
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Pasupathy and Schmeiser (2009) generalize Bounding RA (Chen and Schmeiser 2001) to high dimen-
sions. Like Chen and Schmeiser (2001), the key idea in this paper is the construction of a specific numerical
procedure (component (i) in Section 3.1) for solving the sample-path problem (Smk), by and large through
the introduction of an appropriate notion of bounding in higher dimensions.

Pasupathy (2010) deals with the question of how to trade-off the sequences {mk} and {εk} within
RA paradigms to achieve optimal algorithm evolution, defined in a certain rigorous sense. The central
message in the paper is twofold. First, the rate at which sample sizes should be increased within RA
paradigms depends explicitly on the quality of the numerical procedure in use for solving the generated
sample-path problems, with higher increases permitted for faster numerical procedures. Second, an explicit
relationship should hold between the error-tolerance sequence {εk} and the sample-size sequence {mk}
to ensure maximal algorithmic efficiency. Specific recommendations for the sample size and the error
tolerance sequences are provided as a function of the convergence rate of the numerical procedure in use.

Wang and Schmeiser (2008) construct specific RA algorithms for local SOPs (i.e., SOPs where a
local minimum is desired) when the domain D is integer-ordered. The important idea in this work is the
construction, and subsequent exploitation through the use of fictitious gradients, of a continuous extension
of the sample-path functions Gmk(·). The resulting iterates converge to a local minimum exponentially fast,
and exhibit very reliable finite-time performance.

Ghosh and Pasupathy (2011) use a linearly converging interior-point method within an RA paradigm to
solve general two-stage stochastic linear programs. In addition to proving consistency, Ghosh and Pasupathy
provide a complexity analysis leading to guidance on the relative extent to which the sample-path problems
should be solved vis-à-vis the prevailing sample-size.

Bayraksan and Morton (2009) develop methods for use as a termination criterion within paradigms
such as RA when solving general SOPs. The methods construct finite-time termination rules, which when
applied within a sequential sample-path setting, guarantee stopping with a solution having an optimality
gap not exceeding a specified threshold, and with a specified confidence.

5 CONCLUDING REMARKS

RA is an attractive way to implement sample-path methods for simulation optimization and stochastic
root finding problems. The RA paradigm is simple to implement, exploits the power of deterministic
optimization, and naturally lends efficiency through its use of common random numbers and warm starts.
It fully circumvents implementation issues faced by traditional sample-path methods through the use
of a sequence of approximate deterministic problems generated with gradually increasing sample sizes.
Furthermore, recent work seems to indicate that RA’s iterates, like SA and unlike traditional sample-path
methods, achieve the canonical asymptotic convergence rate O

(
1/
√

simulation effort
)

.
RA has already had substantial impact on research directions within the context of root finding and

optimization. Indications are that the coming years will increase such influence, as crucial parameter-choice
related questions get resolved and commercial simulation languages become more sophisticated in their use
of simulation optimization technology. Furthermore, RA will find use in areas outside stochastic root finding
and simulation optimization. This is evident upon observing that RA’s main idea is progressively generating
(through simulation) better and better deterministic approximations of an underlying problem, and solving
each of the generated problems to prescribed accuracy using solutions from previously generated problems
as warm starts. This idea of progressive solution is not specific to stochastic root finding or simulation
optimization, and seems like a viable strategy that should find use (albeit in various incarnations) across a
broad swath of problem types.
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Ólafsson, S. 2006. “Metaheuristics”. In Simulation, edited by S. G. Henderson and B. L. Nelson, Handbooks

in Operations Research and Management Science, 633–654. Elsevier.
Pasupathy, R. 2010. “On choosing parameters in retrospective-approximation algorithms for stochastic root

finding and simulation optimization”. Operations Research 58:889–901.
Pasupathy, R., and S. Kim. 2011. “The stochastic root-finding problem: overview, solutions, and open

questions”. ACM TOMACS 21 (3).
Pasupathy, R., and B. W. Schmeiser. 2009. “Retrospective-approximation algorithms for multidimensional

stochastic root-finding problems”. ACM TOMACS 19 (2): 5:1–5:36.
Polak, E., and J. O. Royset. 2008. “Efficient sample sizes in stochastic nonlinear programming”. Journal

of Computational and Applied Mathematics 217:301–310.
Polyak, B. T., and A. B. Juditsky. 1992. “Acceleration of Stochastic Approximation by Averaging”. SIAM

Journal on Control and Optimization 30 (4): 838–855.
Robbins, H., and S. Monro. 1951. “A stochastic approximation method”. Annals of Mathematical Statis-

tics 22:400–407.
Royset, J. 2011. “On Sample Size Control in Sample Average Approximations for Solving Smooth Stochastic

Programs”. Journal of Computational and Applied Mathematics. Under Review.
Ruszczynski, A., and A. Shapiro. (Eds.) 2003. Stochastic Programming. Handbook in Operations Research

and Management Science. New York, NY.: Elsevier.
Shapiro, A. 2004. “Monte Carlo sampling methods”. In Stochastic Programming, edited by A. Ruszczynski

and Shapiro, Handbooks in Operations Research and Management Science, 353–426. Elsevier.
Spall, J. C. 1998. “Implementation of the simultaneous perturbation algorithm for stochastic optimization”.

IEEE Transactions on Aerospace and Electronic Systems 34:817–823.
Spall, J. C. 2000. “Adaptive stochastic approximation by the simultaneous perturbation method”. IEEE

Transactions on Automatic Control 45:1839–1853.
Spall, J. C. 2003. Introduction to Stochastic Search and Optimization. Hoboken, NJ.: John Wiley & Sons,

Inc.
Wang, H., and B. Schmeiser. 2008, December. “Discrete Stochastic Optimization Using Linear Interpolation”.

In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Mason, R. R. Hill, L. Moench,
O. Rose, T. Jefferson, and J. W. Fowler, 502–508. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Wasan, M. T. 1969. Stochastic Approximation. Cambridge, UK: Cambridge University Press.

AUTHOR BIOGRAPHY

RAGHU PASUPATHY is an associate professor in the Industrial and Systems Engineering Department at
Virginia Tech. His research interests lie broadly in Monte Carlo methods with a specific focus on simulation
optimization and stochastic root finding. He is a member of INFORMS, IIE, and ASA, and serves as
an Associate Editor for ACM TOMACS and INFORMS Journal on Computing. His e-mail address is
pasupath@vt.edu and his web page is https://filebox.vt.edu/users/pasupath/pasupath.htm.

421


