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ABSTRACT

The method of non-overlapping batch means is the standard for constructing a confidence interval for the
mean of a steady-state simulation output. In “Batch Size Effects in the Analysis of Simulation Output,”
published in Operations Research in 1982, Schmeiser recast the problem of selecting a batch size by
examining the marginal benefit of attaining the largest number of batches (smallest batch size) that still
yields a valid confidence interval. His formulation of the problem, and the conclusions he reached, influenced
nearly all later work on batching and batching algorithms for confidence-interval estimation.

1 INTRODUCTION

Assigning a measure of error to an estimate of the mean of a steady-state simulation is a research problem
with a long history, and for which there have been many lasting contributions. When the measure of error
is a confidence interval, the method of batch means is both widely known and routinely applied; it is even
incorporated as an automated procedure in some commercial simulation products.

In brief, the method of batch means takes a single run of n output observations, partitions it into k
batches of size m = n/k consecutive observations, and then treats the sample means of the batches as
independent and identically normally distributed. Therefore, a standard t-distribution confidence interval
can be derived. If n is large enough that it is reasonable to apply the method of batch means, then the next
practical question is, into how many batches k should the output be divided?

Schmeiser (1982) attacked this question in an elegant and innovative way, providing insight that has
influenced virtually all later work on what is now known as the method of non-overlapping batch means.
The summary insight, as stated in the paper itself, is this:

The results of Sections 1 and 2 show that the practitioner should seldom exert much effort
to increase the number of batches beyond k = 30, regardless of the number of observations
n. (Schmeiser 1982, p. 564)

In this paper we describe the basis for this insight as well as some of its impact on work that followed.
However, we first review the “batch size” problem as it was understood prior to Schmeiser (1982). Throughout
the paper we use the phrase “method of batch means” as short for obtaining a confidence interval (CI) by
employing sample means from non-overlapping batches of observations from a single simulation run.

2 BACKGROUND

We adopt the notation used in Schmeiser (1982). Let X1,X2, . . . ,Xn be the output of a single replication of
a steady-state simulation. There are many, sometimes equivalent, definitions, of “steady-state simulation,”
but a common one is that the output process Xi⇒ X as i→ ∞, where⇒ denotes weak convergence. Here
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we are interested in estimating µ = E{X}. The estimator we will employ is the sample mean X̄ = ∑
n
i=1 Xi/n,

and the problem for which the method of batch means is a potential solution is obtaining a CI for µ .
From the original output process, the method forms k batch means, where the ith batch mean is

X̄i = ∑
im
j=(i−1)m+1 X j/m, and m = n/k is the batch size. The hope is that if k is small enough (equivalently

m large enough), then the batch means X̄1, X̄2, . . . , X̄k will be approximately uncorrelated and normally
distributed. When this is a valid approximation it justifies the (1−α)100% confidence interval X̄±Hα,k,
where Hα,k = tα/2,k−1Sk/

√
k is the half width of the CI, tα/2,k−1 is the 1−α/2 quantile of the t distribution

with k−1 degrees of freedom, and

S2
k =

1
k−1

(
k

∑
i=1

X̄2
i − kX̄2

)

is the sample variance of the batch means.
Later research has provided a rigorous asymptotic justification for this CI; Schmeiser (1982, p. 557)

assumed the then prevalent heuristic justification that (i) initial transient effects on the output process had
been removed, yielding a covariance stationary process with mean µ , variance σ2 and lag h autocorrelations
ρh,h = 1,2, . . .; and (ii) that there exists a number of batches k∗ ≥ 2 such that for all k≤ k∗ the dependence
and non-normality of the batch means was negligible. Under these conditions the method of batch means
made sense, provided k ≤ k∗.

In light of assumptions (i)–(ii), and the fact that the degrees of freedom associated with Hα,k depend
on the number of batch means k, it seemed obvious that selecting k as large as possible, and ideally k = k∗,
was a sensible objective. A well-known and widely used batching algorithm by Fishman (1978) embodied
this approach:

Fishman’s Batching Algorithm

1. m← 1
2. k← bn/mc
3. If k < 8 then return indicating failure
4. Compute the batch means X̄1, X̄2, . . . , X̄k
5. Test the hypothesis H0 : Corr(X̄i, X̄i+1) = 0
6. If the test fails, then m← 2m and go to 2
7. Otherwise, k′← k
8. Compute S2

k′
9. Return the CI: X̄±Hα,k′

Notice that the algorithm starts with the largest possible number of batches (k = n) and then halves the
number of batches until either the hypothesis test is passed, or the number of batches becomes too small
to justify the assumptions behind the hypothesis test. Halving the number of batches was computationally
convenient because the new batch means could be formed by averaging pairs of the previous ones. Schriber
and Andrews (1979) modified this algorithm so that it considered every possible batch size yielding k≥ 8.
The important observation is that this and other batching algorithms at that time attempted to find a large,
or even the largest, value of k that also yielded a valid confidence interval, where validity meant correct
coverage: Pr{|X̄−µ| ≤ Hα,k} ≈ 1−α .

Schmeiser (1982) noted that maximizing the number of batches k is not without risk. The magic number
of batches k∗ is unknown, and in fact it is hard to define a “negligible” departure from independence and
normality. The premise behind batch means implies that the assumptions of nearly independent and
approximately normally distributed batch means—assumptions that are critical to the coverage of the
confidence interval—are most likely to be approximately correct when k is small. In fact, if coverage close
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to 1−α were the only criterion, then k = 2 would usually be optimal. Of course, the degrees of freedom
penalty for k = 2 is substantial. This lead Schmeiser to formulate the batch-size question in a new way:
How important is it to get close to k∗?

3 ANALYSIS

Although maximizing the degrees of freedom seemed like a sensible objective, Schmeiser (1982) observed
that the effect of increasing the degrees of freedom by rebatching a fixed quantity of data is less dramatic
than the effect of obtaining additional data. This matters, because in reality there will be a trade off between
coverage, for which k = 2 is best, and degrees of freedom, for which k = n dominates. The research
challenge was finding a way to examine this effect that provided general guidance and was not dependent
on the run length n or the myriad of correlation structures that an output process might have.

The central insight that made a meaningful and general analysis possible was this: The biggest penalty
for using k < k∗ (smaller than necessary) occurs when the batch means X̄1, X̄2, . . . , X̄k are precisely i.i.d.
normal for all k≤ k∗. This is because the number of batches k could be increased right up to k∗ without any
degradation in coverage. By taking coverage off the table, the full effect of degrees of freedom could be
assessed. Further, there was no need to consider different simulation output processes, nor was it necessary
to specify n, as long as the analysis was limited to k ≤ k∗ (see further discussion below).

Because Pr{|X̄ −µ| ≤ Hα,k}= 1−α for all k ≤ k∗ under this assumption, Schmeiser (1982) focused
on other measures of CI performance:

Width: E{Hα,k} is perhaps the most important performance measure after coverage, since a wide CI
implies that µ is not well estimated.

Stability: Both
√

Var{Hα,k} and CV{Hα,k} quantify the likelihood that a practitioner actually achieves
a CI with width close to E{Hα,k}. This is important because decisions are based on Hα,k not on
E{Hα,k}.

Specificity: βα,k(µ1) = Pr{|X̄−µ1| ≤Hα,k} for µ1 6= µ is the probability that the CI covers values that
are not the desired value µ . This is important because one interpretation of a CI is that the true
value of µ could be any value in [X̄−Hα,k, X̄ +Hα,k].

Schmeiser also pointed out that under assumptions (i)–(ii) we have

E{S2
k/k}= Var{X̄}= cσ

2/n

for any k ≤ k∗, where c = 1+ 2∑
n
h=1(1− h/n)ρh. Therefore, quantities like E{Hα,k} and

√
Var{Hα,k}

could be expressed in units of
√

cσ2/n, freeing them from dependence on the correlation structure ρh or
n. Similarly, deviations |µ1−µ| could be given in the same units when evaluating βα,k(µ1).

To illustrate the analysis, Table 1 shows a portion of Table I from Schmeiser (1982). Consider first
the expected half width of a 95% CI, E{H0.05,k}, and suppose that the number of batches we intend to use
is k = 10. Then if k∗ = 61 we would only decrease the expected half width by 9% in moving from k = 10
to k = 61 (remembering that the total sample size n is fixed). Even moving from k = 10 to the (conceptual
value of) k∗ = ∞ only reduces the expected half width 11%.

The standard deviation and coefficient of variation of the half width, on the other hand, are more
sensitive at small values of k. Schmeiser concludes from these results that there is little benefit (and of
course, some risk) in going beyond k = 30; the coverage results βα,k(µ1) reinforce these conclusions.
These results have immediate implications for batching algorithms, as they remove the pressure to try to
maximize the number of batches.

Schmeiser’s analysis has occasionally been misinterpreted as implying that one should always use 30
batches. However, if the run length n is too short it may be that there is no number of batches, including
k = 2, that provides a valid confidence interval. And even when m = n/30 is a good batch size, these
results say nothing about whether n is large enough to provide acceptable precision (e.g., H0.05,k ≤ ε) to
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Table 1: For fixed sample size n, the effect of number of batches k on properties of the half width. The
E{H0.05,k} and

√
Var{H0.05,k} are in units of

√
cσ2/n.

k E{H0.05,k}
√

Var{H0.05,k} CV{H0.05,k}
2 10.1 7.66 0.76
3 3.81 1.99 0.52
4 2.93 1.24 0.42
5 2.61 0.95 0.36
6 2.45 0.79 0.32

10 2.20 0.52 0.24
30 2.03 0.27 0.13
61 1.99 0.18 0.09

121 1.98 0.13 0.06
∞ 1.96 0.00 0.00

support the decision at hand. The power of Schmeiser (1982) is that it greatly reduces the range within
which one should search for an acceptable number of batches, and in showing that k need not be too large,
diminishes the risk of forming an invalid CI.

4 IMPACT

As of May 2011, Google Scholar listed 273 papers that cited Schmeiser (1982). These papers are not just
about using batch means for confidence-interval estimation, they also span other topics that interact with
batch means such a ranking & selection and variance reduction. When statistical inference will be based
on using batch means, then a “batch size effects” analysis like Schmeiser (1982) in often included. A small
sample of topics and representative papers follows.

While Schmeiser (1982) addressed estimating a univariate steady-state mean, a number of papers
extend batching to multivariate output processes. These include Charnes (1991), Charnes and Kelton
(1993), Charnes (1995) and Yang and Nelson (1992).

Ranking & selection addresses another form of multivariate estimation problem: selecting the best of
several simulated systems. Multiple-comparison procedures provide simultaneous comparisons of a number
of alternative systems. In a steady-state simulation context batch means may substitute for independent
replications in these procedures. Papers citing Schmeiser (1982) in this vein include Batur (2006), Chen
et al. (1997), Chen et al. (1998), Chen et al. (2010), Damerdji and Nakayama (1999), Goldsman and
Nelson (1990), Goldsman et al. (1991), Goldsman et al. (2005), Kim and Nelson (2007), Matejcik and
Nelson (1995), Nakayama (1997), Nakayama (1994) and Sullivan and Wilson (1989).

The interaction of variance-reduction techniques, particularly the method of control variates, with
batching has received some attention; see for instance Añonuevo and Nelson (1986), Añonuevo and Nelson
(1988), Clark (1990), Nelson (1987a), Nelson (1987b), Nelson (1990a), Sharon and Nelson (1988) and
Yang and Nelson (1992).

The impact of batching on initial-condition bias has been discussed in Gallagher (1992), Kelton (1989),
Nelson (1990b) and Philip and Peter (1991).

Schmeiser (1982) is cited by a number of papers on Markov chain Monte Carlo, including Chen and
Schmeiser (1993), Chen et al. (2000), Geyer (1992), Jones and Hobert (2001), Lewis and Raftery (1997),
Mignani and Rosa (2001) and Sung et al. (2007).

The method of batch means can be used to form a confidence interval, or simply as an estimator of
the variance of the sample mean. Many other methods have been proposed, notably methods based on
standardized time series. These methods are often combined with batching to increase the degrees of
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freedom. Papers that focus on other variance estimators, but exploit concepts in Schmeiser (1982) include
Aktaran-Kalayci and Goldsman (2005), Aktaran-Kalaycı et al. (2007), Alexopoulos et al. (2004),
Alexopoulos et al. (2007), Alexopoulos et al. (2007), Alexopoulos et al. (2010), Batur et al. (2009),
Bischak et al. (1993), Foley and Goldsman (1999), Fox et al. (1991), Glynn and Whitt (1991), Goldsman
and Schruben (1984), Goldsman et al. (1990), Goldsman and Schruben (1990), Goldsman et al. (2007),
Meketon and Schmeiser (1984), Muñoz and Glynn (2001), Pedrosa and Schmeiser (1993), Schmeiser
et al. (1990), Schruben (1983), Sherman (1996), Song and Schmeiser (1988), Song and Schmeiser
(1993), Song and Schmeiser (1995), Song et al. (1997) and Song and Chih (2008).

5 CONCLUSIONS

Schmeiser (1982) demonstrated that asking the right question can be as powerful as a deep mathematical
analysis, leading to very general and useful insights, in this case with respect to the method of batch means.
His formulation of the “batch size effects” question has been repeatedly and effectively used in many
contexts.
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Añonuevo, R., and B. Nelson. 1986. “Automated estimation and variance reduction for steady-state simu-
lations”. In Proceedings of the 1986 Winter Simulation Conference, edited by J. Wilson, J. Henrikson,
and S. Robert, 871–875. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
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