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ABSTRACT 

The paper deals with container loading and contends that combining Container Loading Algorithms 
(CLAs) with Agent-Based Simulation (ABS) is a feasible and useful way of analyzing trade-offs between 
loading efficiency and various practical considerations in relation to the cargo - such as its stability, fra-
gility, or possible cross-contamination between items over time. The latter perspective is used to demon-
strate the merits of the approach. More specifically, the paper considers a situation where the items in-
volved have differing degrees of perishability and badly deteriorated items can affect others (e.g., through 
mold spreading). The output of the CLAs is used to create agents that simulate the spread of mold through 
proximity-based interactions. The results show the trade-offs between container utilization and the propa-
gation of mold and demonstrate that there is not necessarily any correlation between these two factors. 
The key contribution of the research is the multi-methodology agent-based approach to container loading. 

1 INTRODUCTION 

Operations Research (OR) is the application of analytical methods that enable stakeholders to take in-
formed decisions. Commonly used OR techniques include data envelopment analysis, cutting/packing op-
timization, vehicle routing, integer programming, statistical analysis, meta-heuristics, simulation and soft 
OR (Beasley 1996).  In this paper we bring together two such techniques - Cutting and Packing Optimiza-
tion (CPO) and Simulation - and study this in the context of container loading. More specifically, we fo-
cus on a particular category of CPO algorithms, namely, Container Loading Algorithms (CLAs), and a 
specific simulation technique, namely, Agent-Based Simulation (ABS), and propose a multi-methodology 
agent-based approach for container loading. 

The broad heading of Container Loading covers a wide spectrum of scenarios which arise in practice. 
The cargo to be loaded may consist, for example, of identical items (completely homogenous cargo: Han, 
Knott, and Egbelu 1989; George 1992), a large number of different types of items relative to the total 
number of items (strongly heterogeneous cargo: Gehring, Menschner, and Meyer 1990), or relatively few 
different types of items (weakly heterogeneous cargo: Morabito and Arenales 1994; Ngoi, Tay, and Chua 
1994; Wang, Li and Levy 2008). The problem may involve loading a consignment of goods into either a 
single or multiple containers; the items might all be rectangular in shape, cylindrical, or completely irreg-
ular; there may be different drop-off points for certain parts of the cargo etc. (Bischoff and Ratliff 1995). 
Common to all these types of situation is the overall objective of determining loading arrangements which 
are cost-effective according to some measure that is appropriate in the circumstances. In a basic scenario 
this might mean generating loading plans that allow for the maximum utilization of the container space. 
The term CLA is used here to describe any approach which is designed to produce container loading 
plans. Numerous different methods have been put forward in the literature (Pisinger 2002).  
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In this paper we extend existing research in container loading by proposing a multi-methodology ap-

proach that combines CLAs and ABS. The approach enables us to analyze the trade-offs between loading 
efficiency and various cargo-related considerations. While loading efficiency is determined by the con-
tainer loading plans generated by the CLAs, we propose the use of ABS to simulate the latter. For exam-
ple, the stability of cargo may be determined by simulating the proximity-based interactions continually 
taking place among the individual items of cargo as they are being transported. Another example is the 
simulation of possible cross-contamination between different items of cargo over time. We use these two 
example scenarios to conduct a feasibility study of our multi-methodology approach to container loading.  

The remainder of the paper is structured as follows. Section 2 presents a brief overview of CLAs. 
This is followed by a description of ABS simulation and a review of the associated literature (Section 3). 
Our multi-methodology agent-based approach for container loading is discussed in Section 4. Section 5 is 
devoted to the agent-based simulation model that we developed as part of our feasibility study; Section 6 
discusses the experiments and presents the results. Section 7 is the concluding section of this paper. 

2 OVERVIEW OF CONTAINER LOADING ALGORITHMS 

The efficient loading of cargo into freight containers - and, more generally, the proficient packing of 
smaller items into larger objects - has been a subject of intensive research for at least thirty years. George 
and Robinson (1980) were among the first to propose an algorithm for constructing a container loading 
plan. Their approach was heuristic in nature and based on the idea of building a series of 'walls' of items 
across the width and height of the container. Since then numerous different approaches have been devel-
oped for both the knapsack version of the problem - where the space available is fixed and loading all the 
cargo may not be possible - and, to a lesser extent, its bin-packing form - where all of the cargo involved 
must be stowed and a cost-effective way of using a set of containers is sought. The work has made use of 
a wide variety of techniques, ranging from single-pass heuristics to genetic algorithms, tabu search, linear 
programming, random search and combinations of tree-search heuristics and dynamic programming. 
Parreño et al. (2008), Wang, Li and Levy (2008), Huang and He (2009) as well as Fanslau and Bortfeldt 
(2010) and Egeblad et al. (2010) present useful, recent overviews of the research. A more comprehensive 
literature review is provided by Pisinger (2002), and Wäscher, Haußner, and Schumann (2007) discuss 
the position of this work in relation to the wider literature on CPO. 
 Much of the more recent work has moved away from pure knapsack or bin-packing formulations of 
the container loading problem and has paid increasing attention to various additional factors which may 
affect the task in practice. Orientation constraints on individual types of cargo (Fanslau and Bortfeldt 
2010) and container weight capacity limits (Gehring and Bortfeldt 2002) represent simple examples of 
such factors. The literature has also used problem definitions which include the weight distribution within 
a container as a critical factor (Gehring and Bortfeldt 1997, Davies and Bischoff 1999, Eley 2002) and 
aspects of cargo stability have been explicitly considered in several approaches as attributes of solution 
quality (Bortfeldt and Gehring 1998, 2001; Terno et al. 2000; Mack, Bortfeldt, and Gehring 2004; Moura 
and Oliveira 2005). Moreover, issues related to cargo fragility, in terms of constraints on the load bearing 
ability of items, have been taken into account by some authors (Ratcliff and Bischoff 1998, Bischoff 
2006). Despite the considerable progress that has been made towards meeting the needs of practitioners, 
however, much work remains to be done before it can be claimed that the approaches suggested in the lit-
erature address adequately and fully the range of different problem scenarios which arise in practice. 
Combining load plan construction heuristics with agent-based simulation approaches is put forward here 
as a possible contribution towards achieving this aim. 

3 AGENT-BASED SIMULATION 

ABS is a simulation technique that models the overall behavior of a system through use of autonomous 
system components (also referred to as agents) that communicate with each other by using messages. The 
behavior incorporated into an agent determines its role in the environment, its interaction with other 
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agents, its response to messages from other agents, and indeed whether its own behavior is adaptable. The 
agents usually have some properties and, unlike agent behavior – which may or may not be programmed 
to adapt itself – the properties usually change during the course of the simulation. These agent properties 
usually change as a result of certain trigger points in the simulation, for example, time triggered changes,  
changes triggered by an agent’s internal state change, changes triggered due to messages being received 
from other agents, etc. (also applicable to agent behaviors – if they are programmed to change). Since 
there are usually a number of self-governing agents in an environment, each with the aforementioned 
characteristics, the overall system state is determined by their dynamic interactions through time. In ABS, 
the simulation time increments in discrete time steps. 

The characteristics of agents and ABS are quite widely discussed in the literature. Macal and North 
(2006), for instance, consider agents to have six specific characteristics, namely, attributes, behavioral 
rules, memory, resources, decision making sophistication and rules to modify behavioral rules. The agent 
behavior, which is defined by simple rules, may be influenced by their interaction with other agents; and 
this “agent-by-agent and interaction-by-interaction” approach to modeling usually gives rise to emergent 
“patterns, structures and behaviors” that are not explicitly modeled in the system (Macal and North 2010).  

ABS has been applied in several areas. In healthcare, ABS has been used for modeling the spread of 
pathogens that are transmitted by direct contact (Hotchkiss et al. 2005); Stainsby, Taboada, and Luque 
(2009) have used agents to model hospital emergency departments.  In financial trading, ABS has been 
used to model new electricity trading arrangements in the UK (Bunn and  Oliveira 2001). Agent-Based 
Social Simulation (ABSS) is the application of ABS in the social sciences context, for example, it has 
been used for modeling social interactions and influence (Marsella, Pynadath, and Read 2004). Luo et al. 
(2008) and Moulin et al. (2003) used ABS for crowd management. Further applications of this technique 
have been reported in supply chain management (Kaihara 2003), in the military (Cioppa, Lucas and 
Sanchez 2004), for emergency evacuations (Pan et al. 2007), and in cell biology (Pogson et al. 2006), 
among others.  

ABS has also been applied to container management, as opposed to container loading. Henesey 
(2006) investigated the use of agent-based technologies to improve the performance of container termi-
nals. The use of an ABS architecture to solve the automatic container allocation problem in a port con-
tainer terminal is described by Rebollo et al. (2000). The use of agents to simulate and  optimize cargo 
handling storage space in a maritime port is reported by Kefi et al. (2009). ABS has been used to model 
the management of stakeholder relations in container terminals through use of agents that simulate differ-
ent stakeholder behavior (Henesey, Notteboom, and Davidsson 2003). Henesey, Davidsson and Persson  
(2006) report on the use of the SimPort ABS tool to evaluate eight transshipment policies. Bin, Wen-
Feng, and Yu (2009) have used ABS, utilizing 14 kinds of agents, to model a container terminal logistics 
system. The project Container World has modeled both business and operational aspects of the container 
business in the UK though a multi-agent methodology (Sinha-Ray et al. 2003).  

Whilst studies have been conducted in the general area of port and container terminal management, 
there is, to the best of the authors’ knowledge, no previous work using ABS in the specific area of con-
tainer loading. Thus, the authors are arguably among the first to report on the application of ABS to simu-
late proximity-based interactions among different items of cargo, such as those resulting from the spatio-
temporal changes that occur during the transportation of freight containers. 

4 COMBINING CLA AND ABS: A MULTI-METHODOLOGY APPROACH  

The purpose of the combined CLA and ABS approach to container loading is to find the trade-off be-
tween container loading efficiency and various important practical considerations in relation to the cargo - 
such as, its stability, fragility, volatility of cargo, and cross-contamination. As highlighted earlier, there is 
a need for more research in relation to addressing the different “practical” issues which arise in connec-
tion with container loading plans. In this paper, only the knapsack version of the problem is considered, 
wherein the space available is fixed and loading all the cargo may not be possible. The cargo may consist 
of items of various degrees of heterogeneity. In the terminology of Wäscher, Haußner, and Schumann 
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(2007), therefore, the problems considered are of type Single Large Object Placement Problem (SLOPP) 
and Single Knapsack Problem (SKP). 
 We argue that the individual items of cargo can be modeled as agents because they display three im-
portant characteristics consistent with most agents – (1) they have properties, (2) they exhibit autonomous 
behavior (since each item of cargo is bestowed with the independent Newtonian motion properties), and 
(3) they interact with other agents and this leads to more complex behavior (interaction is usually brought 
about by the spatiotemporal changes during transportation). In order to better describe the application 
context and the structure of our multi-methodology approach to container loading, we consider two is-
sues: (a) the stability of the load as it is being transported, and  (b) the possible cross-contamination be-
tween different types of items in the cargo over time. With regard to the second issue, we consider a situa-
tion where the items to be loaded have differing degrees of perishability and where badly deteriorated 
items can affect those in their immediate vicinity (e.g., through the spread of mold). Our argument for us-
ing ABS to model the two aspects (henceforth referred as cargo stability and cargo cross-contamination 
scenario, respectively) is summarized in Table 1. It provides details of the three agent characteristics 
mentioned above for the cargo stability and cross-contamination scenarios. 

Table 1: Agent characteristics for the cargo stability and the cargo cross-contamination scenarios 

Agent Characteristics Cargo Stability Scenario Cargo Cross-Contamination Scenario 
(1)  Agents have prop-
erties 

Dimension of the individual items 
of cargo (length, breadth, height). 

Freshness index (i.e., the length of time 
after which the individual items will 
start developing mold). 

(2)  Agents exhibit au-
tonomous behavior 

The stability of an item is usually 
dependent on the dimensions of the 
item and other factors (e.g., 
weight). 

The freshness index will usually de-
crease over time. 

(3) Interaction between 
agents may result in 
more complex behavior 

The stability of an individual item 
may also depend on the stability of 
the items that surround/support the 
item in question. 

Perishable items may develop mold 
when they come in contact with other 
mold-affected items. 

 
Having presented the rationale for using ABS to model the loaded container in our example scenarios, 

we now discuss the overall approach in more detail. It uses two techniques – algorithms for Cutting and 
Packing Optimization (more specifically, CLAs) and Simulation (i.e., ABS). The methodology is applied 
in two stages and there are several iterations (see Figure 1). In Phase One, a container loading plan is gen-
erated. This should ideally contain the x, x’ (x + length of box), y, y’ (y + width of box), z and z’ (z + 
height of box) co-ordinates of each item loaded (note that in our knapsack version of the problem not all 
items may be selected) as well as a corresponding freshness index.  Associated with the loading plan is a 
certain container utilization percentage. This, of course, is a function of the items selected by the CLA. 
Different CLAs - or separate runs of a single CLA where this involves a random element or allows for 
different parameter settings - will generally lead to plans with different utilization figures. It is worth not-
ing that the proposed methodology has no underlying dependency on any particular set of CLAs. The on-
ly requirement is that the CLA(s) being used in Phase One provide output relating to the physical ar-
rangement of the cargo items in the x, y and z axes (the container loading plan). 

In the second stage, the container loading plan generated is used as an input to an ABS model (see 
Figure 1). Our approach stipulates that the ABS model should have the following functionality: (1) agents 
to be created for each item listed in the loading plan; (2) agents to be bestowed the mandatory dimension 
properties – length, width, and  height (these can be calculated from the data in the container loading 
plan) – and one or more optional properties that may be of relevance (e.g., a freshness index); (3) an 
agent’s proximity-interactions with other agents, to be determined on the basis of the agents’ x, y and z 
co-ordinates. Thus, the logic incorporated in the ABS model should be able to determine if, for example, 
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agents representing two items of cargo are in contact with each other in any direction. It may be noted that 
the agents’ dimension properties may also be used for 3D representation of the items of cargo (see section 
5 for our implementation); however, visualization is not a requirement of our approach. Another point to 
note is that our approach has no underlying dependency on any specific ABS software. The only require-
ment is that the ABS model must be able to support the three functionalities mentioned above.  

 

Figure 1: Flowchart of the Multi-Methodology Agent-Based Approach to Container Loading 
 
The agent-based model can be executed to simulate the transport of cargo through time. The results to 

be collected will depend on the scenario being investigated. With regard to the two example scenarios in-
troduced here, result collection for cargo stability may involve the number of boxes that have dropped off 
the stack during transportation (i.e., by the end of the simulation run) and in the cross-contamination sce-
nario may involve the number of mold-affected items. Collection of results completes Phase Two of the 
approach. At this point we have a container utilization percentage (output of CLA(s)) and a related set of 
results from the ABS (Figure 1). Again referring back to our example scenarios, a utilization of 90% may 
have resulted in, say, 25 boxes having fallen down in transit and 45 boxes being affected by mold. 

As has already been explained, the purpose of our approach is to determine the trade-off between con-
tainer loading efficiency and other relevant factors, such as the stability of the load or the likelihood of 
cross-contamination. Since every execution of the CLA(s) in Phase One will usually result in a different 
loading plan (and a corresponding utilization percentage) and this plan can be used for the ABS in Phase 
Two, we can, by conducting several of these Phase One - Phase Two iterations, generate a large amount 
of data in relation to trade-offs between container loading efficiency and the other considerations. Staying 
with our cargo stability example, if container utilizations of 67%, 78% and 90% in Phase One result in 30, 
18 and 25 boxes, respectively, dropping off the stack, it may worthwhile to sacrifice a degree of loading 
efficiency and use the arrangement associated with a 78% utilization. Similarly, in the cross-
contamination scenario the stakeholders are in a position to make an informed decision about the accepta-
ble trade-off between space utilization and the percentage of spoilt goods. Finally, as with most simula-
tions,  the larger the number of Phase One - Phase Two iterations  (we do not use the term experiments 
here since each iteration may involve several ABS experiments/trials when the model is stochastic), the 
greater the amount of useful data that is available to the decision-maker.  

It should be emphasized that the approach does not in itself seek to define the most appropriate trade-
off between the factors involved. This decision is left to the user. However, the approach enables domi-
nated solutions encountered in the course of the computations to be eliminated from the decision-process, 
leaving the user to choose between 'sensible' alternatives on the calculated approximation to the efficient 
frontier. Where a user is able to specify a-priori weighting factors for the different criteria considered, 
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these can, of course, be easily incorporated into the approach. In this case the best of the calculated load-
ing plans can be identified automatically without any further user involvement. 

5 THE SIMULATION MODEL 

This section of the paper describes the two ABS models that were used to experiment with Phase Two of 
the approach. The cargo stability example represents a rudimentary proof-of-concept that uses an open-
source physics engine to model the individual items of cargo. For the cross-contamination example a 3-D 
ABS model has been developed using AnyLogic software (XJ Technologies 2010).  

5.1 Cargo Stability Analysis Using a Physics Engine  

In order to simulate effectively the stability of cargo during transportation, the individual items should be 
modeled such that they adhere to Newton’s laws of motion (Cutnell and Johnson 2001). In such a model 
the movement of individual items of cargo will depend on their properties, e.g., length, breadth, height, 
mass/weight, contact friction, etc.. This can be modeled through the use of a physics engine like Jinngine 
(Silcowitz-Hansen 2010). A further aspect of modeling cargo stability adequately concerns the effects of 
collisions between objects. Some physics engines like Jinngine also provide collision detection support.  
 A stack of boxes arranged inside a container (Figure 2 – left: a pallet is used here to illustrate the ef-
fects more clearly) can be simulated through time if: (a) every box is transformed into an agent – this may 
require the use of ABS software, (b) every box is bestowed the independent Newtonian motion properties 
(its motion will, in turn, depend upon the agents’ properties, e.g., dimensions, weight, etc.) – this may be 
accomplished through the use of a physics engine – and (c) the proximity-based interactions among the 
boxes is captured using collision detection techniques – this can be accomplished through use of software 
that supports collision detection. The resultant simulation could potentially determine the degree of cargo 
stability based on the number of boxes that may have fallen off the stack during transportation (when vis-
ually represented in 3D, this may look like Figure 2 – right).  
  

     

Figure 2: The stack of boxes while at rest (left) and subsequent to external stimulus being applied (right) 
 

 It must be pointed out that the proof-of-concept program that was used to generate the screenshots 
above uses Jinngine for (b) and (c); it does not include any ABS agent functionality. We are, therefore, 
unable to simulate the model through time. The screenshot presented in Figure 2 (right) is the result of an 
external stimulus (pull) being applied to the base of the pallet in an instant in time. Thus, the example is 
more akin to a 3-D game that incorporates objects and collision detection. It is not a true ABS simulation.  
 Finally, although the boxes in our example program are not modeled as ABS agents, they do however 
display the important characteristics that are found in most agents, namely: (a) they have properties (the 
boxes are of different dimensions and colors), (b) they display autonomous behavior (the boxes display 
independent Newtonian motion, which is, in turn, dependent on their properties), and (c) inter-agent inter-
action results in a more complex behavior (the collision among boxes will result in some boxes toppling 
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over, which may, in turn, affect the other boxes in the load). Future work could involve the integration of 
ABS software with Jinngine in order to perform rigid body simulation of items through time. 

5.2 Modeling Cargo Cross-Contamination Using AnyLogic 

The AnyLogic model developed by the authors is informed by the functionality proposed by the multi-
methodology approach for Phase Two ABS (refer to section 4).  Namely, (1) the model reads the Phase 
One loading plan generated by the CLA(s) and creates a unique agent for each item of cargo listed in the 
plan; (2) each agent is provided with four properties – length, breadth, height and a freshness index (the 
items of cargo/agents and the surrounding containers are represented visually in 3 dimensions); (3) for 
each agent created, the ABS model identifies all the other agents surrounding the agent in question and 
establishes a relationship between them (this inter-agent relationship is used during the simulation to pass 
messages among the agents). Figure 3 (left) shows a randomly-selected agent (red box), and eight other 
agents surrounding this agent; these proximity relationships are identified by the model on the basis of the 
x, x’, y, y’, z and z’ coordinates of the different items, and these inter-agent relationships are subsequently 
stored in the model. The model is run for 30 days in simulation time. 
 Every agent has a freshness index that was allocated in Phase One. This index is a randomly generat-
ed value between 5 and 60 (generated from a discrete uniform distribution; this is for illustration purposes 
only) and it is assigned to different box types, i.e., all boxes of the same type have the same freshness in-
dex. The index is used to denote the number of simulated days for which the contents of the box will re-
main mold free. Thus, as the simulation progresses in time, at the end of every simulated day, the fresh-
ness value associated with every agent is decreased by one (if freshness > 0). When the freshness level  of 
a particular box reaches zero, it is said to be mold affected. The color of the box is changed in the 3-D 
space so as to enable easier identification (Figure 3 – right).   

 

   

Figure 3: Detection of proximity among agents (left); Mold-affected boxes during simulation (right) 
 
As soon as a box becomes affected by mold it starts to contaminate other boxes which physically sur-

round it. This contamination is reflected in the model by the proximity-based interactions sent by the 
agent to all the surrounding agents. Thus, in Figure 3 (left), if the red box/agent were to become mold-
affected, it will immediately send messages to all the eight boxes/agents surrounding it. The message is a 
signal to the other agents (each of whom have their own copy of freshness index that decreases over time) 
that they have now been contaminated. Upon receiving this message, each agents immediately decreases 
the existing value of its freshness index by 1 (if freshness index > 0). This is in addition to the drop of 1 
unit of freshness that is applied at the end of each simulated day. The logic of the model, as described 
above, is repeated until the end of the simulation period.  Several pieces of data are then collected, includ-
ing the number of mold-affected boxes (Figure 4 – left), the maximum freshness value associated with an 
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item of cargo, average cargo freshness, etc.. A histogram of the freshness data can be produced easily 
(Figure 4 – right). This completes a single ABS Phase two iteration. As has been described earlier, our 
multi-methodology approach suggests that several such iterations be performed, each with a different con-
tainer loading plan, so as to enable the stakeholder to decide on a trade-off between the container efficien-
cy and other considerations related to cargo. Experiments and results are described next. 

6 EXPERIMENTS AND RESULTS 

This section describes the application of the proposed approach to the cargo cross-contamination scenario. 
Phase One of our methodology employs the CLA originally proposed by (Bischoff 2006). It involves a 
random search process and as such is capable of producing a large number of different loading plans 
(with differing degrees of container utilization). Due to space restrictions no details of the algorithm itself 
are presented here. Both the goods and the container are assumed to be rectangular in shape and have 
known dimensions. The algorithm makes no intrinsic assumptions about the degree of heterogeneity in 
the cargo, but was put forward in the context of weakly heterogeneous mixes.  The items ("boxes") are as-
sumed to belong to different “box types”. The predominant factor that distinguishes the various box types 
are the boxes’ physical dimensions, i.e., length, breadth and height, and its load bearing strength. For the 
purpose of the cargo cross-contamination scenario presented in this paper, the load bearing strength is ig-
nored and a new property – the freshness index (section 4) – is introduced. This is used only in Phase Two 
of our methodology. The associated ABS model has already been described in section 5.2. The reader is 
reminded that several Phase One - Phase Two iterations may be required to enable the stakeholder to take 
an informed decision regarding the trade-off between efficient cargo utilization and the post-transit degree 
of contamination (refer to Figure 1). In our experiments the number of such iterations were limited to 
five.  
 For our experiments we have used a total of four benchmark problems, labeled  BTM20, BTM40, 
BTM70 and BTM100. Each represents a specific Box Type Mix (BTM) with 20, 40, 70 and 100 box types 
respectively. Using the CLA referred to above we generated 100 container loading plans for each of our 
four BTMs. We then ranked the container utilization rates for these loading plans, and selected five spe-
cific ones for every BTM. These are as follows (where, x=20,40,70,100): (a) plan with the lowest con-
tainer utilization (BTMxmin); (b) plan with the highest utilization (BTMxmax); (c) plan with utilization 
percentile rank of 25 (BTMx25); (d) plan with utilization percentile rank of 50 (BTMx50); and (e) plan 
with utilization percentile rank of 75 (BTMx75). Each BTM represents a unique experiment group; each 
group comprises of five separate iterations, wherein each Phase Two iteration uses a unique container 
loading plan. The iterations will henceforth be identified by the BTM number and a corresponding load-
ing plan. For example, BTM40max will refer to the iteration using the container loading plan with the 
highest container utilization (max) for experiment group BTM40.  

Figure 4 (left) shows the percentage of mould-affected items for the four experiments (BTMs). Alt-
hough the results for all the BTMs are presented in the same figure, comparisons cannot be made across 
BTMs since the freshness indices of the cargo items change from one experiment type to the next. The 
graph shows the existence of trade-offs between container loading efficiency and the percentage of boxes 
affected with mold. For example, in relation to the BTM20 experiments, the five loading plans selected 
for simulation had utilization efficiencies of 58.79% ,78.93%, 82.60%, 84.43% and 89.94%, respectively; 
the corresponding proportions of mold-affected boxes were 65.15%, 72.22%, 70.65%, 69.79% and 76% 
(shown in Figure 4 – left). Thus, changes in container utilization rates (brought about by a change in the 
loading plan) do have an effect on the percentage of items that are spoilt. Our approach has the potential 
to help the stakeholder to take an informed decision on the loading plan to use, as it provides the container 
utilization and the corresponding simulation data from multiple iterations. Let us consider the trade-offs 
for our BTM20 experiments. The stakeholder, having seen the results of five iterations, may decide to use 
the loading plan that provides 84.43% utilization efficiency (BTM2075) – and not BTM20min which pro-
vides 58.79% efficiency but has the lowest percentage of boxes affected with mold. This may be because 
with the BTM2075 loading plan the stakeholder will be able to transport more boxes (96 as against 66 if 
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he chose BTM20min), and this may make up for the slight increase in the possible degree of contamina-
tion for the chosen scheme. The results for all the four BTMs also demonstrate the absence of any clear 
(positive or negative) correlation between container utilization and the percentage of boxes affected with 
mold. 

 
 

  

Figure 4: % mold-affected boxes, grouped by BTM (left); Histogram showing freshness % for BTM20 at 
the end of simulation (right) 

Figure 4 (right) presents a histogram of freshness values for the BTM20 experiment. It shows that for 
all the five loading plans simulated, between 65 to 76% of items had already developed mold or would be 
mold-affected in the next three days (note the freshness/bin range: 0.00-3.00). It further shows that if the 
BTM20min loading plan was selected, then approximately 33.33% of items will remain relatively fresh 
(bin/freshness range: 15.00 to 30.00) by the end of the 30-day simulation – and this value is at least 50% 
higher when compared to the corresponding freshness values of the alternate loading plans. Here again 
there may be an opportunity for a trade-off and the decision of the stakeholder may be based on practical 
business considerations. 

7 CONCLUSION 

This paper has presented a multi-methodology agent-based approach to container loading . It involves 
combining container loading algorithms with agent-based simulation. The purpose of this approach is to 
enable the stakeholders to analyze the trade-offs between loading efficiency and other cargo-related con-
siderations. A feasibility study was conducted in order to test the approach. It investigated the trade-off 
between container utilization and the cross-contamination among boxes containing perishable goods. The 
multi-methodology approach is realized through use of a container loading algorithm from the literature 
and the development of an ABS model in AnyLogic that simulates cargo cross-contamination by model-
ing the propagation of mould inside the container. The results of the experiments demonstrated the trade-
offs involved in container utilization and the number of mold-affected boxes. The results also showed that 
there was no correlation between these variables.  

The contribution of this research is the novel application of the multi-methodology agent-based ap-
proach to container loading (section 4). The purpose of the combined CLA and ABS approach is to find 
the trade-off between container loading efficiency and various important practical considerations in rela-
tion to the cargo - such as, its stability, fragility, volatility of cargo, and cross-contamination. Further con-
tributions of this research are the feasibility study on cargo efficiency and cross-contamination (sections 
5.2 and 6).  
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Finally, we draw attention to future work which could be derived from what has been presented in 

this paper. Here we have used the CLAs and the cross-contamination example to demonstrate our proxim-
ity-based ABS modeling approach. However, this approach can be expanded to model analogous situa-
tions wherein physical proximity between agents is the key condition for inter-agent interaction - for ex-
ample, spread of fire through hazardous materials. Moreover, this paper has identified and discussed the 
components required to facilitate simulation of container stability, namely, ABS software, Physics engine 
and collision detection software (section 5.1). Future work could involve the integration of ABS software 
with tools such as the Jinngine Physics engine in order to perform rigid body simulation of items through 
time. 
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