
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

AGENT-BASED DISCRETE-EVENT HYBRID SPACE MODELING APPROACH FOR
TRANSPORTATION EVACUATION SIMULATION

Bo Zhang Satish V. Ukkusuri
Wai Kin (Victor) Chan

Rensselaer Polytechnic Institute Purdue University

Department of Industrial and Systems Engi-
neering

School of Civil Engineering
550 Stadium Mall Drive

110 Eighth Street West Lafayette, IN 47906, USA
Troy, NY 12180, USA

ABSTRACT

This paper presents an agent-based discrete-event simulation (AB-DES) modeling approach for transpor-
tation evacuation simulation based on a hybrid continuous and cell space. This approach combines ad-
vantages of agent-based simulation and discrete-event simulation to allow flexibilities in simulating evac-
uation scenarios. Its hybrid space of the simulation environment overcomes the limitation of cellular
space in cell-based evacuation models. We construct the model by using the Parallel DEVS formalism
and develop algorithms for the corresponding DEVS simulators. This modeling approach achieves effi-
cient event-based scheduling by executing only necessary agent interactions. Therefore, this approach has
a low computational costs and high degree of scalability compared with traditional approaches.

1 INTRODUCTION

Transportation evacuation is an important issue concerning many researchers in homeland defense prepa-
ration and disaster emergency management. Underestimation of this issue and ineffective planning will
result in catastrophic outcomes. In 2005, when New Orleans was invaded by Hurricane Katrina and the
Houston area was threatened by Hurricane Rita, both evacuations are characterized by tremendous traffic
jams and chaos. Due to its low cost and speed, computer simulation has been an effective experimental
means for evacuation planning and management. A real-time simulation model can help predict traffic
conditions during evacuation and identify bottlenecks of transportation networks. Therefore, a good simu-
lation model can assist the development of a well-coordinated evacuation plan, which could save lives
and properties.

In transportation simulation, agent-based modeling methods have been applied to investigate emer-
gent evacuation situations (Lammel and Nagel 2009; Zhang, Ukkusuri, and Chan 2009; Hackney and
Marchal 2009). These agent-based simulation models are able to capture the evacuation process and traf-
fic dynamics. However, they generally employ a time-step based updating method in which each agent
updates its state at a fixed time step so that the simulation can run in a continuous space. Time-step based
method is easy to implement at the cost of high computational burden. Selecting a suitable time step is
therefore important (Hu, Muzy, and Ntaimo 2005). Large time step may results in incorrect simulation re-
sults (i.e., missing events that should have occurred within two time steps), while a too small time step
can result in unnecessary updates, and consequently, incur a high computational cost.

Different from the time-step based method, a discrete-event simulation model executes based on
events and only updates its system state when necessary (i.e., occurrences of events). Nothing is changed
between events, and therefore any unnecessary state update can be avoided to save computational time.

199978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Zhang, Chan, and Ukkusuri

The discrete-event system specification (DEVS) provides a modular, hierarchical modeling and simu-

lation framework derived from mathematical dynamical system theory (Zeigler, Praehofer, and Kim
2000). This event-based modeling approach enables the development of efficient simulation in the fields
of transportation and emergent management (Ntaimo et al. 2004; Wainer 2006; Sun and Hu 2008). Most
of the DEVS-based works use a cellular space, in which the space is discretized by a grid of cells. Alt-
hough cellular space is a popular way of representing and analyzing traffic flow models, it has some limi-
tations. It is not always easy to decide the size of cells. For example, if the cell size is too small, a large
number of cells will be kept in memory. Furthermore, information diffusion and agent movements can be
restricted if the Von Neuman (i.e., 4 neighbors) or Moore (i.e., 8 neighbors) topology of the cellular space
is used (Muller 2009). Finally, the cell-based DEVS models lack flexibilities in modeling people’s behav-
iors and decision-making process during the evacuation.

In this paper, we integrate the agent-based simulation approach and discrete-event simulation ap-
proach (AB-DES) to develop a hybrid space modeling approach for transportation evacuation simulation.
We integrate flexible-structured cells with a coordinate-based continuous space in the hybrid space. This
can better represent real traffic network and reduce the number of cells in the model, thus increasing
scalability. We build agent model with decision rules to simulate people’s behavior during evacuations. In
our model, agents can move towards any direction as desired. This overcomes the limitations of restricted
movement in cellular space of the cell-based DEVS. We extend the DEVS to the hybrid space and ex-
press the model in the Parallel DEVS formalism. This AB-DES modeling approach achieves efficient
event-based scheduling by executing only necessary agent interactions.

The rest of this paper is organized as follows. Section 2 describes the modeling approach and the de-
tailed structure of each atomic model. In Section 3, we construct the atomic models in Parallel DEVS
formalism. Section 4 provides algorithms for the DEVS simulators. Section 5 concludes the paper and
presents future work.

2 MODELING APPROACH

This section introduces the framework of the AB-DES approach. Section 2.1 discusses the design issues
regarding the movement of agents over a hybrid space. Sections 2.2 and 2.3 provide details of the struc-
ture of each component.

2.1 System Framework

Figure 1 shows the model framework that integrates agents and hybrid space model for transportation
simulation. This system is composed of traveler agents, a simulation space, and a simulation coordinator.
The simulation space includes two components: a coordinate-based continuous space and a transportation
network composed of roads and intersections. Each road or intersection is modeled as one entity. Roads
and intersections are linked by directed ports as illustrated in Figure 1. Each traveler is one agent with its
own decision rules and movement rules. A traveler may be riding on a road, passing an intersection, or
traveling somewhere off roads. The Simulation Coordinator is the central control module of the simula-
tion. It handles requests and sends commands to its subordinate. Therefore, when a traveler is on a road or
intersection, dynamic coupling between the traveler and the road or intersection is maintained by the
Simulation Coordinator so that they can exchange information and interact with each other. When the
traveler is starting off road, it will be directed to the nearest road or intersection.

2.2 Transportation Network Modeling

The transportation network module is a coupled model composed of roads and intersections. Roads and
intersections are atomic models linked by directed ports. Figures 2 (a) and (b) show the schematic view
and logical structure of a single-lane road, respectively. Each lane within the road is represented by one
pair of input port and output port, which are connected to corresponding intersections. Additional roads
with multiple lanes can be easily built by adding more pairs of ports. These ports can be possessed by on-

200

Zhang, Chan, and Ukkusuri

ly one traveler at any time. The road model is coupled with the intersections during the initialization of
the transportation network. When the simulation is running, the road model is dynamically coupled with
the travelers by the Simulation Coordinator. In Figure 2(b), the “queryState” and “outState” ports are built
for control purposes. When queried, each road reports its state to the Simulation Coordinator.

Figure 1: Model framework with agents and hybrid space

Figure 2: Structure of road atomic model

Figures 3 (a) and (b) show the schematic view and logical structure of an intersection linking four
road segments. Although this framework does not restrict the number of roads to which an intersection
can connect, most real-world situations require only two to four roads. The intersection model determines
travelers’ passing priorities based on their arrival times, coming ports and leaving ports. Similar to the
road model, an intersection model can also send its state information to the Simulation Coordinator.

Figure 3: Structure of intersection atomic model

201

Zhang, Chan, and Ukkusuri

2.3 Traveler Agent Modeling

Different from roads and intersections which are entities, each traveler is modeled as an autonomous
agent with the abilities to decide its actions and to perceive the environment. Before an evacuation starts,
a traveler needs to decide its destination and evacuation route computed by a shortest path algorithm. Af-
ter that, the traveler starts from its home and enters the transportation network. Since its home may not
locate right at a main road, the traveler first needs to proceed to the nearest main road through a private
path (such as a drive way) at a constant speed. Upon reaching a main road, the traveler can gradually
speed up if the traffic condition allows. The travel time on each road segment is computed using link per-
formance function based on the congestion level of the road (Sheffi 1985).

Figure 4 shows the structure of the traveler agent model. Besides being queried and reporting its state
to the Simulation Coordinator, a traveler can also receive travel times from roads or intersections to de-
termine the occurrence time of its next action. When a traveler enters a new road, it sends update infor-
mation to the Simulation Coordinator which will remove old couplings and add new couplings between
the traveler and the new road.

Figure 4: Structure of traveler agent

The traveler agent has predefined movement rules to handle several movement scenarios in the hybrid
simulation space. The first scenario is entering a road and moving within the road as shown in Figure 5.
We assume that a traveler is moving from left to right. In order to make the model more realistic, we sep-
arate the traveler’s moving state within a road into three phases: accelerating, constant-speed traveling,
and decelerating. Three sequential events will be scheduled to model the traveling process, which in-
cludes ending acceleration, starting deceleration, and leaving the road. During the scheduling, the traveler
needs to check the states of other travelers on the road. For example, the traveler cannot reach the con-
stant traveling phase earlier than its direct front neighbor, otherwise there will be a collision. Similarly,
the scheduled leaving time will be delayed if the leaving port of the road is already possessed at the
scheduled time. If the road is too short for the traveler to fully accelerate, the travel process will not be
separated into three phases and the traveler will use a relatively low speed to pass the road.

Constant Speed Traveling
Accelerating

Process
Decelerating

Process

Acceleration Ends Deceleration Starts

Figure 5: Moving within a road

Between leaving previous road and entering the next road, a traveler must seize the right of way be-
fore passing an intersection. When a traveler is coming to an intersection, the time to enter its next road
must be determined. If the intersection is currently occupied by another traveler, the scheduled passing
time will be recalculated. If multiple travelers from different ports arriving at a very close time and they
have the same leaving port, their arriving ports will be used to determine the right of way.

If a traveler is starting from somewhere off road, it will be directed to the nearest road and will also
request the Simulation Coordinator to add a dynamic coupling to the road (Figure 6). The traveler needs

202

Zhang, Chan, and Ukkusuri

to predict the positions of other travelers on the road at current time to find an appropriate gap to enter the
road. The prediction method will be described in Section 4. Because we apply three phases to describe the
traveling process, the prediction can be more accurate.

Figure 6: Entering a road

3 DEVS EXPRESSION

In this section, we express the model in terms of the Parallel DEVS formalism (Zeigler, Praehofer, and
Kim 2000). A basic Parallel DEVS is defined in the following:

where
 is the set of input ports and values
 is the set of output ports and values

 is the set of sequential states
 is the external state transition function

 is the internal transition function
 is the confluent state transition function

 is the output function
 is the time advance function

 is the set of total states

To define the expression in DEVS, we introduce the following additional variables: is a con-

trol state used to keep track of the full states in the DEVS models; is the time instant that the last event
occurred; is the time instant scheduled for the next event and ; is the global current
simulation time; is the elapsed time since the last event and ; is the time left to the next
event and .

3.1 Expressing Road Model in DEVS

The road atomic model is defined using the Parallel DEVS as follows:

 with = {“in-1”, “in-2”, “queryState”}, = {Trav-
elerID}, and = {queryValue};

 with = {“out-1”, “out-2”, “outState”}, =
{TravelerID, leavingTime/NULL}, and = {outValue};

 if
 if

203

Zhang, Chan, and Ukkusuri

 if
 if

When a traveler requests to enter a road, it receives a leaving time based on the road’s current state, or

a NULL message if the road is too congested to admit it. In the case of denied admission, the traveler will
then make the entering request again after a short time delay.

3.2 Expressing Intersection Model in DEVS

The intersection atomic model is expressed as follows:

 with = {“in-1”, “in-2”, “in-3”, “in-4”, “queryState”},
 = {TravelerID, nextRoad}, and = {queryValue};

 with = {“out-1”, “out-2”, “out-3”, “out-4”, “out-
State”}, = {TravelerID, leavingTime/NULL}, and = {outValue};

 if
 if

 if
 if and

Similar to the road model, when a traveler requests to pass an intersection, it receives a leaving time

based on the intersection’s current state, or a NULL message if the intersection’s right of way has already
been possessed by another traveler at that time. The traveler will check the intersection again after a short
time delay.

3.3 Expressing Traveler Agent Model in DEVS

Before expressing the traveler agent model in Parallel DEVS, we first introduce the following notations:
“AC”, “CS”, and “DC” denote, respectively, the accelerating phase, constant speed traveling phase, and
decelerating phase. “onRoad”, “onInt”, “offRoad” indicate that a traveler is currently on a road, on an in-
tersection, or off roads, respectively. and are the times that the traveler spends in the acceler-
ating phase and decelerating phase, respectively. is the amount of time for a traveler to pass an intersec-
tion under normal situation. Other notations and variables are self-explainable by their names. The
traveler agent model can be expressed in DEVS as follows:

 with = {“travelTime”, “queryState”}, =

{RoadID/IntID, leavingTime/NULL}, and = {queryValue};
 with = {“updateState”, “outState”}, =

{add/remove/delay, RoadID/IntID}, and = {outValue};

 if

204

Zhang, Chan, and Ukkusuri

 if and (IntID, NULL)
 if and (IntID, leavingTime)
 if and (RoadID, NULL)
 if , (RoadID, leavingTime),
 and
 if , (RoadID, leavingTime),
 and

 if
 if

 if
 if
 if
 if

4 DEVS SIMULATOR

The DEVS formalism provides a hierarchical simulator and allows the use of four types of messages in
the communications between simulators as shown in Figure 7 (Zeigler, Praehofer, and Kim 2000). When
the simulation starts, the parent coordinator sends initialization messages (i, t) to its subordinates. During
the simulation, the parent coordinator sends internal state transition messages (*, t) to its subordinates to
schedule events and input messages (x, t) to trigger external events. The subordinates send output mes-
sages (y, t) to their parents to cause output events.

Figure 7: DEVS simulator protocol

The DEVS simulator for road model is shown in Algorithm 1. Upon the receipt of an entering request
from a traveler, the road needs to check whether there is enough space to hold the requesting traveler. The
road uses the elapsed time and the current states of other travelers who are coupled to this road to estimate
their positions at the current time t.

Algorithm 1: Simulator for Road
variables:

t: the global current simulation time
h: space threshold for entering a road

when receive i-message (i, t) at time t
S = S0

when receive x-message (TravelerID, t) at time t

205

Zhang, Chan, and Ukkusuri

check space
if no space
 send y-message ((TravelerID, NULL), t) to coordinator
else
 compute travel time based on current traffic condition
 send y-message ((TravelerID, leavingTime), t) to coordinator
end if

The DEVS simulator for intersection model is shown in Algorithm 2. When receiving a request from

a traveler, the intersection obtains the traveler’s leaving port based on its next road segment and replies a
leaving time to the traveler when there are no conflicts. If multiple travelers make requests simultaneous-
ly, the intersection needs to dispatch the right of way based on the arriving ports and leaving ports of the-
se requesting travelers (for example, left-turn travelers yield to the ones going straight). The intersection
then admits one traveler and sends NULL messages to the other travelers.

Algorithm 2: Simulator for intersection
variables:

t: the global current simulation time
c: the time to pass an intersection

when receive i-message (i, t) at time t
S = S0

when receive x-message ((TravelerID, nextRoad), t) at time t
check conflicts
if no conflict
 send y-message ((TravelerID, leavingPort, leavingTime), t) to coordinator
else
 send y-message ((TravelerID, leavingPort, NULL), t) to coordinator
end if

The DEVS simulator for the traveler agent model is shown in Algorithm 3. When receiving a NULL

message from a road or intersection, the requesting traveler is blocked at its current intersection or road
due to the space limit. If this also causes delay to subsequent travelers, messages will be sent to the Simu-
lation Coordinator to reschedule the events of those affected travelers. When traveling on a road, each
scheduling of will be checked with the traveler’s direct front neighbor to guarantee no collision.

Algorithm 3: Simulator for Traveler
variables:

t: the global current simulation time
tl: the time when last event occurred
tn: the time scheduled for next event
c: the time to pass an intersection
v: current travel speed
VL: a low travel speed
VH: a high travel speed, usually the maximal legal speed
VP: the travel speed to pass an intersection

: the time to accelerate from VP to VH
: the time to decelerate from VH to VP

when receive i-message (i, t) at time t
S = S0

when receive x-message ((RoadID, NULL), t) at time t

206

Zhang, Chan, and Ukkusuri

S = onInt
send y-message ((delay, preRoad), t) to coordinator
tl = t; tn = tl + c

when receive x-message ((RoadID, leavingTime), t) at time t
send y-message ((remove, curInt), t) to coordinator
send y-message ((add, RoadID), t) to coordinator
if leavingTime – t <

S = onRoad; this.v = VL
tl = t; tn = leavingTime

else
 S = AC
 tl = t; tn = tl +
end if

when receive x-message ((IntID, NULL), t) at time t
S = onRoad
send y-message ((delay, currentRoad), t) to coordinator
tl = t; tn = tl + c

when receive x-message ((IntID, leavingTime), t) at time t
send y-message ((remove, curRoad), t) to coordinator
send y-message ((add, IntID), t) to coordinator
S = onInt
tl = t; tn = leavingTime

when receive *-message (*, t) at time t
if t != tn
 ERROR: bad synchronization between coordinator and simulator
end if
if S = offRoad
 send y-message ((addPort, nearestRoad), t) to coordinator
 send y-message ((TravelerID, t, dynPort), t) to enter a road
else if S = AC
 S = CS
 tl = t; tn = leavingTime -
else if S = CS
 S = DC
 tl = t; tn = leavingTime
else if S = DC
 send y-message (IntID, t) to coordinator
else if S = onInt
 send y-message (RoadID, t) to coordinator
end if

Algorithm 4 describes the DEVS simulator for the Simulation Coordinator. The Simulation Coordina-

tor module serves as the root coordinator in the Parallel DEVS formalism. It is the parent of all the trav-
elers, roads and intersections. After initialization, the Simulation Coordinator sends internal state transi-
tion messages to its children (e.g., travelers) to execute the simulation. When receiving an output
message (yd, t) from child d, the coordinator first determines a set of receivers, converts the message to
input messages using Zd,r(yd), and then sends the input messages to the children in the receiver set.

Algorithm 4: Simulator for Coordinator
variables:

207

Zhang, Chan, and Ukkusuri

t: the global current simulation time
tl: the time when last event occurred
tn: the time scheduled for next event
child: direct subordinate DEVS simulator

t = t0
send initialization message (i, t) to child
sort event-list according to tn of its child
t = tn of its child
loop

send (*, t) message to child
t = tn of its child
when receive (yd, t) message with output yd from child d
 receivers = {receive set}
 for each r in receivers
 send (xr, t) message with input value xr = Zd,r(yd) to r
 end for

until end of simulation

5 CONCLUSION

In this paper, we present an AB-DES modeling approach on a hybrid-space environment for transporta-
tion evacuation simulation. The framework incorporates agents with people’s evacuation behavior and in-
cludes a flexible-structured hybrid-space transportation network. This approach overcomes the limitation
of restricted movements for agents in a cellular space and allows a higher degree of flexibility in simulat-
ing transportation evacuation scenarios. We construct the AB-DES model in the Parallel DEVS formal-
ism. We also provide algorithms for the DEVS simulators. This AB-DES employs an efficient event-
based scheduling method to avoid unnecessary time-step updates, which are needed in conventional
agent-based models. This reduces computational time and increases scalability. Future work of this re-
search includes testing the performance of the AB-DES model under different scenarios, especially for
extremely congested conditions. We will also consider modeling and implementing more evacuation be-
haviors such as flexible routing for travelers with different evacuation strategies.

ACKNOWLEDGMENTS

This work is supported by NSF project Collaborative Proposal: DRU: Incorporating Household Decision
Making and Dynamic Transportation Modeling in Hurricane Evacuation: An Integrated Social Science-
Engineering Approach, with project No. 0826874.

REFERENCES

Lammel, G., and K. Nagel. 2009. “Multi Agent Based Large-scale Evacuation Simulation.” In Proceed-
ings of the 88th Annual Meeting of the Transportation Research Board. Washington, D.C.

Hackney, J., and F. Marchal. 2009. “A Model for Coupling Multi-Agent Social Interactions and Traffic
Simulation.” In Proceedings of the 88th Annual Meeting of the Transportation Research Board.
Washington, D.C.

Hu, X., A. Muzy, and L. Ntaimo. 2005. “A Hybrid Agent-Cellular Space Modeling Approach for Fire
Spread and Suppression Simulation.” In Proceedings of the 2005 Winter Simulation Conference, edit-
ed by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 248-255. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers, Inc.

208

Zhang, Chan, and Ukkusuri

Muller, J. P. 2009. “Towards a Formal Semantics of Event-Based Multi-agent Simulations.” Multi-
Agent-Based Simulation IX 5269: 110-126.

Ntaimo, L., B. P. Zeigler, M. J. Vasconcelos, and B. Khargharia. 2004. “Forest Fire Spread and Suppres-
sion in DEVS.” Simulation-Transactions of the Society for Modeling and Simulation International
80(10): 479-500.

Sheffi, Y. 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming
Methods. Prentice-Hall, Inc.

Sun, Y., and X. Hu. 2008. “Partial-Modular DEVS for Improving Performance of Cellular Space Wildfire
Spread Simulation.” In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Mason,
R. R. Hill, L. Mönch, O. Rose, T. Jefferson, and J. W. Fowler, 1308-1046. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Wainer, G. 2006. “ATLAS: A Language to Specify Traffic Models Using Cell-DEVS.” Simulation Mod-
eling Practice and Theory 14(3): 313-337.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation. 2nd ed. New York:
Academic Press.

Zhang, B., S. Ukkusuri, and W. K. Chan. 2009. “Agent-Based Modeling for Household Level Hurricane
Evacuation.” In Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R.
R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, 2778-2784. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES

BO ZHANG is a Ph.D. student in the Department of Industrial and Systems Engineering at Rensselaer
Polytechnic Institute. He received a bachelor’s degree and a master’s degree in computer science from
Northeastern University, China. His research interests include agent-based simulation, discrete-event
simulation and their applications in transportation networks. His e-mail address is zhangb5@rpi.edu.

WAI KIN (VICTOR) CHAN is an Assistant Professor of the Department of Industrial and Systems En-
gineering at the Rensselaer Polytechnic Institute, Troy, NY. He holds a Ph.D. in industrial engineering
and operations research from University of California, Berkeley. He has received the 2006 Pritsker best
Ph.D. thesis award, the 2007 NSF CAREER Award, the 2007 and 2008 IEEE CASE Best Paper Award
finalists, and the 2010 INFORMS Service Science Best Paper Award. His research interests include dis-
crete-event simulation, agent-based simulation, and their applications in energy markets, social networks,
service systems, transportation networks, and manufacturing. His e-mail address is chanw@rpi.edu.

SATISH UKKUSURI is an Associate Professor in the School of Civil Engineering at Purdue University.
He holds a Ph.D. in civil engineering from University of Texas at Austin. He has received the
CUTC/ARTBA New Faculty Award for outstanding research in 2011. He is the Chair of the Intelligent
Transportation Systems SIG at INFORMS and a member of the network modeling committee at Trans-
portation Research Board. His research interests include transportation network modeling, real time oper-
ations, dynamic traffic assignment, emergency management issues, logistics and freight transportation
and network science. His e-mail address is sukkusur@purdue.edu.

209

