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ABSTRACT 

This paper presents an agent-based discrete-event simulation (AB-DES) modeling approach for transpor-
tation evacuation simulation based on a hybrid continuous and cell space. This approach combines ad-
vantages of agent-based simulation and discrete-event simulation to allow flexibilities in simulating evac-
uation scenarios. Its hybrid space of the simulation environment overcomes the limitation of cellular 
space in cell-based evacuation models. We construct the model by using the Parallel DEVS formalism 
and develop algorithms for the corresponding DEVS simulators. This modeling approach achieves effi-
cient event-based scheduling by executing only necessary agent interactions. Therefore, this approach has 
a low computational costs and high degree of scalability compared with traditional approaches.  

1 INTRODUCTION 

Transportation evacuation is an important issue concerning many researchers in homeland defense prepa-
ration and disaster emergency management. Underestimation of this issue and ineffective planning will 
result in catastrophic outcomes. In 2005, when New Orleans was invaded by Hurricane Katrina and the 
Houston area was threatened by Hurricane Rita, both evacuations are characterized by tremendous traffic 
jams and chaos. Due to its low cost and speed, computer simulation has been an effective experimental 
means for evacuation planning and management. A real-time simulation model can help predict traffic 
conditions during evacuation and identify bottlenecks of transportation networks. Therefore, a good simu-
lation model can assist the development of a well-coordinated evacuation plan, which could save lives 
and properties.  

In transportation simulation, agent-based modeling methods have been applied to investigate emer-
gent evacuation situations (Lammel and Nagel 2009; Zhang, Ukkusuri, and Chan 2009; Hackney and 
Marchal 2009). These agent-based simulation models are able to capture the evacuation process and traf-
fic dynamics. However, they generally employ a time-step based updating method in which each agent 
updates its state at a fixed time step so that the simulation can run in a continuous space. Time-step based 
method is easy to implement at the cost of high computational burden. Selecting a suitable time step is 
therefore important (Hu, Muzy, and Ntaimo 2005). Large time step may results in incorrect simulation re-
sults (i.e., missing events that should have occurred within two time steps), while a too small time step 
can result in unnecessary updates, and consequently, incur a high computational cost.  

Different from the time-step based method, a discrete-event simulation model executes based on 
events and only updates its system state when necessary (i.e., occurrences of events). Nothing is changed 
between events, and therefore any unnecessary state update can be avoided to save computational time.  

199978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Zhang, Chan, and Ukkusuri 
 
The discrete-event system specification (DEVS) provides a modular, hierarchical modeling and simu-

lation framework derived from mathematical dynamical system theory (Zeigler, Praehofer, and Kim 
2000). This event-based modeling approach enables the development of efficient simulation in the fields 
of transportation and emergent management (Ntaimo et al. 2004; Wainer 2006; Sun and Hu 2008). Most 
of the DEVS-based works use a cellular space, in which the space is discretized by a grid of cells. Alt-
hough cellular space is a popular way of representing and analyzing traffic flow models, it has some limi-
tations. It is not always easy to decide the size of cells. For example, if the cell size is too small, a large 
number of cells will be kept in memory. Furthermore, information diffusion and agent movements can be 
restricted if the Von Neuman (i.e., 4 neighbors) or Moore (i.e., 8 neighbors) topology of the cellular space 
is used (Muller 2009). Finally, the cell-based DEVS models lack flexibilities in modeling people’s behav-
iors and decision-making process during the evacuation.  

In this paper, we integrate the agent-based simulation approach and discrete-event simulation ap-
proach (AB-DES) to develop a hybrid space modeling approach for transportation evacuation simulation. 
We integrate flexible-structured cells with a coordinate-based continuous space in the hybrid space. This 
can better represent real traffic network and reduce the number of cells in the model, thus increasing 
scalability. We build agent model with decision rules to simulate people’s behavior during evacuations. In 
our model, agents can move towards any direction as desired. This overcomes the limitations of restricted 
movement in cellular space of the cell-based DEVS. We extend the DEVS to the hybrid space and ex-
press the model in the Parallel DEVS formalism. This AB-DES modeling approach achieves efficient 
event-based scheduling by executing only necessary agent interactions.  

The rest of this paper is organized as follows. Section 2 describes the modeling approach and the de-
tailed structure of each atomic model. In Section 3, we construct the atomic models in Parallel DEVS 
formalism. Section 4 provides algorithms for the DEVS simulators. Section 5 concludes the paper and 
presents future work.  

2 MODELING APPROACH 

This section introduces the framework of the AB-DES approach. Section 2.1 discusses the design issues 
regarding the movement of agents over a hybrid space. Sections 2.2 and 2.3 provide details of  the struc-
ture of each component.  

2.1 System Framework 

Figure 1 shows the model framework that integrates agents and hybrid space model for transportation 
simulation. This system is composed of traveler agents, a simulation space, and a simulation coordinator. 
The simulation space includes two components: a coordinate-based continuous space and a transportation 
network composed of roads and intersections. Each road or intersection is modeled as one entity. Roads 
and intersections are linked by directed ports as illustrated in Figure 1. Each traveler is one agent with its 
own decision rules and movement rules. A traveler may be riding on a road, passing an intersection, or 
traveling somewhere off roads. The Simulation Coordinator is the central control module of the simula-
tion. It handles requests and sends commands to its subordinate. Therefore, when a traveler is on a road or 
intersection, dynamic coupling between the traveler and the road or intersection is maintained by the 
Simulation Coordinator so that they can exchange information and interact with each other. When the 
traveler is starting off road, it will be directed to the nearest road or intersection.  

2.2 Transportation Network Modeling 

The transportation network module is a coupled model composed of roads and intersections. Roads and 
intersections are atomic models linked by directed ports. Figures 2 (a) and (b) show the schematic view  
and logical structure of a single-lane road, respectively. Each lane within the road is represented by one 
pair of input port and output port, which are connected to corresponding intersections. Additional roads 
with multiple lanes can be easily built by adding more pairs of ports. These ports can be possessed by on-
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ly one traveler at any time. The road model is coupled with the intersections during the initialization of 
the transportation network. When the simulation is running, the road model is dynamically coupled with 
the travelers by the Simulation Coordinator. In Figure 2(b), the “queryState” and “outState” ports are built 
for control purposes. When queried, each road reports its state to the Simulation Coordinator.  

 

 

Figure 1: Model framework with agents and hybrid space 

 

 

Figure 2: Structure of road atomic model 

Figures 3 (a) and (b) show the schematic view and logical structure of an intersection linking four 
road segments. Although this framework does not restrict the number of roads to which an intersection 
can connect, most real-world situations require only two to four roads. The intersection model determines 
travelers’ passing priorities based on their arrival times, coming ports and leaving ports. Similar to the 
road model, an intersection model can also send its state information to the Simulation Coordinator.  

 

 

Figure 3: Structure of intersection atomic model 
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2.3 Traveler Agent Modeling 

Different from roads and intersections which are entities, each traveler is modeled as an autonomous 
agent with the abilities to decide its actions and to perceive the environment. Before an evacuation starts, 
a traveler needs to decide its destination and evacuation route computed by a shortest path algorithm. Af-
ter that, the traveler starts from its home and enters the transportation network. Since its home may not 
locate right at a main road, the traveler first needs to proceed to the nearest main road through a private 
path (such as a drive way) at a constant speed. Upon reaching a main road, the traveler can gradually 
speed up if the traffic condition allows. The travel time on each road segment is computed using link per-
formance function based on the congestion level of the road (Sheffi 1985).  

Figure 4 shows the structure of the traveler agent model. Besides being queried and reporting its state 
to the Simulation Coordinator, a traveler can also receive travel times from roads or intersections to de-
termine the occurrence time of its next action. When a traveler enters a new road, it sends update infor-
mation to the Simulation Coordinator which will remove old couplings and add new couplings between 
the traveler and the new road.  

 

 

Figure 4: Structure of traveler agent 

The traveler agent has predefined movement rules to handle several movement scenarios in the hybrid 
simulation space. The first scenario is entering a road and moving within the road as shown in Figure 5. 
We assume that a traveler is moving from left to right. In order to make the model more realistic, we sep-
arate the traveler’s moving state within a road into three phases: accelerating, constant-speed traveling, 
and decelerating. Three sequential events will be scheduled to model the traveling process, which in-
cludes ending acceleration, starting deceleration, and leaving the road.  During the scheduling, the traveler 
needs to check the states of other travelers on the road. For example, the traveler cannot reach the con-
stant traveling phase earlier than its direct front neighbor, otherwise there will be a collision. Similarly, 
the scheduled leaving time will be delayed if the leaving port of the road is already possessed at the 
scheduled time. If the road is too short for the traveler to fully accelerate, the travel process will not be 
separated into three phases and the traveler will use a relatively low speed to pass the road.  

 

Constant Speed Traveling
Accelerating 

Process 
Decelerating 

Process 

Acceleration Ends Deceleration Starts  

Figure 5: Moving within a road 

Between leaving previous road and entering the next road, a traveler must seize the right of way be-
fore passing an intersection. When a traveler is coming to an intersection, the time to enter its next road 
must be determined. If the intersection is currently occupied by another traveler, the scheduled passing 
time will be recalculated. If multiple travelers from different ports arriving at a very close time and they 
have the same leaving port, their arriving ports will be used to determine the right of way.  

If a traveler is starting from somewhere off road, it will be directed to the nearest road and will also 
request the Simulation Coordinator to add a dynamic coupling to the road (Figure 6). The traveler needs 
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to predict the positions of other travelers on the road at current time to find an appropriate gap to enter the 
road. The prediction method will be described in Section 4. Because we apply three phases to describe the 
traveling process, the prediction can be more accurate.  

 

 

Figure 6: Entering a road 

3 DEVS EXPRESSION 

In this section, we express the model in terms of the Parallel DEVS formalism (Zeigler, Praehofer, and 
Kim 2000). A basic Parallel DEVS is defined in the following:  

 
 

where  
 is the set of input ports and values 
 is the set of output ports and values 

 is the set of sequential states 
 is the external state transition function 

 is the internal transition function 
 is the confluent state transition function 

 is the output function 
 is the time advance function 

 is the set of total states 
 
To define the expression in DEVS, we introduce the following additional variables:  is a con-

trol state used to keep track of the full states in the DEVS models;  is the time instant that the last event 
occurred;  is the time instant scheduled for the next event and ;  is the global current 
simulation time;  is the elapsed time since the last event and ;  is the time left to the next 
event and .  

3.1 Expressing Road Model in DEVS 

The road atomic model is defined using the Parallel DEVS as follows:  
 

 with  = {“in-1”, “in-2”, “queryState”},  = {Trav-
elerID}, and  = {queryValue}; 

 with  = {“out-1”, “out-2”, “outState”},  = 
{TravelerID, leavingTime/NULL}, and  = {outValue}; 

  
  if  
  if  
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   if  
  if  

 
 

 
When a traveler requests to enter a road, it receives a leaving time based on the road’s current state, or 

a NULL message if the road is too congested to admit it. In the case of denied admission, the traveler will 
then make the entering request again after a short time delay.  

3.2 Expressing Intersection Model in DEVS 

The intersection atomic model is expressed as follows: 
 

 with  = {“in-1”, “in-2”, “in-3”, “in-4”, “queryState”}, 
 = {TravelerID, nextRoad}, and  = {queryValue}; 

 with  = {“out-1”, “out-2”, “out-3”, “out-4”, “out-
State”},  = {TravelerID, leavingTime/NULL}, and  = {outValue}; 

  
  if  
  if  

 
 

   if  
  if  and  

 
 

 
Similar to the road model, when a traveler requests to pass an intersection, it receives a leaving time 

based on the intersection’s current state, or a NULL message if the intersection’s right of way has already 
been possessed by another traveler at that time. The traveler will check the intersection again after a short 
time delay.  

3.3 Expressing Traveler Agent Model in DEVS 

Before expressing the traveler agent model in Parallel DEVS, we first introduce the following notations: 
“AC”, “CS”, and “DC” denote, respectively, the accelerating phase, constant speed traveling phase, and 
decelerating phase. “onRoad”, “onInt”, “offRoad” indicate that a traveler is currently on a road, on an in-
tersection, or off roads, respectively.  and  are the times that the traveler spends in the acceler-
ating phase and decelerating phase, respectively.  is the amount of time for a traveler to pass an intersec-
tion under normal situation. Other notations and variables are self-explainable by their names. The 
traveler agent model can be expressed in DEVS as follows:  

 
 with  = {“travelTime”, “queryState”},  = 

{RoadID/IntID, leavingTime/NULL}, and  = {queryValue}; 
 with  = {“updateState”, “outState”},  = 

{add/remove/delay, RoadID/IntID}, and  = {outValue}; 
  

  if  
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  if  and  (IntID, NULL) 
  if  and  (IntID, leavingTime) 
  if  and  (RoadID, NULL) 
  if ,  (RoadID, leavingTime),  
   and  
  if ,  (RoadID, leavingTime),  
   and  

 
  if  
  if  

 
 

   if  
   if  
   if  
   if  

 

4 DEVS SIMULATOR 

The DEVS formalism provides a hierarchical simulator and allows the use of four types of messages in 
the communications between simulators as shown in Figure 7 (Zeigler, Praehofer, and Kim 2000). When 
the simulation starts, the parent coordinator sends initialization messages (i, t) to its subordinates. During 
the simulation, the parent coordinator sends internal state transition messages (*, t) to its subordinates to 
schedule events and input messages (x, t) to trigger external events. The subordinates send output mes-
sages (y, t) to their parents to cause output events.  

 

 

Figure 7: DEVS simulator protocol 

The DEVS simulator for road model is shown in Algorithm 1. Upon the receipt of an entering request 
from a traveler, the road needs to check whether there is enough space to hold the requesting traveler. The 
road uses the elapsed time and the current states of other travelers who are coupled to this road to estimate 
their positions at the current time t.  

 
Algorithm 1: Simulator for Road 
variables:  

t: the global current simulation time 
h: space threshold for entering a road 

when receive i-message (i, t) at time t 
S = S0 

when receive x-message (TravelerID, t) at time t 
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check space 
if no space 
      send y-message ((TravelerID, NULL), t) to coordinator 
else 
      compute travel time based on current traffic condition 
      send y-message ((TravelerID, leavingTime), t) to coordinator 
end if 

 
The DEVS simulator for intersection model is shown in Algorithm 2. When receiving a request from 

a traveler, the intersection obtains the traveler’s leaving port based on its next road segment and replies a 
leaving time to the traveler when there are no conflicts. If multiple travelers make requests simultaneous-
ly, the intersection needs to dispatch the right of way based on the arriving ports and leaving ports of the-
se requesting travelers (for example, left-turn travelers yield to the ones going straight). The intersection 
then admits one traveler and sends NULL messages to the other travelers.  

 
Algorithm 2: Simulator for intersection 
variables:  

t: the global current simulation time 
c: the time to pass an intersection 

when receive i-message (i, t) at time t 
S = S0 

when receive x-message ((TravelerID, nextRoad), t) at time t 
check conflicts 
if no conflict 
      send y-message ((TravelerID, leavingPort, leavingTime), t) to coordinator 
else 
      send y-message ((TravelerID, leavingPort, NULL), t) to coordinator 
end if 

 
The DEVS simulator for the traveler agent model is shown in Algorithm 3. When receiving a NULL 

message from a road or intersection, the requesting traveler is blocked at its current intersection or road 
due to the space limit. If this also causes delay to subsequent travelers, messages will be sent to the Simu-
lation Coordinator to reschedule the events of those affected travelers. When traveling on a road, each 
scheduling of  will be checked with the traveler’s direct front neighbor to guarantee no collision.  

 
Algorithm 3: Simulator for Traveler 
variables:  

t: the global current simulation time 
tl: the time when last event occurred 
tn: the time scheduled for next event 
c: the time to pass an intersection 
v: current travel speed 
VL: a low travel speed 
VH: a high travel speed, usually the maximal legal speed 
VP: the travel speed to pass an intersection 

: the time to accelerate from VP to VH 
: the time to decelerate from VH to VP 

when receive i-message (i, t) at time t 
S = S0 

when receive x-message ((RoadID, NULL), t) at time t 
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S = onInt 
send y-message ((delay, preRoad), t) to coordinator 
tl = t; tn = tl + c 

when receive x-message ((RoadID, leavingTime), t) at time t 
send y-message ((remove, curInt), t) to coordinator 
send y-message ((add, RoadID), t) to coordinator 
if leavingTime – t <  

S = onRoad; this.v = VL 
tl = t; tn = leavingTime 

else 
      S = AC 
      tl = t; tn = tl +  
end if 

when receive x-message ((IntID, NULL), t) at time t 
S = onRoad 
send y-message ((delay, currentRoad), t) to coordinator 
tl = t; tn = tl + c 

when receive x-message ((IntID, leavingTime), t) at time t 
send y-message ((remove, curRoad), t) to coordinator 
send y-message ((add, IntID), t) to coordinator 
S = onInt 
tl = t; tn = leavingTime 

when receive *-message (*, t) at time t 
if t != tn 
      ERROR: bad synchronization between coordinator and simulator 
end if 
if S = offRoad 
      send y-message ((addPort, nearestRoad), t) to coordinator 
      send y-message ((TravelerID, t, dynPort), t) to enter a road  
else if S = AC 
      S = CS 
      tl = t; tn = leavingTime -  
else if S = CS 
      S = DC 
      tl = t; tn = leavingTime 
else if S = DC 
      send y-message (IntID, t) to coordinator 
else if S = onInt 
      send y-message (RoadID, t) to coordinator 
end if 

 
Algorithm 4 describes the DEVS simulator for the Simulation Coordinator. The Simulation Coordina-

tor module serves as the root coordinator in the Parallel DEVS formalism. It is the parent of all the trav-
elers, roads and intersections. After initialization, the Simulation Coordinator sends internal state transi-
tion messages to its children (e.g., travelers) to execute the simulation. When receiving an output 
message (yd, t) from child d, the coordinator first determines a set of receivers, converts the message to 
input messages using Zd,r(yd), and then sends the input messages to the children in the receiver set.  

 
Algorithm 4: Simulator for Coordinator 
variables:  
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t: the global current simulation time 
tl: the time when last event occurred 
tn: the time scheduled for next event 
child: direct subordinate DEVS simulator 

t = t0 
send initialization message (i, t) to child 
sort event-list according to tn of its child 
t = tn of its child  
loop 

send (*, t) message to child 
t = tn of its child 
when receive (yd, t) message with output yd from child d 
      receivers = {receive set} 
      for each r in receivers 
            send (xr, t) message with input value xr = Zd,r(yd) to r 
      end for 

until end of simulation 
 

5 CONCLUSION 

In this paper, we present an AB-DES modeling approach on a hybrid-space environment for transporta-
tion evacuation simulation. The framework incorporates agents with people’s evacuation behavior and in-
cludes a flexible-structured hybrid-space transportation network. This approach overcomes the limitation 
of restricted movements for agents in a cellular space and allows a higher degree of flexibility in simulat-
ing transportation evacuation scenarios. We construct the AB-DES model in the Parallel DEVS formal-
ism. We also provide algorithms for the DEVS simulators. This AB-DES employs an efficient event-
based scheduling method to avoid unnecessary time-step updates, which are needed in conventional 
agent-based models. This reduces computational time and increases scalability. Future work of this re-
search includes testing the performance of the AB-DES model under different scenarios, especially for 
extremely congested conditions. We will also consider modeling and implementing more evacuation be-
haviors such as flexible routing for travelers with different evacuation strategies.  
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