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ABSTRACT 

Distributed computing has many opportunities for Modeling and Simulation (M&S). Grid computing ap-
proaches have been developed that can use multiple computers to reduce the processing time of an appli-
cation. In terms of M&S this means simulations can be run very quickly by distributing individual runs 
over locally or remotely available computing resources. Distributed simulation techniques allow us to link 
together models over a network enabling the creation of large models and/or models that could not be de-
veloped due to data sharing or model reuse problems. Using real-world examples, this advanced tutorial 
discusses how both approaches can be used to benefit M&S researchers and practitioners alike. 

1 INTRODUCTION 

Distributed computing gives the opportunity to design and implement applications that can run over many 
computers linked together via a communication network and presents interesting possibilities for Model-
ing and Simulation (M&S).  Experimentation can be carried out faster by distributing simulation runs 
over many computers and larger models can be built by linking together models over a network using dis-
tributed simulation and interoperability techniques.  Following previous advanced tutorials in the area 
(Taylor et al. 2009, 2010), this article presents a novel approach to speeding up simulation using a Grid 
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computing approach called Volunteer Computing and discusses how this could be used in industry.  An 
overview of motivations for using distributed simulation and interoperability is given and guidelines for 
the development of large models are presented.  Note literature presented in this article is from the au-
thors’ experiences.  Wider literature reviews on these subjects can be found in the referenced articles. 

2 SPEEDING UP SIMULATION 

The use of many computers to share computing workload and to speed up applications is one of the goals 
of Grid computing.  Overall this field attempts to create managed collaborative working environments 
that share the resources of many organizations to create Virtual Organizations that support the computing, 
instrumentation and data needs of global virtual research communities.  Critical to this is access to de-
pendable, consistent, pervasive and inexpensive high-end computational resources (Foster and Kesselman 
1998).  It is also closely allied to the goals of national and international initiatives in e-Science Infrastruc-
tures, Cyberinfrastructures and e-Infrastructures. Many academic and industrial communities are benefit-
ting from these huge investments in Information and Communication Technologies (ICT).  Although 
there are some isolated examples of where Grid computing has made an impact on M&S practice, gener-
ally, M&S communities have yet to make a sustained benefit.  
 Many M&S Commercial-off-the-shelf (COTS) Simulation Packages (CSPs) such as AnyLogic, Are-
na, AutoMod, Flexsim, Simio, Witness and Simul8 only run on desktop computers (i.e., PCs and/or Macs, 
as opposed to Unix/Linux-based cluster computers typically found in large Grid computing infrastruc-
tures). The sub-field of Desktop Grid Computing that investigates the use of these computers and Grid 
computing is of particular relevance (Mustafee and Taylor 2009).  Most Desktop Grid Computing works 
on the basis of the Manager-Worker principle.  In ‘human’ terms, a manager possesses all the work that 
must be done.  The manager hands out work to his/her workers who process their work and hands back 
the results.  When a worker is free, the worker is given another piece of work to do.  This continues until 
the manager has no more work.  In Grid computing, the Manager is given or generates jobs or tasks which 
are sent out to workers.  The workers have all the required resources needed to process a task.  When a 
task is finished, the results are returned to the manager and another task is given. In terms of M&S this 
means that multiple computers execute simulations runs in parallel with the goal of speeding up simula-
tion experimentation. 
 Taylor et al. (2010) introduced three approaches to using Desktop Grid Computing based on proper-
ties of tasks with respect to data and software.  Reiterating these from an M&S task point of view we have 
two dimensions for tasks: runs and environment requirements.  A task can either run a simulation once or 
multiple times.  A worker environment either needs no special requirements or needs some program, 
model or data installed locally, i.e., simulations can either be sent to a worker in their entirety (program, 
model and data) or require some form of installation.  Examples of these are: 

 Single run task approach:  Here each task represents a simulation run.  This is a set of instruc-
tions to run the simulation, the simulation program, the model and appropriate data.  These self-
contained tasks therefore contain everything needed to accomplish the simulation run. 

 Multiple run task approach: One requirement for successful speed up is that the processing 
time is balanced with the time taken to send out each task and to send back results.  Sometimes it 
can take longer to send and receive this information than to process the simulation.  If this is the 
case then speedup might not be possible.  An alternative is to allow each task to perform several 
simulation runs (for example running several replications/trials).  The concept here is that the 
program/model/data is used multiple times within a task and thus reduces the need to send these 
out repeatedly per simulation run.  Increasing the computation granularity can increase the 
chance of an acceptable speedup.  However, care must be taken to not overly reduce parallelism.  
Also, more complex instructions may be needed if different runs instead of replications are pro-
cessed in a task (i.e., more parameter information is required rather than a series of random num-
ber seeds/streams). 
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 Installed single run approach: In some cases it may not be possible to encapsulate everything a 

task requires to fulfill its purpose.  For example, models may require fixed data sources (data-
bases/spreadsheets) or CSPs may need to be installed (e.g., correctly registered within Windows 
registry with ancillary software/libraries).  In this case a task is just the set of instructions.  The 
worker performs the task according to these instructions using these pre-installed resources.  Ex-
perience has shown that there can be problems with this approach that include operating system 
errors in loading/running software, communication problems between COTS Simulation Package 
and other software packages, and software not being able to run in the background (i.e., the soft-
ware appears on the screen – this is not preferable as it will interrupt the computer user). 

 Installed multiple run approach: This combines the need for multiple runs with the need for 
pre-installation.  

 We now review experiences of ‘grid-enabling’ a simulation application using an approach developed 
by the Enterprise Desktop Grid Initiative (EDGI 2011) based on ‘Volunteer Computing.’ 

3 GRID-ENABLING SIMULATION WITH VOLUNTEER COMPUTING 

To illustrate how Volunteer Computing can be used to speed up simulations we use the systems biology 
simulation SIMAP introduced in Taylor et al. (2010).  Briefly, a biological system is a set of complex in-
teractions (network structure) rather than many individual molecular components.  This can be anything 
from a simple biological process, such as a biochemical reaction cycle, a gene regulatory network or a 
signaling pathway in a cell, tissue, an entire organism, or even an ecological web.  SIMAP (Wang et al. 
2009) supports the modeling of biochemical networks, and also the simulation and analysis of the dynam-
ic behavior of biochemical models.  The tool has been developed in Java and can compute changes of 
species concentrations over time with particular parameter values by simulating a Systems Biology 
Markup Language (SBML) model numerically with SOSlib, the SBML ODE Solver (SOSlib 2011).  Ex-
periences on grid-enabling SIMAP with CONDOR were reported in Wang et al. (2009).  

3.1 Volunteer Computing 

Volunteer Computing, or desktop grid systems, are capable of offering computing resources in the magni-
tude of millions of PCs. The installation and maintenance of the client side software is extremely simple. 
The resources are donated by individuals or institutions and their computing power can be utilized for 
desktop grid computations whenever the processors are idle. However, this also means that desktop grid 
systems come with absolutely no guarantees concerning their quality of service. Desktop grids typically 
implement parameter sweeps (where experimental variables are incrementally changed; one simulation 
per variable combination) or experimentation where inter-process communication is not required. Possi-
bly the most well-known example of this is the Volunteer Computing application supporting the 
SETI@HOME project (SETI 2011) and the most well-known technology is the Berkeley Open Infrastruc-
ture for Network Computing (BOINC 2011). In a previous piece of research we have successfully used 
BOINC to grid-enable Excel-based simulations (Zhang et al. 2007).  
 The SZTAKI Desktop Grid (SZDG 2011; Kacsuk et al. 2009) (Figure 1) is an extension of BOINC in 
order to make it more flexible, versatile and scalable in terms of enabling the interconnection of different 
BOINC projects and execution of parameter sweep applications from a generic, high level user interface 
without the intervention of the BOINC project administrator.  Implementing legacy (existing) applications 
to a BOINC-based grid is facilitated by using a BOINC Wrapper, essentially a batch/script file used by a 
BOINC client to execute the application.  This has several limitations.  The SZDG provides a more gener-
ic solution by using the GenWrapper.  This uses a POSIX-like shell script and environment that gives 
more flexibility for running applications and processing work.   
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 In Grid Computing, tasks are normally submitted through some web-based job submission portal.  
This is the same for the SZDG.  The portal used is the WS-PGRADE portal, an important element of the 
Grid User Support Environment (gUSE 2011, Kacsuk 2011).  gUSE is a grid virtualization environment 
providing a scalable set of high-level Grid services by which interoperation between Grids and user 
communities can be achieved. gUSE provides data management services and control services in the sys-
tem.  The WS-PGRADE portal supports the development of grid applications through a high-level, work-
flow-oriented programming approach.  The nodes of the workflow represent actions (computations) and 
connections between nodes represent file transfers.  The portal also allows local and remote desktop grid 
resources to be mapped to these nodes.  This is supported by extending the architecture with the 3G 
Bridge (Generic Grid-Grid Bridge) and the DC-API (essentially a Grid to BOINC adaptor) which pro-
vides Desktop Grid access to other Grid Infrastructures.  For more information on the development of this 
type of Volunteer Computing technology and other advances in Desktop Grid research see the websites of 
the European EDGeS (Enabling Desktop Grids for e-Science) (EDGeS 2011) and its follow up the EDGI 
(European Desktop Grid Initiative) (EDGI 2011) projects.  
 In this paper the University of Westminster Local Desktop Grid (WLDG) is used, an implementation 
of the SZDG.  This connects laboratory PCs of the University of Westminster (London, UK) into a Desk-
top Grid infrastructure. The university is set over four main campuses and some additional smaller loca-
tions in Central and North-West London each of them offering a variable number of Windows based dual 
core PCs for teaching purposes. Over 1600 of these machines are connected to the WLDG. The WLDG 
can be utilized by the university’s researchers to run their computation intensive tasks. It is also connected 
to the EGI infrastructure by the EDGeS EGI to BOINC Bridge allowing EGI users to run validated appli-
cations on the WLDG. The Westminster Grid Application Supports Service (W-GRASS) offers applica-
tion porting services and runtime support for perspective users. Currently 9 different applications are sup-
ported by the WLDG from diverse disciplines, including bio-molecular simulations, 3-D video rendering, 
x-ray profile analysis and digital signal processing.  W-GRASS implements applications on the Grid by 
following an application development methodology developed by the EDGeS project.  This is now pre-
sented. 

Figure 1: The SZTAKI Desktop Grid. 
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3.2 The EDGeS Application Development Methodology 

The EDGeS Application Development Methodology (EADM) follows series of ‘conventional’ software 
development steps and concentrates only on application specific aspects needed for porting to a service 
grid/desktop grid infrastructure.  The goal is to address necessary questions of application porting within 
existing technical constraints and limitations. Here we give a short overview of the methodology only.  

The EADM distinguishes between five main participant roles. 
 End–users: Users of the application. End-users may have very different technical skills from 

grid experts and only have basic computing skills. 
 Developers/system administrators of the original application: Application programmers who 

developed the current non-Grid or non-EDGeS enabled version of the application or in case of 
commercial applications the system administrators who are responsible for the installation and 
administration of the software.  

 EDGeS Systems Analysts: Responsible for capturing user requirements and for the conceptual 
design specification to port the application to the grid platform.  

 EDGeS Application Programmers: Responsible for the implementation of the migration of 
the application. In most cases this group is envisaged as collaboration between develop-
ers/experts of the original application and programmers with grid-specific knowledge.  

 EDGeS Grid Operators: Responsible for operating the Grid on which the ported applications 
are running. 

The EADM has stages that suggest a logical order. However, the overall process is in most cases iter-
ative allowing stages to be revisited when required (often due to participants gaining a better understand-
ing of the needs and possibilities offered by grid computing).  The stages of EADM are: 

 Analysis of current application: Describes the existing application in detail and identifies the 
target user community, the problem domain, and the typical use cases and functionalities of the 
system.  It also captures technical characteristics, such as the type of computing platform and the 
way of parallelism (if any) utilized by the current application, data access volume and methods, 
memory and hard disk usage, programming language, operating system, or security solutions. An 
Application Description Template has been developed to capture the above information mainly 
from the operators of the existing application. 

 Requirements Analysis: Identify how the target user community will benefit from porting the 
application to the grid platform. The requirements towards the ported application concerning effi-
ciency of execution and data access are analyzed from a user perspective. The target computing 
platform (either service grid or desktop grid) that the user wants to access as an entry point when 
executing the application, and the desired user interface are also identified in the User Require-
ment Specification document. 

 Systems Design: Outlines the proposed structure of the system. The target computing platform, 
the type of user interface, and the parallelization and data access principles are designed taking 
both user requirements and technical feasibility into consideration. The outcome of this stage is a 
Systems Design Specification that identifies at a high-level how the ported application will work 
regarding the above aspects. The use of structural diagrams, such as a system block diagram and 
UML diagram techniques are typically used during this stage. 

 Detailed Design: Provides class level specification of any required modification in the original 
application when porting it to a grid platform. This stage results in a Technical Design Specifica-
tion that forms the basis of the next phase. 

 Implementation: This phase carries out the implementation of the detailed design as specified in 
the Technical Design Specification. 

 Testing: Both the functionalities and the performance of the ported application are evaluated and 
compared to the identified user requirements. 
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 Validation:  This aims to assure that the application causes no harm to the computers of the grid 

donors and also that it conforms to the generic aims of the target grid system. This stage is re-
quired in order to deploy the application on a desktop grid platform where individuals or institu-
tions offer their volunteer resources for the computation and to demonstrate the safety of the grid 
application to donating institutions. 

 Deployment:  The application is published in an application repository and deployed so it can be 
utilized by end-users.  

 User support, maintenance and feedback: Provision of organized support for end-users after 
deployment to support and maintain the application. 

3.3 Porting SIMAP to a Volunteer Computing Desktop Grid 

The EADM was followed to develop a version of SIMAP that runs on WLDG.  The core of SIMAP is the 
SBML ODE Solver Library (SOSlib 2011). SIMAP has a front end that allows a user to specify and run a 
biological model specified in SBML.  Alternatively a user can use a command line interface with argu-
ments that specify the SBML model and associated data.  A single experiment is run (the simulation of 
the model) and results obtained.  A parameter sweep uses SIMAP to run (simulate) a SBML model poten-
tially many thousands of times. A typical usage scenario of the application is the following. 

 The user prepares the SBML model files that he/she wants to execute. 
 The user specifies/uploads the files (or a single archive with the input files) through the user inter-

face (preferably a portal interface). 
 The solution creates work units from the input files, and sends them for execution to the compute 

nodes of the grid. 
 The compute nodes run the simulation, and send back the results to the server. 
 The GUI provides a way to download the results. 
 The user can use the downloaded results and do further analyzing and processing. 

 In Grid computing the existence of a command line interface makes the task of porting an application 
to a Grid system a lot easier (as the alternative would be to redevelop the application to directly link to 
Grid software).  Essentially a worker uses a batch file containing command line arguments to run the 
‘grid-enabled’ application.  The existence of a command line interface therefore offers a simple parallel-
ization technique. Without modifying the original application at all, the application can be simply distrib-
uted with required SBML input files to the worker nodes. The application will therefore contain three 
parts: a generator, a set of worker, and a collector application. The generator gets input from the user and 
creates a work unit for each SIMAP input file. The worker runs the simulation and sends back the results 
to the server, where the collector creates an archive which will hold the result files. Master-worker type 
parallelization is possible as the simulations are independent from each other.  The relationship between 
these parts is shown in Figure 2.   The key here to a quick Grid implementation is that the SIMAP appli-
cation does not require any modification as it can be accessed by a command line interface. Only a batch 
file wrapper is needed which implements the control flow shown in Figure 2.   
 The application is computation but not data intensive. Therefore, there are no special requirements on 
data access. The normal BOINC data distribution mechanism is sufficient.  The following list summarizes 
the minimum set of files required by the implementation. 

1. Input ZIP file: The archive file that will be uploaded by the user on the portal. This archive 
holds all of the SBML files. The size of this file can be large and will have some effect on per-
formance.  However, this should be mitigated by overall runtime. 

2. SBML model file: the SOSlib application that runs on the worker nodes executes a simulation 
according to the parameters described in this file. 
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3. Result files: the SOSlib application on the client nodes generates a text file that is the output of 
the simulation. These output files should be sent back to the server to be processed by the collec-
tor application. 

4. Output file: the final output of the workflow is again a ZIP file that holds all of the result files. 

5. SOSlib files: all of the files that are needed to execute the SBML ODE Solver Library application 
on a client computer. These are sent to the worker with the model files. 

6. Log files: log files generated by the worker application. 

7. Batch script file: the script file detailing the models that the SOSlib simulates. 

The Generator, Application (SIMAP), Collector workflow is implemented and executed through the WS-
PGRADE portal.  This allows users to upload the required files and specify the different parameters on an 
easy to use web based form (a simple HTML form) before submission.   

Figure 2: Control flow of the ported SIMAP application 
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3.4 Summary 

With Systems Biology simulations only taking a short amount of time to execute (but in large numbers), 
this approach obviously follows the multiple run task approach.  Speedups are modest with better per-
formance being delivered with multiple simulations per task.  For example, for a simulation that takes ap-
proximately 20 seconds to run sending out 32 simulations per job yields a speed up of around 6 and 64 
simulations per job around 15.  Further performance testing is currently in progress to determine if this 
trend carries on with larger amounts of simulations.  An alternative approach using the desktop grid tech-
nology CONDOR gives comparable speed ups for single task jobs.  However, speedups are significantly 
better when using a multiple run task approach. The modest speed up is due to sharing the desktop PCs 
with other applications and other users across a campus, i.e., the CONDOR implementation reported in 
Wang et al. (2009) uses a set of PCs on a single LAN with no other PC users present.  What is attractive 
is the ‘speed’ that a Grid application can be set up on an existing BOINC-based Grid infrastructure such 
as the Westminster Grid and that the application can then be used on any Grid that implements the SZDG 
technology (which is becoming more and more widespread.  We now consider the challenges of this ap-
proach, and other similar Grid approaches, in M&S industry. 

4 GRID COMPUTING: CHALLENGES FOR INDUSTRY  

The previous section discussed an implementation of a Systems Biology simulation.  Multiple runs were 
needed to get faster execution than running on a single PC.  Key to this, however, was the simplicity of 
implementation.  The fact that nothing needed to be installed means that any PC can be used to run the 
simulations.  CSPs used in academia and industry virtually all require some installation.  Further, the data 
used by models will be in some database or spreadsheet that needs to be locally accessible by the simula-
tion.   There is certainly the need for Grid computing as time within a simulation project is always being 
‘squeezed’ (end of project data is fixed, delays in gathering data, building models, accessing experts) and 
simulation studies often generate more experiments and questions than expected.  It is not unreasonable 
for individual simulation runs to take from a few minutes to over 10 hours.  If each experiment has (say) 
10 replications and a scenario has (say) 10 experiments then with just one ‘thread’ of investigation we 
have 80 hours (3+ days!).  This does not even include Validation and Verification (V&V).  Using Grid 
computing to support M&S CSPs in real-world industrial environments is certainly possible and examples 
include WINGRID (Mustafee and Taylor 2009) and SAKERGRID (Taylor et al. 2010).  Some CSPs have 
basic Grid elements.  Simul8, for examples, allows replications to be run using a limited form of Volun-
teer Computing.  Indeed, in a joint research project between Brunel University, Simul8 and the EDGI pro-
ject (University of Westminster), research is under way to determine the extent to which the SZDG tech-
nology can support a widespread Volunteer Computing implementation of Simul8.  We now briefly 
present the challenges that Grid computing approaches must meet if widespread utilization of these in in-
dustry is to be achieved.   

 M&S is a costly endeavor and any cost increase must be balanced with a clear return on invest-
ment, i.e., there must be a clear business case for developing a Grid solution. 

 Users of CSPs tend to have an operational research or management science skillset.  Most will 
not have formal experience of programming such as one might receive in a Computer Science 
course and possibly will have some programming language experience such as Visual Basic.  The 
system must be deployed within the same set.  

 Experience has shown that Grid-based applications development needs a balanced and committed 
team consisting of Grid application developers, end users, IT management and CSP vendors.  It is 
often difficult to find the right ‘language’ to implement the right solution for the right problem. 

 Companies using CSPs will have either basic or sophisticated IT management.  Both have things 
to take into account.  Basic IT management needs a simple system.  Sophisticated IT management 
has rules and compliancy policies that must be adhered to.  These policies differ from organiza-
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tion to organization (particularly academic vs. industry).  Both may heavily restrict the type of 
implementation. 

 More and more CSPs use an experimentation manager or consultants will develop an experimen-
tation manager to control experimentation.  This is the user interface that must be deployed with, 
ideally, job submission technology in-built. 

 Virtually all CSPs are ‘black box’ applications that run in Windows and must be installed in 
Windows Registry to access supporting programs such as DLLs, etc. 

 Virtually all simulation models use data sources such as databases and/or spreadsheets that must 
be reliably launched, accessed and terminated during a run (e.g., if a link between a CSP and, say, 
Excel breaks then the infrastructure must be capable of detecting and recovering from this).  

 Models can crash due to unforeseen errors in verification, dropped links between the CSP and 
supporting software, supporting software crashes. 

 CSPs are typically licensed and Grid solutions may be restricted to the number of licenses an or-
ganization has. 

 Security requirements may restrict what machines simulations can be run on.  
 Currently, there are no Grid computing implementation standards.  The lack of a clear set of im-

plementation standards will increase the cost of Grid implementation (i.e., no ‘off-the-shelf’ solu-
tion). 

5 DISTRIBUTED SIMULATION AND LARGE MODELS 

In terms of software limitations, if a modeler wishes to build a large model in a single CSP then s/he is 
only restricted by the capabilities of the package (number of entities, time limit, event processing speed, 
event list size, etc.)  In some cases it may be convenient to create a large model from a combination of ex-
isting and new models.  Conveniently one may think of ‘cutting and pasting’ these models together in the 
visual modeling environment of a CSP.  However, this may not be as convenient as it sounds or even pos-
sible.  This is for several reasons: 

 Privacy: A model representing several organizations may require privacy, i.e., each organization 
may not wish to reveal data and/or internal operations to other organizations.  A single modeling 
approach would by implication reveal data through shared databases and spreadsheets and inter-
nal workings by model detail.  Corporate secrecy would make this impossible. 

 Data transfer/access problems.  In some situations privacy may not be an issue.  A single model 
running on a single computer will still need data from different organizational systems represent-
ed in the model.  The options are to copy data from one organization to another or to link the data 
source to the model over an intranet or the Internet.  Databases can be large and time consuming 
to copy and access can be slow.  Depending on the system, data when copied is instantly out of 
date.  Running a model using copies of organization data can therefore significantly increase the 
execution time of a simulation and/or be inaccurate.  

 Model composability problems.  A ‘cut and paste’ approach may not be as easy as it sounds.  Var-
iable name clashes, global variables and different validation assumptions are three examples of 
the many problems of this approach.  Further, if an organization needs to update its model, it has 
to update the single model.  How do we make sure that every organization has the correct version 
of the single model?  What if the update causes problems in another part of the single model 
owned by another organization?  Additionally, models developed in different CSPs are simply not 
compatible.  One cannot transfer a model developed in one CSP into another without significant 
effort. 

 Execution Time.  Large models will most likely develop large event lists that must be processed 
and updated each time an event is executed.  This can take a considerable amount of time.  
Worse, the processing capacity of even a high specification PC may not be enough to physically 
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cope as the actual CSP may have an upper limit on the event list size that can be swapped in and 
out of virtual memory. 

 An alternative to cut and paste is distributed simulation (Fujimoto 2000).  Here models running in 
their CSPs on different computers interact, or interoperate, together in a single but distributed simulation.  
Each CSP maintains its own event list and CSPs interact via specialist distributed simulation software.  
Time over the distributed simulation is handled by variants of different time management synchronization 
algorithms (Fujimoto 1990).  The functionality of the specialist distributed simulation software is defined 
in the IEEE 1516 High Level Architecture (IEEE 2010) (first released in 2000 and updated in 2010).   In 
HLA terminology, a distributed simulation is called a federation, and each individual simulator (in our 
case the combination of a CSP and its model) is referred to as a federate. The HLA Federate Interface 
Specification (FIS) defines distributed simulation software termed a Runtime Infrastructure (RTI).  A dis-
tributed simulation is therefore a federation composed of many federates interacting over a communica-
tion network via RTI software (Fujimoto and Weatherly 1996).   
 The HLA is complex and there are few people who completely understand M&S, CSPs, distributed 
simulation, the HLA and RTIs.  Efforts are being made to simplify the theory and practice of CSP-based 
distributed simulation (Taylor et al. 2006).  This is being led by the COTS Simulation Package Interoper-
ability Product Development Group (CSPI PDG) under the Simulation Interoperability Standards Organi-
zation (SISO) and is producing a suite of CSP distributed simulation standards. As part of this activity a 
set of four Interoperability Reference Models (IRMs) have been defined to create a common frame of ref-
erence to assess the capabilities of particular approaches and to help practitioners and vendors achieve so-
lutions to complex interoperability problems (Taylor et al. 2007; SISO 2010).  These were created by fol-
lowing SISO’s standards development process which involves several rounds of voting/balloting and 
refinement before a standard is formally recognized by SISO’s Standards Activity Committee and its Ex-
ecutive Committee.  It is important to note that the balloting and standard development involved software 
vendors.  Without this buy-in from the vendors, the standard would not have significant impact. These 
need to be used in conjunction with CSP handler software that links a CSP to an RTI.  A brief overview 
of the IRMs is now presented. 

6 INTEROPERABILITY REFERENCE MODELS 

IRMs are a set of simulation patterns or templates that enable modelers, vendors and solution developers 
to specify the interoperability problems that must be solved.  The Interoperability Reference Models 
(IRMs) are intended to be used as follows: 

 To clearly identify the model/CSP interoperability capabilities of an existing distributed simula-
tion, e.g., the distributed supply chain simulation is compliant with IRMs Type A.1, A.2 and B.1. 

 To clearly specify the model/CSP interoperability requirements of a proposed distributed simula-
tion, e.g., the distributed hospital simulation must be compliant with IRMs Type A.1 and C.1. 

 An IRM is defined as the simplest representation of a problem within an identified interoperability 
problem type.  Each IRM can be subdivided into different subcategories of problem.  As IRMs are usually 
relevant to the boundary between two or more interoperating models, models specified in IRMs are as 
simple as possible to “capture” the interoperability problem and to avoid possible confusion.  These simu-
lation models are intended to be representative of real model/CSPs but use a set of “common” model ele-
ments that can be mapped onto particular CSP elements.  Where appropriate, IRMs specify time synchro-
nization requirements and present alternatives.  IRMs are intended to be cumulative (i.e., some problems 
may well consist of several IRMs).  Most importantly, IRMs are intended to be understandable by simula-
tion developers, CSP vendors and technology solution providers. 

There are currently four different types of IRM.  These are: 
 Type A: Entity Transfer 
 Type B: Shared Resource 
 Type C: Shared Event 
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 Type D: Shared Data Structure 

 
 Briefly, IRM Type A Entity Transfer deals with the requirement of transferring entities between 
simulation models, such as an entity Part leaving one model and arriving at the next.  IRM Type B 
Shared Resource refers to sharing of resources across simulation models.  For example, a resource R 
might be common between two models and represents a pool of workers.  In this scenario, when a ma-
chine in a model attempts to process an entity waiting in its queue it must also have a worker.  If a worker 
is available in R then processing can take place.  If not then work must be suspended until one is availa-
ble.  IRM Type C Shared Event deals with the sharing of events across simulation models.  For example, 
when a variable within a model reaches a given threshold value (a quantity of production, an average ma-
chine utilization, etc.) it should be able to signal this fact to all models that have an interest in this fact (to 
throttle down throughput, route materials via a different path, etc.).  IRM Type D Shared Data Structure 
deals with the sharing of variables and data structures across simulation models.  Such data structures are 
semantically different to resources, for example a bill of materials or a common inventory.   

As most distributed simulations with CSPs concern the transfer of entities between simulations, in 
this advanced tutorial we give a brief overview of the IRM Type A.  Further details can be found in the 
full description of the standard (SISO 2010).  There are currently three IRM Type A Sub-types. These 
are:  

 IRM Type A.1: General Entity Transfer 
 IRM Type A.2: Bounded Receiving Element 
 IRM Type A.3: Multiple Input Prioritization 

6.1 IRM Type A.1 General Entity Transfer 

IRM Type A.1 General Entity Transfer represents the case where an entity e1 leaves activity A1 in model 
M1 at T1 and arrives at queue Q2 in model M2 at T2. This IRM is inclusive of cases where there are 
many models and many entity transfers (all transfers are instances of this IRM). This IRM does not in-
clude cases where (a) the receiving element is bounded (IRM Type A.2), and (b) multiple inputs need to 
be prioritized (IRM Type A.3). The IRM Type A.1 General Entity Transfer is defined as the transfer of 
entities from one model to another such that an entity e1 leaves model M1 at T1 from a given place and 
arrives at model M2 at T2 at a given place and T1 =< T2 or T1<T2.  The place of departure and arrival 
will be a queue, workstation, etc.  Note that this inequality must be specified. 

6.2 IRM Type A.2 Bounded Receiving Element 

Consider a production line where a machine is just finishing working on a part.  If the next element in the 
production process is a buffer in another model, the part will be transferred from the machine to the buff-
er.  If, however, the next element is bounded, for example a buffer with limited space or another machine 
(i.e., no buffer space), then a check must be performed to see if there is space or the next machine is free.  
If there is no space, or the next machine is busy, then to correctly simulate the behavior of the production 
process, the current machine must hold onto the part and block, i.e., it cannot accept any new parts to pro-
cess until it becomes unblocked (assuming that the machine can only process one part at a time).  The 
consequences of this are quite subtle.  This is the core problem of the IRM Type A.2.  If, for example, an 
entity e1 attempts to leave model M1 at T1 from activity A1, to arrive at model M2 at T2 in bounded 
queue Q2.  If A1 represents a machine then the following scenario is possible.  When A1 finishes work on 
a part (an entity), it attempts to pass the part to queue Q2.  If Q2 has spare capacity, then the part can be 
transferred.  However, if Q2 is full then A1 cannot release its part and must block.  Parts in Q1 must now 
wait for A1 to become free before they can be machined.  Further, when Q2 once again has space, A1 
must be notified that it can release its part and transfer it to Q2.  Finally, it is important to note the fact 
that if A1 is blocked the rest of model M1 still functions as normal, i.e., a correct solution to this problem 
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must still allow the rest of the model to be simulated (rather than just stopping the simulation of M1 until 
Q2 has unblocked). 

This IRM is therefore inclusive of cases where the receiving element (queue, workstation, etc.) is 
bounded. This IRM does not include cases where multiple inputs need to be prioritized (IRM Type A.3 – 
this is not discussed in this tutorial). Finally, a solution to this IRM problem must also be able to transfer 
entities (IRM Type A.1). The IRM Type A.2 is defined as the relationship between an element O in a 
model M1 and a bounded element Ob in a model M2 such that if an entity e is ready to leave element O at 
T1 and attempts to arrive at bounded element Ob at T2 then: 

 If bounded element Ob is empty, the entity e can leave element O at T1 and arrive at Ob at T2, or 
 If bounded element Ob is full, the entity e cannot leave element O at T1; element O may then 

block if appropriate and must not accept any more entities. 
 When bounded element Ob becomes not full at T3, entity e must leave O at T3 and arrive at Ob at 

T4; element O becomes unblocked and may receive new entities at T3.   
 T1=<T2 and T3=<T4. 
 If element O is blocked then the simulation of model M1 must continue. 

Note: 
 In some special cases, element O may represent some real world process that may not need to 

block. 
 If T3<T4 then it may be possible for bounded element Ob to become full again during the interval 

if other inputs to Ob are allowed.   

6.3 IRM Type A.3 Multiple Input Prioritization 

The IRM Type A.3 Multiple Input Prioritization represents the case where a model element such as queue 
Q1 (or workstation) can receive entities from multiple places.  Let us assume that there are two models 
M2 and M3 which are capable of sending entities to Q1 and that Q1 has a First-In-First-Out (FIFO) queu-
ing discipline.  If an entity e1 is sent from M2 at T1 and arrives at Q1 at T2 and an entity e2 is sent from 
M3 at T3 and arrives at Q1 at T4, then if T2<T4 we would expect the order of entities in Q1 would be e1, 
e2.  A problem arises when both entities arrive at the same time, i.e., when T2=T4.  Depending on im-
plementation, the order of entities would either be e1, e2 or e2, e1.  In some modeling situations it is pos-
sible to specify the priority order if such a conflict arises, e.g., it can be specified that model M1 entities 
will always have a higher priority than model M2 (and therefore require the entity order e1, e2 if T2=T4).  
Further, it is possible that this priority ordering could be dynamic or specialized.   This IRM is therefore 
inclusive of cases where multiple inputs need to be prioritized. This IRM does not include cases where the 
receiving element is bounded (IRM Type A.2). A solution to this IRM problem must also be able to trans-
fer entities (IRM Type A.1).  The IRM Type A.3 Multiple Input Prioritization is defined as the preserva-
tion of the priority relationship between a set of models that can send entities to a model with receiving 
queue Q, such that priority ordering is observed if two or more entities arrive at the same time.  Note that 
the priority rules must be specified and the priority rules may change during a simulation if required for 
the real system being simulated. 

7 CONCLUSIONS 

Motivated by advances in distributed computing, this paper has presented two threads of advanced com-
puting as applied to M&S.  There are many more such as Groupware and Cloud Computing, and the ben-
efits of these are being felt in many areas.  M&S has to a certain extent been neglected but is catching up 
quickly.  We hope that this advanced tutorial will promote discussion and more demand of these technol-
ogies. 
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