
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

DISTRIBUTED COMPUTING AND MODELING & SIMULATION:
SPEEDING UP SIMULATIONS AND CREATING LARGE MODELS

Simon J. E. Taylor
Mohammadmersad Ghorbani

Tamas Kiss
Daniel Farkas

Brunel University

ICT Innovation Group
School of Information Systems, Computing and

Mathematics
Uxbridge, UB8 3PH, UK

University of Westminster
Centre for Parallel Computing

New Cavendish Street
London, W1W 6UW, UK

Navonil Mustafee Shane Kite

Swansea University
School of Business and Economics

Singleton Park
Swansea, SA28PP, Wales, UK

Saker Solutions
Upper Courtyard

Ragley Hall
Alcester, B49 5NJ UK

Stephen J. Turner

Steffen Straßburger

Nanyang Technological University
Parallel & Distributed Computing Centre

School of Computer Engineering
Singapore 639798, SINGAPORE

Ilmenau University of Technology
School of Economic Sciences

Helmholtzplatz 3
98693 Ilmenau, GERMANY

ABSTRACT

Distributed computing has many opportunities for Modeling and Simulation (M&S). Grid computing ap-
proaches have been developed that can use multiple computers to reduce the processing time of an appli-
cation. In terms of M&S this means simulations can be run very quickly by distributing individual runs
over locally or remotely available computing resources. Distributed simulation techniques allow us to link
together models over a network enabling the creation of large models and/or models that could not be de-
veloped due to data sharing or model reuse problems. Using real-world examples, this advanced tutorial
discusses how both approaches can be used to benefit M&S researchers and practitioners alike.

1 INTRODUCTION

Distributed computing gives the opportunity to design and implement applications that can run over many
computers linked together via a communication network and presents interesting possibilities for Model-
ing and Simulation (M&S). Experimentation can be carried out faster by distributing simulation runs
over many computers and larger models can be built by linking together models over a network using dis-
tributed simulation and interoperability techniques. Following previous advanced tutorials in the area
(Taylor et al. 2009, 2010), this article presents a novel approach to speeding up simulation using a Grid

161978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

computing approach called Volunteer Computing and discusses how this could be used in industry. An
overview of motivations for using distributed simulation and interoperability is given and guidelines for
the development of large models are presented. Note literature presented in this article is from the au-
thors’ experiences. Wider literature reviews on these subjects can be found in the referenced articles.

2 SPEEDING UP SIMULATION

The use of many computers to share computing workload and to speed up applications is one of the goals
of Grid computing. Overall this field attempts to create managed collaborative working environments
that share the resources of many organizations to create Virtual Organizations that support the computing,
instrumentation and data needs of global virtual research communities. Critical to this is access to de-
pendable, consistent, pervasive and inexpensive high-end computational resources (Foster and Kesselman
1998). It is also closely allied to the goals of national and international initiatives in e-Science Infrastruc-
tures, Cyberinfrastructures and e-Infrastructures. Many academic and industrial communities are benefit-
ting from these huge investments in Information and Communication Technologies (ICT). Although
there are some isolated examples of where Grid computing has made an impact on M&S practice, gener-
ally, M&S communities have yet to make a sustained benefit.
 Many M&S Commercial-off-the-shelf (COTS) Simulation Packages (CSPs) such as AnyLogic, Are-
na, AutoMod, Flexsim, Simio, Witness and Simul8 only run on desktop computers (i.e., PCs and/or Macs,
as opposed to Unix/Linux-based cluster computers typically found in large Grid computing infrastruc-
tures). The sub-field of Desktop Grid Computing that investigates the use of these computers and Grid
computing is of particular relevance (Mustafee and Taylor 2009). Most Desktop Grid Computing works
on the basis of the Manager-Worker principle. In ‘human’ terms, a manager possesses all the work that
must be done. The manager hands out work to his/her workers who process their work and hands back
the results. When a worker is free, the worker is given another piece of work to do. This continues until
the manager has no more work. In Grid computing, the Manager is given or generates jobs or tasks which
are sent out to workers. The workers have all the required resources needed to process a task. When a
task is finished, the results are returned to the manager and another task is given. In terms of M&S this
means that multiple computers execute simulations runs in parallel with the goal of speeding up simula-
tion experimentation.
 Taylor et al. (2010) introduced three approaches to using Desktop Grid Computing based on proper-
ties of tasks with respect to data and software. Reiterating these from an M&S task point of view we have
two dimensions for tasks: runs and environment requirements. A task can either run a simulation once or
multiple times. A worker environment either needs no special requirements or needs some program,
model or data installed locally, i.e., simulations can either be sent to a worker in their entirety (program,
model and data) or require some form of installation. Examples of these are:

 Single run task approach: Here each task represents a simulation run. This is a set of instruc-
tions to run the simulation, the simulation program, the model and appropriate data. These self-
contained tasks therefore contain everything needed to accomplish the simulation run.

 Multiple run task approach: One requirement for successful speed up is that the processing
time is balanced with the time taken to send out each task and to send back results. Sometimes it
can take longer to send and receive this information than to process the simulation. If this is the
case then speedup might not be possible. An alternative is to allow each task to perform several
simulation runs (for example running several replications/trials). The concept here is that the
program/model/data is used multiple times within a task and thus reduces the need to send these
out repeatedly per simulation run. Increasing the computation granularity can increase the
chance of an acceptable speedup. However, care must be taken to not overly reduce parallelism.
Also, more complex instructions may be needed if different runs instead of replications are pro-
cessed in a task (i.e., more parameter information is required rather than a series of random num-
ber seeds/streams).

162

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

 Installed single run approach: In some cases it may not be possible to encapsulate everything a

task requires to fulfill its purpose. For example, models may require fixed data sources (data-
bases/spreadsheets) or CSPs may need to be installed (e.g., correctly registered within Windows
registry with ancillary software/libraries). In this case a task is just the set of instructions. The
worker performs the task according to these instructions using these pre-installed resources. Ex-
perience has shown that there can be problems with this approach that include operating system
errors in loading/running software, communication problems between COTS Simulation Package
and other software packages, and software not being able to run in the background (i.e., the soft-
ware appears on the screen – this is not preferable as it will interrupt the computer user).

 Installed multiple run approach: This combines the need for multiple runs with the need for
pre-installation.

 We now review experiences of ‘grid-enabling’ a simulation application using an approach developed
by the Enterprise Desktop Grid Initiative (EDGI 2011) based on ‘Volunteer Computing.’

3 GRID-ENABLING SIMULATION WITH VOLUNTEER COMPUTING

To illustrate how Volunteer Computing can be used to speed up simulations we use the systems biology
simulation SIMAP introduced in Taylor et al. (2010). Briefly, a biological system is a set of complex in-
teractions (network structure) rather than many individual molecular components. This can be anything
from a simple biological process, such as a biochemical reaction cycle, a gene regulatory network or a
signaling pathway in a cell, tissue, an entire organism, or even an ecological web. SIMAP (Wang et al.
2009) supports the modeling of biochemical networks, and also the simulation and analysis of the dynam-
ic behavior of biochemical models. The tool has been developed in Java and can compute changes of
species concentrations over time with particular parameter values by simulating a Systems Biology
Markup Language (SBML) model numerically with SOSlib, the SBML ODE Solver (SOSlib 2011). Ex-
periences on grid-enabling SIMAP with CONDOR were reported in Wang et al. (2009).

3.1 Volunteer Computing

Volunteer Computing, or desktop grid systems, are capable of offering computing resources in the magni-
tude of millions of PCs. The installation and maintenance of the client side software is extremely simple.
The resources are donated by individuals or institutions and their computing power can be utilized for
desktop grid computations whenever the processors are idle. However, this also means that desktop grid
systems come with absolutely no guarantees concerning their quality of service. Desktop grids typically
implement parameter sweeps (where experimental variables are incrementally changed; one simulation
per variable combination) or experimentation where inter-process communication is not required. Possi-
bly the most well-known example of this is the Volunteer Computing application supporting the
SETI@HOME project (SETI 2011) and the most well-known technology is the Berkeley Open Infrastruc-
ture for Network Computing (BOINC 2011). In a previous piece of research we have successfully used
BOINC to grid-enable Excel-based simulations (Zhang et al. 2007).
 The SZTAKI Desktop Grid (SZDG 2011; Kacsuk et al. 2009) (Figure 1) is an extension of BOINC in
order to make it more flexible, versatile and scalable in terms of enabling the interconnection of different
BOINC projects and execution of parameter sweep applications from a generic, high level user interface
without the intervention of the BOINC project administrator. Implementing legacy (existing) applications
to a BOINC-based grid is facilitated by using a BOINC Wrapper, essentially a batch/script file used by a
BOINC client to execute the application. This has several limitations. The SZDG provides a more gener-
ic solution by using the GenWrapper. This uses a POSIX-like shell script and environment that gives
more flexibility for running applications and processing work.

163

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

 In Grid Computing, tasks are normally submitted through some web-based job submission portal.
This is the same for the SZDG. The portal used is the WS-PGRADE portal, an important element of the
Grid User Support Environment (gUSE 2011, Kacsuk 2011). gUSE is a grid virtualization environment
providing a scalable set of high-level Grid services by which interoperation between Grids and user
communities can be achieved. gUSE provides data management services and control services in the sys-
tem. The WS-PGRADE portal supports the development of grid applications through a high-level, work-
flow-oriented programming approach. The nodes of the workflow represent actions (computations) and
connections between nodes represent file transfers. The portal also allows local and remote desktop grid
resources to be mapped to these nodes. This is supported by extending the architecture with the 3G
Bridge (Generic Grid-Grid Bridge) and the DC-API (essentially a Grid to BOINC adaptor) which pro-
vides Desktop Grid access to other Grid Infrastructures. For more information on the development of this
type of Volunteer Computing technology and other advances in Desktop Grid research see the websites of
the European EDGeS (Enabling Desktop Grids for e-Science) (EDGeS 2011) and its follow up the EDGI
(European Desktop Grid Initiative) (EDGI 2011) projects.
 In this paper the University of Westminster Local Desktop Grid (WLDG) is used, an implementation
of the SZDG. This connects laboratory PCs of the University of Westminster (London, UK) into a Desk-
top Grid infrastructure. The university is set over four main campuses and some additional smaller loca-
tions in Central and North-West London each of them offering a variable number of Windows based dual
core PCs for teaching purposes. Over 1600 of these machines are connected to the WLDG. The WLDG
can be utilized by the university’s researchers to run their computation intensive tasks. It is also connected
to the EGI infrastructure by the EDGeS EGI to BOINC Bridge allowing EGI users to run validated appli-
cations on the WLDG. The Westminster Grid Application Supports Service (W-GRASS) offers applica-
tion porting services and runtime support for perspective users. Currently 9 different applications are sup-
ported by the WLDG from diverse disciplines, including bio-molecular simulations, 3-D video rendering,
x-ray profile analysis and digital signal processing. W-GRASS implements applications on the Grid by
following an application development methodology developed by the EDGeS project. This is now pre-
sented.

Figure 1: The SZTAKI Desktop Grid.

164

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

3.2 The EDGeS Application Development Methodology

The EDGeS Application Development Methodology (EADM) follows series of ‘conventional’ software
development steps and concentrates only on application specific aspects needed for porting to a service
grid/desktop grid infrastructure. The goal is to address necessary questions of application porting within
existing technical constraints and limitations. Here we give a short overview of the methodology only.

The EADM distinguishes between five main participant roles.
 End–users: Users of the application. End-users may have very different technical skills from

grid experts and only have basic computing skills.
 Developers/system administrators of the original application: Application programmers who

developed the current non-Grid or non-EDGeS enabled version of the application or in case of
commercial applications the system administrators who are responsible for the installation and
administration of the software.

 EDGeS Systems Analysts: Responsible for capturing user requirements and for the conceptual
design specification to port the application to the grid platform.

 EDGeS Application Programmers: Responsible for the implementation of the migration of
the application. In most cases this group is envisaged as collaboration between develop-
ers/experts of the original application and programmers with grid-specific knowledge.

 EDGeS Grid Operators: Responsible for operating the Grid on which the ported applications
are running.

The EADM has stages that suggest a logical order. However, the overall process is in most cases iter-
ative allowing stages to be revisited when required (often due to participants gaining a better understand-
ing of the needs and possibilities offered by grid computing). The stages of EADM are:

 Analysis of current application: Describes the existing application in detail and identifies the
target user community, the problem domain, and the typical use cases and functionalities of the
system. It also captures technical characteristics, such as the type of computing platform and the
way of parallelism (if any) utilized by the current application, data access volume and methods,
memory and hard disk usage, programming language, operating system, or security solutions. An
Application Description Template has been developed to capture the above information mainly
from the operators of the existing application.

 Requirements Analysis: Identify how the target user community will benefit from porting the
application to the grid platform. The requirements towards the ported application concerning effi-
ciency of execution and data access are analyzed from a user perspective. The target computing
platform (either service grid or desktop grid) that the user wants to access as an entry point when
executing the application, and the desired user interface are also identified in the User Require-
ment Specification document.

 Systems Design: Outlines the proposed structure of the system. The target computing platform,
the type of user interface, and the parallelization and data access principles are designed taking
both user requirements and technical feasibility into consideration. The outcome of this stage is a
Systems Design Specification that identifies at a high-level how the ported application will work
regarding the above aspects. The use of structural diagrams, such as a system block diagram and
UML diagram techniques are typically used during this stage.

 Detailed Design: Provides class level specification of any required modification in the original
application when porting it to a grid platform. This stage results in a Technical Design Specifica-
tion that forms the basis of the next phase.

 Implementation: This phase carries out the implementation of the detailed design as specified in
the Technical Design Specification.

 Testing: Both the functionalities and the performance of the ported application are evaluated and
compared to the identified user requirements.

165

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

 Validation: This aims to assure that the application causes no harm to the computers of the grid

donors and also that it conforms to the generic aims of the target grid system. This stage is re-
quired in order to deploy the application on a desktop grid platform where individuals or institu-
tions offer their volunteer resources for the computation and to demonstrate the safety of the grid
application to donating institutions.

 Deployment: The application is published in an application repository and deployed so it can be
utilized by end-users.

 User support, maintenance and feedback: Provision of organized support for end-users after
deployment to support and maintain the application.

3.3 Porting SIMAP to a Volunteer Computing Desktop Grid

The EADM was followed to develop a version of SIMAP that runs on WLDG. The core of SIMAP is the
SBML ODE Solver Library (SOSlib 2011). SIMAP has a front end that allows a user to specify and run a
biological model specified in SBML. Alternatively a user can use a command line interface with argu-
ments that specify the SBML model and associated data. A single experiment is run (the simulation of
the model) and results obtained. A parameter sweep uses SIMAP to run (simulate) a SBML model poten-
tially many thousands of times. A typical usage scenario of the application is the following.

 The user prepares the SBML model files that he/she wants to execute.
 The user specifies/uploads the files (or a single archive with the input files) through the user inter-

face (preferably a portal interface).
 The solution creates work units from the input files, and sends them for execution to the compute

nodes of the grid.
 The compute nodes run the simulation, and send back the results to the server.
 The GUI provides a way to download the results.
 The user can use the downloaded results and do further analyzing and processing.

 In Grid computing the existence of a command line interface makes the task of porting an application
to a Grid system a lot easier (as the alternative would be to redevelop the application to directly link to
Grid software). Essentially a worker uses a batch file containing command line arguments to run the
‘grid-enabled’ application. The existence of a command line interface therefore offers a simple parallel-
ization technique. Without modifying the original application at all, the application can be simply distrib-
uted with required SBML input files to the worker nodes. The application will therefore contain three
parts: a generator, a set of worker, and a collector application. The generator gets input from the user and
creates a work unit for each SIMAP input file. The worker runs the simulation and sends back the results
to the server, where the collector creates an archive which will hold the result files. Master-worker type
parallelization is possible as the simulations are independent from each other. The relationship between
these parts is shown in Figure 2. The key here to a quick Grid implementation is that the SIMAP appli-
cation does not require any modification as it can be accessed by a command line interface. Only a batch
file wrapper is needed which implements the control flow shown in Figure 2.
 The application is computation but not data intensive. Therefore, there are no special requirements on
data access. The normal BOINC data distribution mechanism is sufficient. The following list summarizes
the minimum set of files required by the implementation.

1. Input ZIP file: The archive file that will be uploaded by the user on the portal. This archive
holds all of the SBML files. The size of this file can be large and will have some effect on per-
formance. However, this should be mitigated by overall runtime.

2. SBML model file: the SOSlib application that runs on the worker nodes executes a simulation
according to the parameters described in this file.

166

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

3. Result files: the SOSlib application on the client nodes generates a text file that is the output of
the simulation. These output files should be sent back to the server to be processed by the collec-
tor application.

4. Output file: the final output of the workflow is again a ZIP file that holds all of the result files.

5. SOSlib files: all of the files that are needed to execute the SBML ODE Solver Library application
on a client computer. These are sent to the worker with the model files.

6. Log files: log files generated by the worker application.

7. Batch script file: the script file detailing the models that the SOSlib simulates.

The Generator, Application (SIMAP), Collector workflow is implemented and executed through the WS-
PGRADE portal. This allows users to upload the required files and specify the different parameters on an
easy to use web based form (a simple HTML form) before submission.

Figure 2: Control flow of the ported SIMAP application

167

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

3.4 Summary

With Systems Biology simulations only taking a short amount of time to execute (but in large numbers),
this approach obviously follows the multiple run task approach. Speedups are modest with better per-
formance being delivered with multiple simulations per task. For example, for a simulation that takes ap-
proximately 20 seconds to run sending out 32 simulations per job yields a speed up of around 6 and 64
simulations per job around 15. Further performance testing is currently in progress to determine if this
trend carries on with larger amounts of simulations. An alternative approach using the desktop grid tech-
nology CONDOR gives comparable speed ups for single task jobs. However, speedups are significantly
better when using a multiple run task approach. The modest speed up is due to sharing the desktop PCs
with other applications and other users across a campus, i.e., the CONDOR implementation reported in
Wang et al. (2009) uses a set of PCs on a single LAN with no other PC users present. What is attractive
is the ‘speed’ that a Grid application can be set up on an existing BOINC-based Grid infrastructure such
as the Westminster Grid and that the application can then be used on any Grid that implements the SZDG
technology (which is becoming more and more widespread. We now consider the challenges of this ap-
proach, and other similar Grid approaches, in M&S industry.

4 GRID COMPUTING: CHALLENGES FOR INDUSTRY

The previous section discussed an implementation of a Systems Biology simulation. Multiple runs were
needed to get faster execution than running on a single PC. Key to this, however, was the simplicity of
implementation. The fact that nothing needed to be installed means that any PC can be used to run the
simulations. CSPs used in academia and industry virtually all require some installation. Further, the data
used by models will be in some database or spreadsheet that needs to be locally accessible by the simula-
tion. There is certainly the need for Grid computing as time within a simulation project is always being
‘squeezed’ (end of project data is fixed, delays in gathering data, building models, accessing experts) and
simulation studies often generate more experiments and questions than expected. It is not unreasonable
for individual simulation runs to take from a few minutes to over 10 hours. If each experiment has (say)
10 replications and a scenario has (say) 10 experiments then with just one ‘thread’ of investigation we
have 80 hours (3+ days!). This does not even include Validation and Verification (V&V). Using Grid
computing to support M&S CSPs in real-world industrial environments is certainly possible and examples
include WINGRID (Mustafee and Taylor 2009) and SAKERGRID (Taylor et al. 2010). Some CSPs have
basic Grid elements. Simul8, for examples, allows replications to be run using a limited form of Volun-
teer Computing. Indeed, in a joint research project between Brunel University, Simul8 and the EDGI pro-
ject (University of Westminster), research is under way to determine the extent to which the SZDG tech-
nology can support a widespread Volunteer Computing implementation of Simul8. We now briefly
present the challenges that Grid computing approaches must meet if widespread utilization of these in in-
dustry is to be achieved.

 M&S is a costly endeavor and any cost increase must be balanced with a clear return on invest-
ment, i.e., there must be a clear business case for developing a Grid solution.

 Users of CSPs tend to have an operational research or management science skillset. Most will
not have formal experience of programming such as one might receive in a Computer Science
course and possibly will have some programming language experience such as Visual Basic. The
system must be deployed within the same set.

 Experience has shown that Grid-based applications development needs a balanced and committed
team consisting of Grid application developers, end users, IT management and CSP vendors. It is
often difficult to find the right ‘language’ to implement the right solution for the right problem.

 Companies using CSPs will have either basic or sophisticated IT management. Both have things
to take into account. Basic IT management needs a simple system. Sophisticated IT management
has rules and compliancy policies that must be adhered to. These policies differ from organiza-

168

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

tion to organization (particularly academic vs. industry). Both may heavily restrict the type of
implementation.

 More and more CSPs use an experimentation manager or consultants will develop an experimen-
tation manager to control experimentation. This is the user interface that must be deployed with,
ideally, job submission technology in-built.

 Virtually all CSPs are ‘black box’ applications that run in Windows and must be installed in
Windows Registry to access supporting programs such as DLLs, etc.

 Virtually all simulation models use data sources such as databases and/or spreadsheets that must
be reliably launched, accessed and terminated during a run (e.g., if a link between a CSP and, say,
Excel breaks then the infrastructure must be capable of detecting and recovering from this).

 Models can crash due to unforeseen errors in verification, dropped links between the CSP and
supporting software, supporting software crashes.

 CSPs are typically licensed and Grid solutions may be restricted to the number of licenses an or-
ganization has.

 Security requirements may restrict what machines simulations can be run on.
 Currently, there are no Grid computing implementation standards. The lack of a clear set of im-

plementation standards will increase the cost of Grid implementation (i.e., no ‘off-the-shelf’ solu-
tion).

5 DISTRIBUTED SIMULATION AND LARGE MODELS

In terms of software limitations, if a modeler wishes to build a large model in a single CSP then s/he is
only restricted by the capabilities of the package (number of entities, time limit, event processing speed,
event list size, etc.) In some cases it may be convenient to create a large model from a combination of ex-
isting and new models. Conveniently one may think of ‘cutting and pasting’ these models together in the
visual modeling environment of a CSP. However, this may not be as convenient as it sounds or even pos-
sible. This is for several reasons:

 Privacy: A model representing several organizations may require privacy, i.e., each organization
may not wish to reveal data and/or internal operations to other organizations. A single modeling
approach would by implication reveal data through shared databases and spreadsheets and inter-
nal workings by model detail. Corporate secrecy would make this impossible.

 Data transfer/access problems. In some situations privacy may not be an issue. A single model
running on a single computer will still need data from different organizational systems represent-
ed in the model. The options are to copy data from one organization to another or to link the data
source to the model over an intranet or the Internet. Databases can be large and time consuming
to copy and access can be slow. Depending on the system, data when copied is instantly out of
date. Running a model using copies of organization data can therefore significantly increase the
execution time of a simulation and/or be inaccurate.

 Model composability problems. A ‘cut and paste’ approach may not be as easy as it sounds. Var-
iable name clashes, global variables and different validation assumptions are three examples of
the many problems of this approach. Further, if an organization needs to update its model, it has
to update the single model. How do we make sure that every organization has the correct version
of the single model? What if the update causes problems in another part of the single model
owned by another organization? Additionally, models developed in different CSPs are simply not
compatible. One cannot transfer a model developed in one CSP into another without significant
effort.

 Execution Time. Large models will most likely develop large event lists that must be processed
and updated each time an event is executed. This can take a considerable amount of time.
Worse, the processing capacity of even a high specification PC may not be enough to physically

169

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

cope as the actual CSP may have an upper limit on the event list size that can be swapped in and
out of virtual memory.

 An alternative to cut and paste is distributed simulation (Fujimoto 2000). Here models running in
their CSPs on different computers interact, or interoperate, together in a single but distributed simulation.
Each CSP maintains its own event list and CSPs interact via specialist distributed simulation software.
Time over the distributed simulation is handled by variants of different time management synchronization
algorithms (Fujimoto 1990). The functionality of the specialist distributed simulation software is defined
in the IEEE 1516 High Level Architecture (IEEE 2010) (first released in 2000 and updated in 2010). In
HLA terminology, a distributed simulation is called a federation, and each individual simulator (in our
case the combination of a CSP and its model) is referred to as a federate. The HLA Federate Interface
Specification (FIS) defines distributed simulation software termed a Runtime Infrastructure (RTI). A dis-
tributed simulation is therefore a federation composed of many federates interacting over a communica-
tion network via RTI software (Fujimoto and Weatherly 1996).
 The HLA is complex and there are few people who completely understand M&S, CSPs, distributed
simulation, the HLA and RTIs. Efforts are being made to simplify the theory and practice of CSP-based
distributed simulation (Taylor et al. 2006). This is being led by the COTS Simulation Package Interoper-
ability Product Development Group (CSPI PDG) under the Simulation Interoperability Standards Organi-
zation (SISO) and is producing a suite of CSP distributed simulation standards. As part of this activity a
set of four Interoperability Reference Models (IRMs) have been defined to create a common frame of ref-
erence to assess the capabilities of particular approaches and to help practitioners and vendors achieve so-
lutions to complex interoperability problems (Taylor et al. 2007; SISO 2010). These were created by fol-
lowing SISO’s standards development process which involves several rounds of voting/balloting and
refinement before a standard is formally recognized by SISO’s Standards Activity Committee and its Ex-
ecutive Committee. It is important to note that the balloting and standard development involved software
vendors. Without this buy-in from the vendors, the standard would not have significant impact. These
need to be used in conjunction with CSP handler software that links a CSP to an RTI. A brief overview
of the IRMs is now presented.

6 INTEROPERABILITY REFERENCE MODELS

IRMs are a set of simulation patterns or templates that enable modelers, vendors and solution developers
to specify the interoperability problems that must be solved. The Interoperability Reference Models
(IRMs) are intended to be used as follows:

 To clearly identify the model/CSP interoperability capabilities of an existing distributed simula-
tion, e.g., the distributed supply chain simulation is compliant with IRMs Type A.1, A.2 and B.1.

 To clearly specify the model/CSP interoperability requirements of a proposed distributed simula-
tion, e.g., the distributed hospital simulation must be compliant with IRMs Type A.1 and C.1.

 An IRM is defined as the simplest representation of a problem within an identified interoperability
problem type. Each IRM can be subdivided into different subcategories of problem. As IRMs are usually
relevant to the boundary between two or more interoperating models, models specified in IRMs are as
simple as possible to “capture” the interoperability problem and to avoid possible confusion. These simu-
lation models are intended to be representative of real model/CSPs but use a set of “common” model ele-
ments that can be mapped onto particular CSP elements. Where appropriate, IRMs specify time synchro-
nization requirements and present alternatives. IRMs are intended to be cumulative (i.e., some problems
may well consist of several IRMs). Most importantly, IRMs are intended to be understandable by simula-
tion developers, CSP vendors and technology solution providers.

There are currently four different types of IRM. These are:
 Type A: Entity Transfer
 Type B: Shared Resource
 Type C: Shared Event

170

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

 Type D: Shared Data Structure

 Briefly, IRM Type A Entity Transfer deals with the requirement of transferring entities between
simulation models, such as an entity Part leaving one model and arriving at the next. IRM Type B
Shared Resource refers to sharing of resources across simulation models. For example, a resource R
might be common between two models and represents a pool of workers. In this scenario, when a ma-
chine in a model attempts to process an entity waiting in its queue it must also have a worker. If a worker
is available in R then processing can take place. If not then work must be suspended until one is availa-
ble. IRM Type C Shared Event deals with the sharing of events across simulation models. For example,
when a variable within a model reaches a given threshold value (a quantity of production, an average ma-
chine utilization, etc.) it should be able to signal this fact to all models that have an interest in this fact (to
throttle down throughput, route materials via a different path, etc.). IRM Type D Shared Data Structure
deals with the sharing of variables and data structures across simulation models. Such data structures are
semantically different to resources, for example a bill of materials or a common inventory.

As most distributed simulations with CSPs concern the transfer of entities between simulations, in
this advanced tutorial we give a brief overview of the IRM Type A. Further details can be found in the
full description of the standard (SISO 2010). There are currently three IRM Type A Sub-types. These
are:

 IRM Type A.1: General Entity Transfer
 IRM Type A.2: Bounded Receiving Element
 IRM Type A.3: Multiple Input Prioritization

6.1 IRM Type A.1 General Entity Transfer

IRM Type A.1 General Entity Transfer represents the case where an entity e1 leaves activity A1 in model
M1 at T1 and arrives at queue Q2 in model M2 at T2. This IRM is inclusive of cases where there are
many models and many entity transfers (all transfers are instances of this IRM). This IRM does not in-
clude cases where (a) the receiving element is bounded (IRM Type A.2), and (b) multiple inputs need to
be prioritized (IRM Type A.3). The IRM Type A.1 General Entity Transfer is defined as the transfer of
entities from one model to another such that an entity e1 leaves model M1 at T1 from a given place and
arrives at model M2 at T2 at a given place and T1 =< T2 or T1<T2. The place of departure and arrival
will be a queue, workstation, etc. Note that this inequality must be specified.

6.2 IRM Type A.2 Bounded Receiving Element

Consider a production line where a machine is just finishing working on a part. If the next element in the
production process is a buffer in another model, the part will be transferred from the machine to the buff-
er. If, however, the next element is bounded, for example a buffer with limited space or another machine
(i.e., no buffer space), then a check must be performed to see if there is space or the next machine is free.
If there is no space, or the next machine is busy, then to correctly simulate the behavior of the production
process, the current machine must hold onto the part and block, i.e., it cannot accept any new parts to pro-
cess until it becomes unblocked (assuming that the machine can only process one part at a time). The
consequences of this are quite subtle. This is the core problem of the IRM Type A.2. If, for example, an
entity e1 attempts to leave model M1 at T1 from activity A1, to arrive at model M2 at T2 in bounded
queue Q2. If A1 represents a machine then the following scenario is possible. When A1 finishes work on
a part (an entity), it attempts to pass the part to queue Q2. If Q2 has spare capacity, then the part can be
transferred. However, if Q2 is full then A1 cannot release its part and must block. Parts in Q1 must now
wait for A1 to become free before they can be machined. Further, when Q2 once again has space, A1
must be notified that it can release its part and transfer it to Q2. Finally, it is important to note the fact
that if A1 is blocked the rest of model M1 still functions as normal, i.e., a correct solution to this problem

171

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

must still allow the rest of the model to be simulated (rather than just stopping the simulation of M1 until
Q2 has unblocked).

This IRM is therefore inclusive of cases where the receiving element (queue, workstation, etc.) is
bounded. This IRM does not include cases where multiple inputs need to be prioritized (IRM Type A.3 –
this is not discussed in this tutorial). Finally, a solution to this IRM problem must also be able to transfer
entities (IRM Type A.1). The IRM Type A.2 is defined as the relationship between an element O in a
model M1 and a bounded element Ob in a model M2 such that if an entity e is ready to leave element O at
T1 and attempts to arrive at bounded element Ob at T2 then:

 If bounded element Ob is empty, the entity e can leave element O at T1 and arrive at Ob at T2, or
 If bounded element Ob is full, the entity e cannot leave element O at T1; element O may then

block if appropriate and must not accept any more entities.
 When bounded element Ob becomes not full at T3, entity e must leave O at T3 and arrive at Ob at

T4; element O becomes unblocked and may receive new entities at T3.
 T1=<T2 and T3=<T4.
 If element O is blocked then the simulation of model M1 must continue.

Note:
 In some special cases, element O may represent some real world process that may not need to

block.
 If T3<T4 then it may be possible for bounded element Ob to become full again during the interval

if other inputs to Ob are allowed.

6.3 IRM Type A.3 Multiple Input Prioritization

The IRM Type A.3 Multiple Input Prioritization represents the case where a model element such as queue
Q1 (or workstation) can receive entities from multiple places. Let us assume that there are two models
M2 and M3 which are capable of sending entities to Q1 and that Q1 has a First-In-First-Out (FIFO) queu-
ing discipline. If an entity e1 is sent from M2 at T1 and arrives at Q1 at T2 and an entity e2 is sent from
M3 at T3 and arrives at Q1 at T4, then if T2<T4 we would expect the order of entities in Q1 would be e1,
e2. A problem arises when both entities arrive at the same time, i.e., when T2=T4. Depending on im-
plementation, the order of entities would either be e1, e2 or e2, e1. In some modeling situations it is pos-
sible to specify the priority order if such a conflict arises, e.g., it can be specified that model M1 entities
will always have a higher priority than model M2 (and therefore require the entity order e1, e2 if T2=T4).
Further, it is possible that this priority ordering could be dynamic or specialized. This IRM is therefore
inclusive of cases where multiple inputs need to be prioritized. This IRM does not include cases where the
receiving element is bounded (IRM Type A.2). A solution to this IRM problem must also be able to trans-
fer entities (IRM Type A.1). The IRM Type A.3 Multiple Input Prioritization is defined as the preserva-
tion of the priority relationship between a set of models that can send entities to a model with receiving
queue Q, such that priority ordering is observed if two or more entities arrive at the same time. Note that
the priority rules must be specified and the priority rules may change during a simulation if required for
the real system being simulated.

7 CONCLUSIONS

Motivated by advances in distributed computing, this paper has presented two threads of advanced com-
puting as applied to M&S. There are many more such as Groupware and Cloud Computing, and the ben-
efits of these are being felt in many areas. M&S has to a certain extent been neglected but is catching up
quickly. We hope that this advanced tutorial will promote discussion and more demand of these technol-
ogies.

172

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Jun Wang, Xuan Liu, Qian Gao and David
Gilbert of Brunel University (SIMAP) to the Systems Biology work, Chris Wood (SakerGrid) and the
members of SISO’s CSPI PDG.

REFERENCES

BOINC. 2011. Berkeley Open Infrastructure for Network Computing. Accessed March 24.
boinc.berkeley.edu.
EDGeS. 2011. “Enabling Desktop Grids for e-Science.” Accessed May 1. www.edges-project.eu.
EDGI. 2011. “Enterprise Desktop Grid Initiative.” Accessed May 1. www.edgi-project.eu.
Foster, I., and C. Kesselman. 1998. The Grid: Blueprint for a New Computing Infrastructure. San Fran-

cisco, CA: Morgan Kaufmann.
Fujimoto, R.M. 1990. “Parallel Discrete Event Simulation.” Communications of the ACM 33(10)30-53.
Fujimoto, R.M. 2000. Parallel and Distributed Simulation Systems. New York, NY: John Wiley and Sons

Inc.
Fujimoto, R.M., and R. M. Weatherly. 1996. “Time Management in the DoD High Level Architecture.”

In Proceedings of the 10th Workshop on Parallel and Distributed Simulation Workshop, 60-67.
Washington, DC: IEEE Computer Society.

gUSE. 2011. “Grid User Support Environment.” Accessed March 24. www.guse.hu.
IEEE. 2010. IEEE 1516-2011 IEEE Standard for Modeling And Simulation (M&S) High Level Architec-

ture (HLA). New York, NY: Institute of Electrical and Electronics Engineers.
Kacsuk, P., J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombas, and Z. Balaton. 2009. “SZTAKI Desktop

Grid (SZDG): A Flexible and Scalable Desktop Grid System.” Journal of Grid Computing 7(4):439-
461.

Kacsuk, P. 2011. “P-GRADE Portal Family for Grid Infrastructures.” Concurrency and Computation:
Practice and Experience 23(3): 235-245.

Mustafee, N., and S. J. E. Taylor. 2009. “Speeding Up Simulation Applications Using WinGrid.” Concur-
rency and Computation: Practice and Experience 21(11): 1504-1523.

SETI. 2011. “Search for Extra Terrestrial Intelligence Project.” Accessed March 24. se-
tiathome.ssl.berkeley.edu/.

SOSlib. 2011. “SBML ODE Solver.” Accessed May 1. www.tbi.univie.ac.at/~raim/odeSolver/.
SISO. 2010. Standard for Commercial-off-the-shelf Simulation Package Interoperability Reference Mod-

els (SISO-STD-006-2010). Simulation Interoperability Standards Organization, Orlando, Florida.
SZDG. 2011. “SZTAKI Desktop Grid.” Accessed March 24. www.desktopgrid.hu.
Taylor, S. J. E., X. Wang, S. J. Turner, and M. Y. H Low. 2006. “Integrating Heterogeneous Distributed

COTS Discrete-Event Simulation Packages: An Emerging Standards-Based Approach.” IEEE Trans-
actions on Systems, Man & Cybernetics: Part A 36(1):109-122.

Taylor, S. J. E., N. Mustafee, S. Straßburger, S. J. Turner, M. Y. H Low, and J. Ladbrook. 2007. “The
SISO CSPI PDG Standard for Commercial Off-The-Shelf Simulation Package Interoperability Refer-
ence Models”. In Proceedings of the 2007 Winter Simulation Conference, edited by S. G. Henderson,
B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 594-602. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers, Inc.

Taylor, S. J. E., N. Mustafee, S. J. Turner, K. Pan, and S.Straßburger. 2009. “Commercial Off the Shelf
Simulation Package Interoperability: Issues and Futures.” In Proceedings of the 2009 Winter Simula-
tion Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls,
203-215. Piscataway, New Jersey: Institute of Electrical and Electronic Engineers Inc.

Taylor, S. J. E, N. Mustafee, S. Kite, C. Wood, S. J. Turner, and S. Strassburger. 2010. “Improving Simu-
lation through Advanced Computing Techniques: Grid Computing and Simulation Interoperability.”

173

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

In Proceedings of the 2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Mon-
toya-Torres, J. Hugan, and E. Yücesan, 216-230. Piscataway, New Jersey: Institute of Electrical and
Electronic Engineers Inc.

Wang, J., X. Liu, N. Mustafee, Q. Gao, S. J. E. Taylor, and D. Gilbert. 2009. “Grid-enabled SIMAP Util-
ity: Motivation, Integration Technology and Performance Results.” In Proceedings of the UK e-
Science All Hands Meeting 2009, Oxford, UK. 7-9 December 2009.

Zhang, J., N. Mustafee, J. Saville and S. J. E. Taylor. 2007. “Integrating BOINC with Microsoft Excel: A
Case Study.” In Proceedings of the 29th Information Technology Interfaces Conference, 733 – 738.
Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES

SIMON J. E. TAYLOR is the Founder and Chair of the CSPI PDG under SISO. He is the co-founding
Editor-in-Chief of the UK Operational Research Society’s (ORS) Journal of Simulation and the Simula-
tion Workshop series. He was Chair of ACM’s SIGSIM (2005-2008). He is a Reader in the School of
Information Systems, Computing and Mathematics at Brunel and leads the ICT Innovation Group. He
has published over 100 articles in modeling and simulation. His recent work has focused on the devel-
opment of standards for distributed simulation in industry. His email address is si-
mon.taylor@brunel.ac.uk.

MOHAMMADMERSIN GHORBANI is a PhD student in the ICT Innovation Group and Centre for
Synthetic and Systems Biology, both in the School of Information Systems, Computing and Mathematics
at Brunel University. He is studying methods for using Grid Computing to support researchers in Biolo-
gy. His email address is mohammadmersin.ghorbani@brunel.ac.uk.

TAMAS KISS is a Senior Lecturer at the Department of Business Information Systems, and a researcher
at the Centre for Parallel Computing at the School of Electronics and Computer Science, University of
Westminster, London. His research interests include parallel and Grid computing, and he has extended
experience in the area of legacy code deployment, interoperation of Grid systems, and application porting
to service and desktop Grid systems. He led the design and development activities resulting in the Grid
Execution Management for Legacy Code Architecture (GEMLCA) solution, now a Globus incubator pro-
ject, within the UK EPSRC founded OGSA Testbed project. He contributed to the CoreGrid Network of
Excellence project as the leader of the Legacy Code Wrapping and Deployment Methodologies Research
Group within the Institute on Grid Systems, Tools and Environments, and led the Grid Application Sup-
port Service activity within the European EDGeS project. He is currently work package leader in the Eu-
ropean EDGI (Enabling Grids for e-Science) and DEGISCO (Desktop Grids for International Scientific
Collaboration) projects coordinating application porting and user support activities. He has been member
of the program committees of several international grid and distributed computing conferences (e.g., PDP,
EGI Technical Forum, IWSG, HealthGrid conference) and co-authored over 60 scientific papers pub-
lished in journals and conference proceedings. His email address is t.kiss@westminster.ac.uk.

DANIEL FARKAS is Research Associate in CPC at the University of Westminster. His research inter-
ests include distributed and parallel computing, service and desktop grid computing. He works on the
EDGI project and he is involved in application support and infrastructure management. His email address
is d.farkas@westminster.ac.uk.

NAVONIL MUSTAFEE is a lecturer in Information Systems and Operations Management at the School
of Business and Economics, Swansea University (UK). His research interests are in grid computing, par-
allel and distributed simulation, and healthcare simulation. His e-mail address is
n.mustafee@swansea.ac.uk.

174

Taylor, Ghorbani, Kiss, Farkas, Mustafee, Kite, Turner, and Straßburger

SHANE KITE has been involved in the Simulation industry for over 25 years. With a background in
Manufacturing Engineering at Ford, Shane developed early applications of graphical simulation in the au-
tomotive industry, using the Fortran based ‘See Why’ product amongst others. Since then, Shane has had
a successful career in simulation. Prior to becoming Managing Director of Saker Solutions he was Presi-
dent of Lanner Inc. and a board member and founder shareholder of Lanner Group, the developers of the
Witness Simulation product. Shane is a member of the Informs College on Simulation and the Society of
Computer Simulation as well as the UK Operational Research society. His email address is
shane.kite@sakersolutions.com.

STEPHEN JOHN TURNER is Professor of Computer Science and Head of the Computer Science Divi-
sion in the School of Computer Engineering at Nanyang Technological University (Singapore). He re-
ceived his MA in Mathematics and Computer Science from Cambridge University (UK) and his MSc and
PhD in Computer Science from Manchester University (UK). His current research interests include: Par-
allel and Distributed Simulation, Grid Computing, High Performance Computing and Multi-Agent Sys-
tems. He is also Secretary of SISO’s COTS Simulation Package Interoperability PDG. His email address
is Steve@pmail.ntu.edu.sg.

STEFFEN STRAßBUGER is a professor at the Ilmenau University of Technology in the School of
Economic Sciences. Previously he was working as head of the “Virtual Development” department at the
Fraunhofer Institute in Magdeburg, Germany and as a researcher at the DaimlerChrysler Research Center
in Ulm, Germany. He holds a Ph.D. and a Diploma degree in Computer Science from the University of
Magdeburg, Germany. He is a member of the editorial board of the Journal of Simulation. His research
interests include distributed simulation as well as general interoperability topics within the digital factory
context. He is also the Vice Chair of SISO’s COTS Simulation Package Interoperability Product Devel-
opment Group. His web page and email address are www.tu-ilmenau.de/wi1 and steffen.strassburger@tu-
ilmenau.de, respectively.

175

