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ABSTRACT

We discuss rare event simulation techniques based on state-dependent importance sampling. Classical
examples and counter-examples are shown to illustrate the reach and limitations of the state-independent
approach. State-dependent techniques are helpful to deal with these limitations. These techniques can be
applied to both light and heavy tailed systems and often are based on subsolutions to an associated Isaacs
equation and on Lyapunov bounds.

1 INTRODUCTION

We study recent techniques that have been developed for the design of provably efficient rare event simulation
estimators. We concentrate mostly on importance sampling techniques. Our discussion here is based on
the survey paper Blanchet and Lam (2011).

We mention that besides importance sampling, another powerful set of tools for variance reduction
in rare event problems are based on splitting. Interested readers can consult L’Ecuyer et al. (2009) and
Chapter VI Section 9 of Asmussen and Glynn (2007) for basic notions on splitting.

The types of techniques that we consider in this paper focus on the interplay between large deviations
results and their applications to provably efficient importance sampling estimators. Early references in this
spirit include Siegmund (1976) and Sadowsky (1991). Applications of these techniques in settings such as
insurance and queueing include Asmussen (1985), Collamore (2002), Asmussen and Rubinstein (1995),
and Parekh and Walrand (1989). We refer the reader to Juneja and Shahabuddin (2006), Bucklew (1990)
and Chapter VI of Asmussen and Glynn (2007) for a wider scope on importance sampling for rare event
simulation.

A series of examples and counter-examples (Glasserman and Kou 1995, Glasserman and Wang 1997)
related to the use of large deviations principles in the design of efficient importance sampling estimators
for light-tailed systems has motivated research on state-dependent techniques. In addition, as explained in
Bassamboo et al. (2006), efficient importance sampling estimators in the setting of heavy tails often must
be state-dependent (see also Asmussen et al. 2000 for more on the challenges that arise in the context of
efficient rare-event simulation for heavy-tailed systems).

In order to systematically address the construction of provably efficient state-dependent importance
sampling estimators for light-tailed systems P. Dupuis, H. Wang and their students have developed a method
based on control theory and the use of subsolutions of an associated Isaacs equation for constructing and
testing importance sampling estimators (Dupuis and Wang 2004; Dupuis and Wang 2007; Dupuis et al.
2007; Dupuis et al. 2007). A related approach, based on the construction of Lyapunov inequalities has
been also developed (Blanchet and Glynn 2008; Blanchet and Liu 2008; Blanchet et al. 2007) for the
construction and analysis of state-dependent importance sampling estimators for heavy-tailed systems.

In this paper we review the development of state-dependent importance sampling estimators and illustrate
their application. We start by discussing standard notions of statistical efficiency that are used in order to
rigorously test the optimality of a simulation estimator. This will be done in Section 2. The introduction of
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these notions of efficiency leads to the question of how to construct importance sampling estimators that
can be rigorously shown to be efficient. The zero-variance change-of-measure, while virtually impossible
to implement in most situations of interest, provides a good guidance in order to construct such estimators.

The zero-variance change-of-measure turns out to be the conditional distribution of the underlying
process given the rare event of interest. So, it is natural to leverage-off the available asymptotic theory
for rare events in order to understand such a conditional distribution. This is basically the starting point
in the design of efficient importance sampling estimators for rare events. The idea is to take advantage
of the available large deviations theory, which provides insight into the occurrence of rare events. In the
light-tailed case, the theory of large deviations is comprehensively documented in Dembo and Zeitouni
(1998). References in connection to large deviations for heavy-tailed problems (mainly related to random
walk settings) can be found in Embrechts et al. (1997) and Chapter IX of Asmussen (2000).

The successful application of large deviations theory in the design of efficient importance sampling
estimators is not straightforward and this feature turned out to be the norm rather than the exception,
especially in applications such as the analysis of queueing networks (see Glasserman and Kou 1995). To
avoid such poor variance behavior, Dupuis and Wang formulate the design of state-dependent importance
sampling estimators in terms of a stochastic control problem in which the value function is the second
moment of the estimator. Taking an asymptotic limit, as we shall see in Section 3, the stochastic control
problem becomes a deterministic control problem. The application of Dupuis and Wang’s method is
simplified thanks to the fact that only a subsolution to the value function is needed for the design of an
efficient sampling scheme. A trivial supersolution is given, thanks to Jensen’s inequality, by twice the
underlying large deviations rate function. The whole point of Dupuis and Wang’s approach is to construct
a subsolution that matches the trivial supersolution at one point, namely, the initial condition of the system
under consideration. In many problems of interest it turns out that such a subsolution is piecewise affine
and therefore relatively easy to manipulate.

We will then move to the analysis of heavy-tailed systems, which will be introduced in our last section,
namely Section 4. These types of systems arise in the analysis of finance and insurance models. There are
fundamental qualitative differences between light and heavy tailed systems when it comes to the analysis of
rare events. This is why it is incorrect to use a model with light-tailed components to study large deviations
properties of systems that are built from heavy-tailed building blocks. Light-tailed large deviations occur
gradually, while heavy-tailed large deviations occur suddenly and this feature manifests itself in the design
of efficient importance sampling estimators for heavy-tailed systems.

We emphasize that this paper aims to introduce readers the key concepts and ideas in rare-event
problems. Throughout the exposition we will drop many of the mathematical details and highlight only
the central arguments, pointing readers to other references. Finally, we briefly mention the existence of
some empirical approaches aimed at selecting good importance sampling distributions. We do not discuss
these methods in detail but rather refer the reader to some related references including: adaptive Monte
Carlo (Kollman, Baggerly, Cox, and Picard 1999) and the cross-entropy method (Rubinstein and Kroese
2004). In this vein, we mention the recent work of Chan and Lai (2010) who considers an interesting
importance sampling approach for Markov-modulated problems that avoids the need for computing the
associated eigenfunctions.

2 NOTIONS ON EFFICIENCY AND IMPORTANCE SAMPLING

2.1 Notions of Efficiency

In order to design algorithms that achieve high accuracy in relative terms and that perform well in rare
event settings it is useful to embed the question of interest in a suitable asymptotic regime, often motivated
by an applied standpoint. For example, in the setting of bankruptcy of an insurance company, it is often
the case that the capital or reserve of the company is large relative to individual claim sizes, and this is
basically why one might expect the probability of bankruptcy, P (A), to be small. So, one might introduce
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a parameter, say n, for instance the initial capital in the insurance example, and consider αn = P (An) as
a function of the parameter n which is often referred to as the “rarity parameter”. From now on we will
assume that underlying the rare event there is a rarity parameter n such that αn −→ 0 as n −→∞.

The idea is then to design a simulation estimator whose error is controlled in relative terms as n↗∞
compared to naive (or crude) Monte Carlo, which provides an obvious alternative and, therefore, a general
benchmark. Note that naive Monte Carlo involves simulating N (independent and identically distributed)
iid Bernoullies, In(1), ..., In(N), with success parameter αn, thereby producing an estimate of the form
α̂cn(N) =

∑N
j=1 In(j)/N . The super-index “c” that appears in α̂cn(N) corresponds to crude Monte

Carlo. Since α̂cn(N) is an unbiased estimator of αn, its mean squared error equals V ar(α̂cn(N))1/2 =

α
1/2
n (1−αn)1/2/N1/2. In turn, we obtain a relative mean squared error equal to the coefficient of variation

of α̂cn(N), namely, CV (α̂cn(N)) = (1−αn)1/2/(α
1/2
n N1/2). In order to control the relative error of α̂cn(N)

one needs N = Ω(1/αn) Bernoullies.
The problem with the estimator α̂cn(N) is that each of the underlying replications, the In(j)’s, have

a very big variance in relative terms. The number of replications N must grow at the same rate as
CV (In(j)) = (1−αn)1/2/α

1/2
n . The same phenomenon occurs in any estimator obtained out of averaging

iid replications, as in the definition of α̂cn(N). The objective is then to design an estimator Rn with a
controlled mean squared error. We concentrate only on unbiased estimators, so controlling the behavior of
the mean squared error boils down to controlling the behavior of the second moment. The overall estimate
is then obtained by averaging N iid copies of Rn. Motivated by these considerations we have the following
definitions.
Definition 1 An estimator Rn is said to be strongly efficient if ER2

n = O
(
α2
n

)
as n↗∞.

Definition 2 Rn is said to be weakly efficient or asymptotically optimal if for each ε > 0 we have that
ER2

n = O
(
α2−ε
n

)
as n↗∞.

In most cases the analysis of importance sampling estimators (especially in light-tailed cases) concludes
only weak efficiency of the estimators.

In order to see the gain in efficiency, suppose that an estimator Rn is strongly efficient and consider
α̃n(N) =

∑N
i=1Rn (i) /N where the Rn (i)’s are independent replications of Rn. It follows from Cheby-

shev’s inequality that at most N = O(ε−2δ−1) (uniformly in n) replications are required to conclude that
α̃n(N) is ε-close to αn in relative terms with at least 1− δ confidence.

Besides variance control, it is worth pointing out the other measures of good importance sampling
estimators, and we refer interested readers to L’Ecuyer et al. (2010) for these considerations (including
work-normalized measures to account for cost-per replication).

2.2 Basic Properties of Importance Sampling Estimators

Importance sampling is a variance reduction technique that is often applied to design an estimator, Rn, with
efficiency characteristics such as those described by Definitions 1 and 2. We shall review basic properties of
importance sampling next; for a more detailed discussion see, for example, Rubinstein and Kroese (2009)
and Asmussen and Glynn (2007). The basic idea is to introduce a probability measure P̃ (·) such that the
likelihood ratio or Radon-Nikodym derivative between the nominal (original) probability measure, P (·),
and P̃ (·) is well defined on the event An of interest. Then we can simply let

Rn =
dP

dP̃
(ω) I (ω ∈ An) ,

as usual, we use ω to denote the underlying random outcome which is simulated according to the probability
measure P̃ (·). We use Ẽ (·) to denote the expectation operator associated to the probability measure P̃ (·).
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Note that
ẼRn =

∫
An

dP

dP̃
(ω) dP̃ (ω) = P (An) = αn,

so Rn is an unbiased estimator, and

Ẽ(R2
n) =

∫
An

(
dP

dP̃
(ω)

)2

dP̃ (ω) =

∫
An

dP

dP̃
(ω) dP (ω) = E(Rn). (1)

In principle one can design an importance sampling estimator with zero variance. Indeed, if we let
P̃ (·) = P ∗n (·) := P (· | An), then

R∗n :=
dP

dP ∗n
(ω) I (ω ∈ An) = P (An) ,

which is clearly an exact estimate of αn = P (An). Of course, assuming that one has access to P ∗ (·)
defeats the point of using simulation to estimate P (An). However, the underlying lesson behind the
characterization of the zero-variance change-of-measure as the conditional distribution given the rare event
of interest is that one can use asymptotic theory to describe P ∗n (·) as n↗∞.

3 STATE-DEPENDENT TECHNIQUES FOR LIGHT-TAILED SYSTEMS

3.1 Solutions to a Deterministic Control Problem and Efficient Importance Sampling

As we indicated in the Introduction, Dupuis and Wang introduced a technique to guarantee efficiency (in
the sense of Definition 2) of importance sampling estimators based on control theoretic considerations.

We will formally characterize the solution to a deterministic control problem proposed by Dupuis and
Wang (2004). In this section we assume that (Xk : k ≥ 1) is a sequence of iid rv’s taking values in Rd

and such that ψ(θ) = logE exp(〈Xk, θ〉) is finite everywhere, where 〈·, ·〉 is defined as the inner product
under Euclidean norm. We then let Sk = X1 + ...+Xk and consider, for some y ∈ Rd,

Yn (t) = y + Sbntc/n. (2)

Let B be a closed set with non-empty interior and define τB(n) = inf{t > 0 : Yn (t) ∈ B}. We
assume that B is attainable in the sense that P (τB(n) <∞|Yn (0) = y) > 0 for each y ∈ Rd.

Consider two disjoint sets B and C. We are interested in computing

αn(y) = Py(τB(n) < τC(n), τB(n) <∞) := P (τB(n) < τC(n), τB(n) <∞|Yn(0) = y).

We assume that B and C are regular in the sense that limn→∞ n
−1 logαn(y) = −IB,C(y), where

IB,C (y) is the associated large deviations rate function (which we do not need to specify but can be
consulted in Dembo and Zeitouni 1998, p. 176).

We are interested in choosing a suitable importance sampling estimator with optimal performance in
the sense of minimizing its second moment. The class of policies that we consider are based on exponential
tilting. In particular, the increment Xk is ultimately simulated according to the distribution

Pθk(Xk ∈ dx) = exp(〈θk, Xk〉 − ψ(θk))P (Xk ∈ dx). (3)

If Xk has a density with respect to the Lebesgue measure, say f(·), then P (Xk ∈ dx) = f (x) dx. The
notation adopted in (3) is simply a mechanism that allows us to consider general distributions (including
discrete or mixtures of discrete and continuous distributions). We will use Eθk(·) to denote the expectation
operator associated to Pθk(·). The parameter θk might depend on (X1, ..., Xk−1) but it is not allowed to
depend on future observations. We say that θk is non-anticipating. As examples of exponentially tilted
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distributions consider the following: If Xk is a one dimensional standard Gaussian under P (·), then, under
Pθk(·), Xk is normal with mean θk and unit variance; on the other hand, if under Xk is exponentially
distributed with unit mean under P (·), then under Pθk(·) (for θk < 1), Xk is exponentially distributed with
mean 1/(1− θk).

One reason that motivates the use of exponentially tilted distributions is that one can sometimes show
that the distribution of (X1, ..., Xk) given a large deviations event of interest converges to a suitable optimal
exponential tilting as n→∞ (see, for instance, Asmussen and Glynn 2007, Section VI.5).

Using exponential tilting the estimator ultimately takes the form

Rn = exp(−
nτB(n)∑
k=1

〈θk, Xk〉+

nτB(n)∑
k=1

ψ(θk))I(τB(n) < τC(n), τB(n) <∞). (4)

It follows immediately that the HJB (Hamilton-Jacobi-Bellman) equation corresponding to finding the
optimal policy (i.e., the optimal sequence of θk’s) to minimize the second moment of Rn takes the form

Vn(y) = inf
θ
Eθ[exp(−2〈θ,X〉+ 2ψ(θ))Vn(y +X/n)]

= inf
θ
E[exp(−〈θ,X〉+ ψ(θ))Vn(y +X/n)] (5)

for y /∈ B ∪ C and subject to the boundary condition that Vn(y) = 1 for y ∈ B and Vn(y) = 0 if y ∈ C.
If there is an optimal policy (θ∗k : k ≥ 1) generated by the previous HJB equation, then generally it would
be the case that

Vn(y) = E exp(−
nτB(n)∑
k=1

〈θ∗k, Xk〉+

nτB(n)∑
k=1

ψ(θ∗k))I(τB(n) < τC(n), τB(n) <∞)

≤ E exp(−
nτB(n)∑
k=1

〈θk, Xk〉+

nτB(n)∑
k=1

ψ(θk))I(τB(n) < τC(n), τB(n) <∞),

for any non-anticipating policy (θk : k ≥ 1).
The large deviations scaling suggests writing Vn(y) = exp(−nHn(y)) and thus we should expect

Hn(y) → H(y) as n → ∞ for some function H (y). If we proceed using this postulated limit in the
previous HJB equation, after taking logarithms of (5), formally and without being careful about underlying
smoothness assumptions and errors incurred, we arrive at the approximation

−nH(y) ≈ min
θ

logE[exp(−〈θ,X〉+ ψ(θ)− nH(y +X/n))] (6)

≈ min
θ

logE[exp(−〈θ,X〉+ ψ(θ)− nH(y)− 〈∇H(y), X〉)].

Equivalently, we have that

0 ≈ min
θ

logE[exp(−〈θ,X〉+ ψ(θ)− 〈∇H(y), X〉)]

= min
θ

log exp(ψ(θ) + ψ(−∇H(y)− θ)) = min
θ

[ψ(θ) + ψ(−∇H(y)− θ)]. (7)

First order optimality conditions imply that at the optimal value θ∗(y) one has ∇ψ(θ∗(y)) =
∇ψ(−∇H(y) − θ∗(y)), which yields θ∗(y) = −∇H(y)/2 and therefore we conclude that equation
(7) can be expressed as

2ψ(−∇H(y)/2) = 0, (8)
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subject to the boundary conditions (inherited from (5)) equal to H(y) = 0 for y ∈ B and H(y) =∞ for
y ∈ C. Equation (8) corresponds to a so-called Isaacs equation. The name originates from a connection
that can be established to a solution of a two-player differential game, see Dupuis and Wang (2004).

On the other hand, we have assumed αn(y) = exp(−nIB,C(y)+o(n)) as n→∞ and, by conditioning
on the first increment of the random walk, we also have that

αn(y) = Eαn(y +X/n) (9)

subject to the constraints that αn(y) = 1 for y ∈ B and αn(y) = 0 if y ∈ C. Proceeding to analyze
equality (9) formally as we did for the discussion leading to (8), we conclude that

exp(−nIB,C(y) + o(n)) = E exp(−nIB,C(y +X/n)) ≈ E exp(−nIB,C(y)− 〈∇IB,C(y), X〉).

Equivalently, taking logarithms we arrive at ψ(−∇IB,C(y)) = 0, subject to the boundary conditions
implied by αn(y), namely, IB,C(y) = 0 for y ∈ B and IB,C(y) = ∞ if y ∈ C. These considerations,
together with our analysis leading to (8) yield thatH(y) = 2IB,C(y) and therefore, under suitable regularity
conditions we obtain that applying importance sampling with exponential tilting given by the tilting parameter
θ∗(y) = −∇IB,C(y) allows us to obtain an asymptotically optimal estimator (recall Definition 2). Sufficient
conditions required to rigorously substantiate this result are given in Dupuis and Wang (2004), at least in
the case of large deviations problems for Sn/n.

The problem with (8) is that it is rarely applicable in most situations of interest, especially because it is
often the case that there is no classical (smooth) solution to the Isaacs equation (8). (It is apparent from our
heuristic derivation that smoothness appears to be an important feature.) The function H(y) = 2IB,C(y)
typically provides a solution only in a weak sense. Fortunately, as we shall see next, only a subsolution is
required, as long as it coincides with the value function at the initial condition.

3.2 Subsolutions to a Deterministic Control Problem and Efficient Importance Sampling

We take as starting point the HJB equation introduced in (5). The next lemma provides an inequality whose
solution gives an upper bound for the value function in (5); for a proof see Blanchet and Lam (2011).
Lemma 1 Suppose that one finds a non-negative function Un(·) such that

Un(y) ≥ E[exp(−〈θ,X〉+ ψ(θ))Un(y +X/n)] ≥ inf
θ
E[exp(−〈θ,X〉+ ψ(θ))Un(y +X/n)],

where y /∈ B ∪ C and subject to the boundary condition that Un(y) ≥ 1 for y ∈ B. Then,

Un(y) ≥ E[exp(−
τB∑
j=1

〈θj , Xj〉+

τB∑
j=1

ψ(θj))I(τB <∞, τB < τC)]

for any non-anticipating policy (θj : j ≥ 1).

Using a similar heuristic argument as the one introduced in the previous section in (6) we write
Un(y) = exp(−nGn(y)) and postulate Gn(y)→ G(y) as n→∞ for some function G (y). If we proceed
using this postulated limit in the inequality obtained in the previous lemma, after taking logarithms, we
arrive at

−nG(y) ' min
θ

logE[exp(−〈θ,X〉+ ψ(θ)− nG(y +X/n))]

≈ min
θ

logE[exp(−〈θ,X〉+ ψ(θ)− nG(y)− 〈∇G(y), X〉)].
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We then conclude, as in the analysis leading to (7) that

0 ≥ min
θ

[ψ(θ) + ψ(−∇G(y)− θ)]. (10)

First order optimality conditions imply that at the optimal value θ∗(y) one has ∇ψ(θ∗(y)) =
∇ψ(−∇G(y) − θ∗(y)), which yields θ∗(y) = −∇G(y)/2 and therefore we conclude that inequality
(10) can be expressed as

0 ≥ 2ψ(−∇G(y)/2), (11)

for y /∈ B ∪ C and subject to the boundary conditions (inherited from Lemma 1) equal to G(y) ≤ 0 for
y ∈ B. In order to conclude asymptotic optimality for αn(y0) we must have G(y0) ≥ 2IB,C(y0). Sufficient
conditions required to rigorously substantiate this subsolution equation are given in Theorem 8.1 of Dupuis
and Wang (2007).

We now apply the previous result to an example, which is a generalization of a one dimensional ruin
problem.

Example 1 (multidimensional first passage time problems) Assume that d = 2 and let us write X(j)
i to

denote the j-th component of the i-th increment; in particular, we have that j = 1, 2. Similarly, we use
Y

(i)
n (t) to denote the i-th component of the process Yn (·) at time t, recall equation 2. Assume that Xi

follows a bivariate Gaussian distribution with mean EXi = (−1,−1)T and variance V ar (Xi) = I (that
is, the components of Xi are independent). Therefore, we have that ψ (θ) = ||θ||2 /2.

Define the set B (i) = {y = (y(1), y(2))T : y(i) ≥ 1} and let B = B (1) ∪ B (2). Consider the first
passage time probability

αn(y) = P (τB(n) <∞|Yn(0) = y),

where τB(n) = inf{t ≥ 0 : Yn(t) ∈ B}. We will construct an efficient estimator for αn (y) based on (11).
Similarly, we let τB(i)(n) = inf{t > 1 : Y

(i)
n (t) ≥ 1} for each i = 1, 2, and note that one has the

elementary inequalities

max
i=1,2

P (τB(i)(n) <∞|Yn(0) = y) ≤ αn(y) ≤
2∑
i=1

P (τB(i)(n) <∞|Yn(0) = y). (12)

Evidently, P (τB(i)(n) <∞|Yn(0) = y) is equivalent to a one dimensional first passage time probability.
It is well known (see Asmussen 2003 p. 352) that

P (τB(i)(n) <∞|Yn(0) = y) = exp[−nθ∗i (1− y(i)) + o(n)], (13)

where θ∗i = 2. We then obtain from (12) that limn→∞ n
−1 logαn(y) = −mini=1,2{θ∗i (1 − y(i))}. The

value of θ∗i corresponds to the conditional asymptotic mean of the i− th component if the random walk
hits B through B(i).

To apply the subsolution approach we need to find a functionG(·) satisfying the inequality (11) together
with the corresponding boundary condition that G(y) ≤ 0 for y ∈ B. Moreover, since in the end we are
after an asymptotic upper bound for the second moment of the importance sampling estimator and we wish
to achieve the same decay rate as αn(y)2, it makes sense to use the union bound (12) and (13) to postulate

exp(−nG(y)) = (

2∑
i=1

exp[−nθ∗i (1− y(i))])2.

We now verify that our selection is indeed a valid subsolution. First, note that∇G(y) = −2
∑2

i=1 θ
∗
jajpj(y),

where a1 = (1, 0), a2 = (0, 1) and

pj(y, n) =
exp[−nθ∗j (1− y(j))])∑2
i=1 exp[−nθ∗i (1− y(i))]

.
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Note that for each y, (p1(y, n), p2(y, n)) can be interpreted as a probability vector. So, using Jensen’s
inequality and convexity of ψ (·) we conclude that

ψ(−∇G(y)/2) = ψ(
2∑
j=1

θ∗jajpj(y, n)) ≤
2∑
j=1

pj(y, n)ψ(θ∗jaj) = 0.

In the last equality we used that ψ(θ∗jaj) = 0 for j = 1, 2. Now, if y ∈ B, then there exists i such that
1− y(i) ≤ 0 and therefore evidently exp(−nG(y)) ≥ 0 or, equivalently, G(y) ≤ 0. We then conclude that
the importance sampling scheme generated by using as exponential tilting

θk(Sk−1/n) =
2∑
j=1

θ∗jajpj(Sk−1/n, n) (14)

for k/n < τB(n) is asymptotically optimal; actually in this case the estimator can be shown to be strongly
efficient in the sense of Definition 1.

4 STATE-DEPENDENT TECHNIQUES FOR HEAVY-TAILED SYSTEMS

As mentioned earlier, various challenges of rare-event simulation with heavy tails are pointed out in
Asmussen et al. (2000) and Bassamboo et al. (2006). The former focuses on the singularity of the
asymptotic conditional distribution with respect to the original measure and the difficulty of finding a
suitable importance sampler, while suggesting provably efficient conditional Monte Carlo scheme. The
latter suggests the non-existence of provably efficient state-independent importance samplers for some first
passage problems. Conditional Monte Carlo is also studied in Asmussen and Binswanger (1997) in the
context of insurance, and further improved in Asmussen and Kroese (2006). A technique called hazard
rate twisting is studied in Juneja et al. (1999) and Juneja and Shahabuddin (2002).

Our goal here is to illustrate a technique, based on Lyapunov inequalities and appropriate mixture
samplers to estimate rare event probabilities. The Lyapunov approach was proposed in Blanchet and Glynn
(2008) and it has subsequently applied to various settings (see, for instance, Blanchet et al. 2007; Blanchet
and Liu 2008; Blanchet and Liu 2010b). The mixture distributions that we shall use were proposed in
Dupuis et al. (2006) in the context of power-law decaying tails; see also Blanchet and Liu (2010a) for
extensions beyond power-law decaying tails.

We first start with some basic results on heavy-tailed large deviations.

4.1 Large Deviations for Heavy-tailed Sums

For simplicity we concentrate on a special case of heavy-tailed random variables, namely, regularly varying
random variables, which posses power-law type tails; see Embrechts et al. (1997) for more information
on more general heavy-tailed models.
Definition 3 A random variable X with tail distribution F (·) = P (X > ·) = 1 − F (·) has a regularly
varying right tail with index α > 0 if F (βx) /F (x) −→ β−α as x↗∞ for all β > 0. Similarly, X has
a regularly varying left tail with index α > 0 if −X has a regularly varying right tail with index α > 0.

A function L (·) is slowly varying at infinity if L (βx) /L (x) −→ 1 as x → ∞ for each β > 0.
Therefore, if X has regularly varying right tail with index α > 0 we often write F (t) = t−αL (t).

The following result provides insight on how large deviations tend to occur in heavy-tailed models.
Proposition 1 Suppose that Sm = X1 + ...+Xm where the Xi’s are iid non-negative regularly varying
rv’s. Then P (max1≤j≤mXj > n|Sm > n) −→ 1 as n↗∞.

The previous proposition illustrates the so-called “catastrophe principle” behind extreme behavior
of heavy-tailed systems, which postulates that large deviations are caused by extremes in one or few
components. In this case, the sum is large because one single component, namely the largest one, is large.
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In the heavy-tailed case there is a powerful heuristic that allows to “guess” a plausible form for large
deviations results and the associated “most likely paths” to the rare event. This heuristic, which is known
as the “fluid heuristic”, is based on elementary Law of Large Numbers analysis and basic facts of regularly
varying distributions. In order to guide our discussion we shall revisit a one dimensional analogue of the
example studied earlier in the light tailed case.
Example 2 (first passage time probabilities for heavy-tailed random walk) Suppose that the Xj’s
are regularly varying with index α > 1. Assume that EXk = −µ < 0 and let S0 = y. Define
τn = inf{k ≥ 0 : Sk > n} and consider the problem of approximating the ruin probability

αn(y) = P (τn <∞|S0 = y)

as n↗∞.
The fluid heuristic consists in substituting the random walk by its fluid or Law of Large Numbers behavior

prior to the big jump that causes ruin. The associated fluid path in this case is Sbntc/n ≈ y(t) = y − µt
and therefore the fluid heuristic suggests

αn(y) ∼
∞∑
k=0

P (Xk+1 + y(k) > n) ∼
∫ ∞
0

P (X > n+ µt− y) dt

as n ↗ ∞, thereby neglecting the contribution of more than one jump and fluctuations beyond the Law
of Large Numbers. Letting u = n+ µt− y we obtain

αn(y) ∼ 1

µ

∫ ∞
n−y

P (X > u) dy.

as n ↗ ∞. This approximation turns out to be correct even beyond the assumption of regularly varying
service times (see Pakes 1975; Veraverbeke 1977; Embrechts and Veraverbeke 1982).

4.2 Conditional Distributions and Implications For Simulation

As we discussed in Section 2, it is useful to understand the conditional distribution of the random walk given
the occurrence of the rare event of interest because such conditional distribution provides the optimal change-
of-measure (in terms of variance minimization). A natural starting point would be to obtain a conditional
limit theorem for the Xk’s given the rare event of interest. The asymptotic conditional distribution would
then be a natural candidate for an importance sampling distribution. One can pursue this idea in the context
of Example 2. In such case, it is not difficult to verify that for any −∞ < x−i < x+i <∞, with i = 1, ..., k
we have that

lim
n→∞

P
(
∩ki=1{Xi ∈ (x−i , x

+
i )}|τn <∞

)
= P

(
∩ki=1{Xi ∈ (x−i , x

+
i )}
)
.

Thus, concluding that the asymptotic conditional distribution of (X1, ..., Xk) given that τn <∞ remains
unchanged as n → ∞. This is one of the main reasons that makes the design of efficient importance
sampling estimators for heavy-tailed systems a challenging problem.

Let us now take a more direct approach to approximate the increment Xk+1 given the current position
Sk = s of the random walk at time k and given that k < τn <∞. We note (adopting the notation introduced
in (3)) that

P (Xk+1 ∈ dy|τn ∈ [k + 1,∞), Sk = s)

= P (Xk+1 ∈ dy, τn = k + 1|τn ∈ [k + 1,∞), Sk = s)

+ P (Xk+1 ∈ dy, τn > k + 1|τn ∈ [k + 1,∞), Sk = s) .
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Now,

P (Xk+1 ∈ dy, τn = k + 1|τn ∈ (k,∞), Sk = s) = p∗n(s)
P (Xk+1 ∈ dy) I(y > n− s)

P (Xk+1 > n− s|s)
, (15)

where p∗n(s) = P (Xk+1 > n− s) /αn(s). Using the approximation in Example 2, we have that

p∗n(s) ∼ p(n− s) := µ
P (Xk+1 > n− s)∫∞
n−s P (Xk+1 > t) dt

∼ µ(α− 1)

(n− s)

as n− s→∞. On the other hand, we have that

P (Xk+1 ∈ dy, τn > k + 1|τn ∈ [k + 1,∞), Sk = s)

=
P (Xk+1 ∈ dy, τn ∈ [k + 2,∞)|Sk = s) I(y ≤ n− s)

αn(s)

=
P (Xk+1 ∈ dy) I(y ≤ n− s)

P (Xk+1 ≤ n− s)
× P (Xk+1 ≤ n− s)

αn(s+ y)

αn(s)
. (16)

If we apply the fluid heuristic locally, that is by replacing Xk+1 by its mean, namely EXk+1 = −µ, we
arrive at

αn(s+Xk+1)

αn(s)
≈ αn(s− µ)

αn(s)
≈ (n− s+ µ)−α+1

(n− s)−α+1 ≈ [1 + µ/(n− s)]−α+1 = 1− µ(1− α)

n− s
+ o(

1

n− s
).

Therefore, applying the previous local version of the fluid heuristic into (16) and combining this with (15)
we arrive at the non-rigorous approximation

P (Xk+1 ∈ dy|τn ∈ [k + 1,∞), Sk = s) ≈ P (Xk+1 ∈ dy) I(y > n− s)
P (Xk+1 ≤ n− s)

p(n− s)

+
P (Xk+1 ∈ dy) I(y ≤ n− s)

P (Xk+1 ≤ n− s)
[1− p(n− s)]. (17)

It turns out that this approximation is indeed valid in total variation (Blanchet and Liu 2010a) as n→∞.

4.3 State-dependent Importance Sampling Techniques for Heavy-tailed Random Walks

We now discuss Lyapunov inequalities, which were introduced in Blanchet and Glynn (2008) in the context
of importance sampling, to show the efficiency of the family of samplers suggested by (17). This technique
is closely related and in some sense parallel to the subsolution approach explained earlier in the light-tailed
setting.
Lemma 2 Suppose that there exists r (x, y) > 0 satisfying∫

r−1(x, y)P (Sj ∈ dy|Sj−1 = x) = 1

for allx and j ∈ {1, 2, ...}. Then, we can define a Markov transition kernel viaK(x, dy) = r−1 (x, y)P (Sj ∈
dy|Sj−1 = x) and an importance sampling estimator of the form

R =

TA∧TB∏
j=1

r(Sj−1, Sj)I(TA < TB).

Suppose that there exists a non-negative function G (·) and a constant ρ ∈ (0,∞) such that

E[r(x, S1)G(S1)|S0 = x] ≤ G(x) (18)

for x /∈ A ∪B and G(x) ≥ ρ for x ∈ A. Then, E [R|S0 = x] ≤ G(x)/ρ.
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The proof of the previous result is completely analogous to Lemma 1 (see Blanchet and Lam 2011).
We now explain how to apply the previous result, combined with the fluid heuristics to design efficient
importance sampling estimators in the context of Example 2.
Example 3 (Lyapunov inequalities and state-dependent importance sampling) We shall apply importance
sampling following the analysis in Section 4.2. We distinguish two situations; first, if the current position
s is sufficiently far away from the boundary n, say if n − s > ∆ for some ∆ > 0, then the intuition
developed in Section 4.2 is accurate and then we apply importance sampling using the mixture family.

However, in the second situation, if s is sufficiently close to n we do not need to apply importance
sampling. Also, if we use the previous family when s is sufficiently close to n, we might create variance
because the mixture sampling distribution is derived using the large deviations regime, so turning off the
sampling when s is sufficiently close to n is a sensible defense mechanism. We introduce a boundary layer
0 ≤ n− s ≤ ∆ for some ∆ > 0 and if s lies in this layer no importance sampling is applied.

Our family, then, takes the form

P̃ (Xk+1 ∈ dy|Sk = s) =
P (Xk+1 ∈ dy) I(y > a(n− s))

P (Xk+1 > a(n− s))
p(n− s)I(n− s > ∆)

+
P (Xk+1 ∈ dy) I(y ≤ a(n− s))

P (Xk+1 ≤ a(n− s))
[1− p(n− s)]I(n− s > ∆)

+P (Xk+1 ∈ dy) I(n− s ≤ ∆) .

The parameter a ∈ (0, 1) is selected in order to enforce uniform integrability conditions, as we shall see.
Following the intuition developed earlier we propose

p(n− s) = θP (X > a(n− s))/
∫ ∞
n−s

P (X > t)dt,

for some θ > 0. In fact, we expect θ ≈ µ to be optimal in the sense of variance minimization.
For notational convenience define H(n − s) =

∫∞
n−s P (X > t)dt. We now need to construct a valid

Lyapunov function. We wish to prove strong efficiency, so it is natural to suggest

G(n− s) = min(κH2(n− s), 1) = O(αn(s)2)

for some κ > 0. The strategy is then to select (given a ∈ (0, 1)) θ, κ and ∆ in order to satisfy the Lyapunov
inequality. If we can show that there exists a selection of these parameters that satisfies (18), then, given
that the corresponding boundary condition in Lemma 2, namely

G(n− s) ≥ ρ := min(κ

∫ ∞
0

P (X > t)dt, 1) = min(κEX+, 1) > 0

is satisfied for s > n, we would conclude strong efficiency of the estimator.
Note that the inequality (18) holds trivially if G(n− s) = 1 is equivalent to n− s ≤ ∆. Indeed, in this

case, since G (x) ≤ 1 for every x ∈ R, inequality (18) takes the form EG(n− s−X) ≤ G(n− s) = 1.
Now observe that G(n − s) < 1 holds if and only if H(n − s) < 1/κ1/2, which in turn holds if and

only if n − s > H−1(1/κ1/2). Therefore we can simply choose ∆ = H−1(1/κ1/2) and simply select θ
and κ. In other words, we shall apply importance sampling using the mixture family if and only if our
current position s is such that G(n− s) < 1. In order to proceed with the verification of inequality (18)
we henceforth assume that G(n− s) < 1. In this case inequality (18) takes the form

J1 + J2 ≤ 1, (19)
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where

J1 =
E[G(n− s−X);X > a(n− s)]P (X > a(n− s))

κH2(n− s)p(n− s)
,

J2 =
E[G(n− s−X);X ≤ a(n− s)]P (X ≤ a(n− s))

κH2(n− s)[1− p(n− s)]
.

We first bound the term J1. Observe, noting that G(·) ≤ 1, and using the form of p(n− s), we obtain
that

J1 ≤
P (X > a(n− s))
θκH(n− s)

=
p(n− s)
θ2κ

.

Then we analyze the term J2. Note that

J2 ≤
E[H2(n− s−X);X ≤ a(n− s)]

H2(n− s)[1− p(n− s)]
.

Using the a Taylor expansion with remainder, expressed using elementary calculus with t = x + yu, we
obtain

H2 (x+ y)−H2 (x) =

∫ x+y

x
2H(t)Ḣ (t) dt = 2E[yH(x+ yU)Ḣ(x+ yU)],

where U is uniformly distributed in [0, 1]. Therefore, we have, letting x = (n− s) and y = −X ,

E[H2(n− s−X)I(X ≤ a(n− s))]
H2(n− s)

= P (X ≤ a(n− s))− 2
E[XḢ(n− s−XU)H(n− s−XU);X ≤ a(n− s)]

H2(n− s)
,

where X and U are independent. Now,

− E[XḢ(n− s−XU)H(n− s−XU);X ≤ a(n− s)]
H2(n− s)

=
E[XF (n− s−XU)H(n− s−XU);X ≤ a(n− s)]

H2(n− s)
.

We are assuming that G(n− s) < 1, or equivalently, that n− s > H−1(1/κ1/2) = ∆. On the other hand,
we have that

X
F (n− s−XU)H(n− s−XU)I(X ≤ a(n− s))

H2(n− s)
∼ X α− 1

(n− s)
almost surely as n− s↗∞ and also we have, because of regular variation and Karamata’s theorem (see
for example Resnick 2004 p. 17) that there exists a constant K ∈ (0,∞) such that

|X| F (n− s−XU)H(n− s−XU)I(X ≤ a(n− s))
H2(n− s)

≤ |X| F ((n− s)(1− a))H((n− s) (1− a))

H2(n− s)
≤ K |X|
n− s

.
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Consequently, if κ (or equivalently ∆ = H−1(1/κ1/2)) is chosen sufficiently large, we conclude, applying
the dominated convergence theorem (note here that a ∈ (0, 1) has been crucial) that for each ε > 0

J2 ≤ 1 + 2EX
(α− 1)

n− s
(1− ε)

as long as G(n− s) < 1. Combining our estimates for J1 and J2 and choosing κ sufficiently large so that

p(n− s) ≤ θa−α (α− 1)(1 + ε)

n− s
,

1

1− p(n− s)
≥ 1 + θa−α

(α− 1)(1− ε)
n− s

,

we arrive at

J1 + J2 ≤
(α− 1)(1 + ε)

θκ(n− s)
a−α + (1− 2µ

(α− 1)

n− s
(1− ε))(1 + θa−α

(α− 1)(1− ε)
n− s

)

≤ a−α (α− 1)(1 + ε)

θκ(n− s)
+ (1− 2µ

(α− 1)

n− s
(1− ε) + θa−α

(α− 1)(1− ε)
n− s

).

In order to enforce (19) we then need to ensure that

a−α
1 + ε

θκ
− 2µ(1− ε) + a−αθ(1− ε) < 0,

which clearly feasible given that µ > 0. Note that it is crucial that −µ = EX < 0, otherwise it would be
impossible to select the parameters appropriately. This makes sense given that when EX ≥ 0, αn(y) = 1
and it would be therefore impossible to bound the second moment of the estimator by a function that
decreases to zero as n→∞, as we are proposing. See Blanchet and Liu (2010a) for further discussion on
the associated running time of the sampler.
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