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ABSTRACT

Simulation has become a standard tool in statistics because it may be the only tool available for analyzing
some classes of probabilistic models. We review in this paper simulation tools that have been specifically
derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov
chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.

1 INTRODUCTION

Why are statistics and simulation methods so naturally intertwined? Statistics being based upon probabilistic
structures, stochastic simulation appears as a natural tool to handle complex issues related to those structures,
besides appealing to the statistician’s intuition. The emergence of the subfields of computational statistics
(Gentle 2009, Gentle, Härdle, and Mori 2011) is strongly related to the rise in the use of Monte Carlo
methods and the history of statistics in the past 30 years exhibited a series of major advances deeply
connected with simulation, whose description is the purpose of this tutorial. The coverage is necessarily
limited and the interested reader is referred to the above references and to Robert and Casella (2004) for
books on simulation in statistics.

2 MONTE CARLO METHODS IN STATISTICS

2.1 History

Simulation has appeared at the very early stages of the development of statistics as a field. Even though it
is difficult to find a connection between Pierre-Simon de Laplace or Carl Gauß and simulation or between
Charles Babbage or Ada Byron and statistics, the great Francis Galton devised mechanical devices to
compute estimators and distributions by means of simulation. Not only his well-known quincunx (as
discussed in Stigler 1986) is a derivation of the CLT for Bernoulli experiments, but Stigler (1997) shows
that Galton also found a way to simulate from posterior distributions by an ingenious 3D construct. Closer to
us, the randomized experiments of Ronald Fisher (Fisher 1935) and the bootstrap revolution started by Brad
Efron (covered below) are intrinsically connected with calculator and computer simulations, respectively.
While Monte Carlo methods extend much further than the field of Statistics and while giants outside our
field greatly contributed to those methods (see, e.g., Halton 1970), some specific computational methods
have been developed by and for statisticians, bootstrap being the ultimate illustration.

2.2 Statistical Methods

Since the primary goal of statistics is to handle data, this field is difficult to envision without the use
of numerical methods at one level or another. The growing complexity of data, models, and techniques,
means that those numerical methods are becoming more and more central to the field, and that simulation
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methods are in particular more and more a requirement for standard statistical analysis. Here are a few
examples, further illustrations being provided by Robert and Casella (2004) and Gentle (2009).

The bootstrap was introduced by Efron (1979) as a way of conducting inference for complex distributions
or for complex procedures without having to derive the distribution of interest in closed form. Its appeal
for this tutorial is that it simply cannot be implemented without computer simulation. The idea at the core
of bootstrap is that, given a sample (x1, . . . ,xn), the empirical cdf

F̂(x) =
n

∑
i=1

1
n
Ixi≤x

(where IA is the indicator function for the event A) is a converging approximation of the true cdf of the
sample. Therefore, if the distribution of a procedure δ (x1, . . . ,xn) is of interest, an approximation to this
distribution can be obtained by assuming (x1, . . . ,xn) is an iid sample from F̂ . Since the support of F̂n,
distribution of a sample of size n from F̂ , is growing as nn, exact computations are impossible and simulation
is required. This requirement is low: producing a bootstrap sample (x∗1, . . . ,x

∗
n) means drawing n times with

replacement from the original sample. Creating a sample of δ (x∗1, . . . ,x
∗
n)’s is thus straightforward and the

method fits within an introductory course to statistics. (The theory behind is much harder, see Hall 1992.)
Maximum likelihood estimation is the default estimation method in parametric settings, i.e. in cases

when the data is assumed to be generated from a parameterized family of distributions, represented by a
density function f (x1, . . . ,xn|θ), where θ is the parameter. It consists in selecting the value of the parameter
that maximizes the function of θ , f (x1, . . . ,xn|θ), then called the likelihood (to distinguish it from the
density, a function of (x1, . . . ,xn).) Except for the most regular cases, the derivation of the maximum
likelihood estimator is a troublesome process, either because the function is not regular enough or because
it is not available in closed form. An illustration of the former is a mixture model (Frühwirth-Schnatter
2006, Mengersen, Robert, and Titterington 2011)

f (x1, . . . ,xn|θ) =
n

∏
i=1
{pg(x|µ1)+(1− p)g(x|µ2)} , θ = (p,µ1,µ2) ,

where g(·|µ) defines a family of probability densities and 0≤ p≤ 1. This structure is usually multimodal
and numerical algorithms have trouble handling the multimodality. An illustration of the later is a stochastic
volatility model (t = 1, . . . ,T )

xt = ezt εt , zt = µ +ρzt−1 +σηt , εt ,ηt ∼N (0,1) , θ = (µ,ρ,σ) ,

where only the xt’s are observed. In this case, the likelihood

f (x1, . . . ,xT |θ)∝

∫
RT+1

T

∏
t=1

σ
−T−1 exp

{
−(zt −µ−ρzt−1)

2/2σ
2} exp

{
−x2

t e−2zt/2− zt
}

exp
{
−z2

0/2σ
2} dz

is clearly unavailable in closed form. Furthermore, due to the large dimension of the missing vector z,
(non-Monte Carlo) numerical integration is impossible. While this specific model has emerged from the
analysis of financial data, it is a special occurrence of the family of hidden Markov models where similar
computational difficulties strike (Cappé, Moulines, and Rydén 2004).

Bayesian statistics are based on the same assumptions as the above likelihood approach, the difference
being that the parameter θ is turned into an unobserved random variable for processing reasons, since it
then enjoys a full probability distribution called the posterior distribution. (See Berger 1985, Bernardo
and Smith 1994, or Robert 2001 for a deeper motivation for this approach, called Bayesian because it
is based on the Bayes theorem.) Inference on the parameter θ depending on this posterior distribution,
π(θ |x1, . . . ,xn), it is then even more natural to resort to simulation for producing estimates like posterior
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expectations, and even more for assessing the precision of the corresponding estimators. For instance, the
computation of the Bayes factor used for Bayesian model comparison,

B12(x1, . . . ,xn) =

∫
f1(x1, . . . ,xn|θ1)π(θ1)dθ1∫
f2(x1, . . . ,xn|θ1)π(θ2)dθ2

,

where f1(x1, . . . ,xn|θ1)π(θ1) and f2(x1, . . . ,xn|θ1)π(θ1) correspond to two families of distributions to be
compared, is most often impossible without a simulation step (Chen, Shao, and Ibrahim 2000).
Example 1 In a generalized linear model (McCullagh and Nelder 1989), a conditional distribution of y∈R
given x ∈ Rp is defined via a density from an exponential family

y|x∼ exp{y ·θ(x)−ψ(θ(x))}

whose natural parameter θ(x) depends on the conditioning variable x,

θ(x) = g(β Tx) , β ∈ Rp

that is, linearly modulo the transform g. Obviously, in practical applications like econometrics, p can be
quite large. Inference on β (which is the true parameter of the model) proceeds through the posterior
distribution (where x = (x1, . . . ,xT ) and y = (y1, . . . ,yT ))

π(β |x,y) ∝

T

∏
t=1

exp{yt ·θ(xt)−ψ(θ(xt))} π(β )

= exp

{
T

∑
t=1

yt ·θ(xt)−
T

∑
t=1

ψ(θ(xt))

}
π(β ) ,

which rarely is available in closed form. In addition, in some cases ψ may be costly simply to compute
and in others T may be large or even very large.

A standard testing situation is to decide whether or not a factor, x1 say, impacts the dependent variable
y. This is often translated as testing whether or not the corresponding component of β , β1, is equal to 0,
β1 = 0. If we denote by β−1 the other components of β , the Bayes factor for this hypothesis will be∫

Rp
exp

{
T

∑
t=1

yt ·g(β Txt)−
T

∑
t=1

ψ(g(β Txt))

}
π(β )dβ

/
∫
Rp−1

exp

{
T

∑
t=1

yt ·g(β T
−1(xt)−1)−

T

∑
t=1

ψ(β T
−1(xt)−1)

}
π−1(β−1)dβ−1 ,

when π−1 is the prior constructed for the null hypothesis. Obviously, except for the normal conjugate case,
both integrals cannot be computed in a closed form. J

2.3 Monte Carlo Solutions

As noted above, the setting is ripe for a direct application of simulation techniques, as the underlying
probabilistic structure can exploited by either simulating pseudo-data—see, e.g., the bootstrap and the
maximum likelihood approaches—or parameter values—for the Bayesian approach—. The use of simulation
in statistics can be traced to the origins of the Monte Carlo method and simulation-based evaluations of
the power of testing procedures are available from the mid 1950’s (Hammersley and Handscomb 1964).

It is thus no surprise that the standard Monte Carlo approximation to integrals

I=
∫

h(x) f (x)dx≈ 1
T

T

∑
t=1

h(xi) , x1, . . . ,xT ∼ f (x) ,
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and the importance sampling substitutes

I≈ 1
T

T

∑
t=1

f (x)
g(x)

h(xi) , x1, . . . ,xT ∼ g(x) ,

are thus in use in all settings where the density f (·) can be easily simulated, or where a good enough
substitute density g(·) can instead be simulated (Hammersley and Handscomb 1964, Rubinstein 1981,
Ripley 1987). We recall that, because I can be represented in an infinity of ways as an expectation, there
is no need to simulate from the distribution with density f to get a good approximation of I. For any
probability density g with supp(g) including the support of h f , the integral I can also be represented as
an expectation against g as above. This Monte Carlo method with importance function g almost surely
converges to I and the estimator is unbiased. This is classical Monte Carlo methodology (Halton 1970),
however the selection of importance sampling densities g(·), the control of convergence properties, the
improvement of variance performances were particularly studied in the 1980’s (Smith 1984, Geweke 1988).

More advanced simulation techniques were however necessary to deal with large dimensions, multimodal
targets, intractable likelihoods, or/and missing data issues. Those were mostly introduced in the 1980’s
and 1990’s, even though precursors can be found in earlier years (Robert and Casella 2011), and they
unsurprisingly stem from the fringe of statistics (image analysis, signal processing, point processes,
econometrics, surveys, etc.) where the need for more powerful computational tools was more urgent. The
most important advance is undoubtedly the introduction of Markov chain Monte Carlo (MCMC) methods
into statistics as it impacted the whole practice and perception of Bayesian statistics (Robert and Casella
2011). We describe those methods in the next section. More recently, a new branch of computational
methods called ABC (for approximate Bayesian computations) was launched by population geneticists to
overcome computational stopping blocks due to intractable likelihoods, as described in Section 4.

3 MCMC ALGORITHMS

3.1 Markov Chain Monte Carlo Methods

As old as the Monte Carlo method itself (see Robert and Casella 2011), the MCMC extensions try to
overcome the limitation of regular Monte Carlo methods (primarily, complexity or dimension of the target)
by simulating a Markov chain whose stationary and limiting distribution is the target distribution. There
exist rather generic ways of producing such chains, including Metropolis–Hastings and Gibbs algorithms.
Besides the fact that stationarity of the target distribution is enough to justify a simulation method by Markov
chain generation, the idea at the core of MCMC algorithms is that local exploration, when properly weighted,
can lead to a valid representation of the distribution of interest, as for instance, the Metropolis–Hastings
algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953, Hastings 1970).

Given an almost arbitrary transition distribution with density q(x,x′), the Markov chain is associated
with the following transition. At time t, given the current value xt , the corresponding Markov chain explores
the surface of the target density in the neighborhood of xt by proposing x∗t+1 ∼ q(xt , ·) and then accepting
this new value with probability

f (x∗t+1)q(x∗t+1,xt)

f (xt)q(xt ,x∗t+1)
∧1 .

The validation of this simple strategy is given by the detailed balance property of the Metropolis–Hastings
transition density, µ(x,x′), namely that f (x)µ(x,x′) = f (x′)µ(x′,x).

This MCMC simulation technique is obviously generic and thus applies in many other fields than
statistics, but the reassessment of the method in the 1980’s by several statisticians (including Julian Besag,
Don and Stuart Geman, Brian Ripley, David Spiegelhalter, Martin Tanner, Alan Gelfand and Adrian Smith,
as detailed in Robert and Casella 2011) brought a considerable impetus to the development of Bayesian
statistical methodology by providing a general way of handling high dimensional problems and complex
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Figure 1: Occurrences of “posterior distribution” in Google English corpus using Ngram viewer.

densities. An illustration of this surge is produced in Figure 1 which shows how the use of the term “posterior
distribution” considerably increased after 1990, following Gelfand and Smith (1990) who advertised the
Gibbs sampler as a mean of exploring posterior distributions.

The difficulty inherent to Metropolis–Hastings algorithms like the random walk version, where q(x,x′)
is symmetric, is the scaling of the proposal distribution: the scale of q must correspond to the shape of the
target distribution so that, in a reasonable number of steps, the whole support of this distribution can be
visited. If the scale of the proposal is too small, this will not happen as the algorithm stays “too local” and,
if there are several modes on the target, the algorithm may get trapped within one modal region because
it cannot reach other modal regions relying on jumps of too small a magnitude. The larger the dimension
p of the target is, the harder it is to set up an efficient proposal, because

(a). the curse of dimension implies that there is a larger portion of the space with zero probability;
(b). the knowledge and intuition about the modal regions get weaker;
(c). the scaling parameter is a symmetric (p, p) matrix Ξ in the proposal q(x,x′) = g((x−x′)TΞ(x−x′)).

Even when the matrix Ξ is diagonal, it gets harder to choose as the dimension increases.

Unfortunately, an on-line scaling of the algorithm by looking for instance at the empirical acceptance rate
is theoretically flawed in that it cancels the Markov validation. Furthermore, the attraction of a modal
region may give a false sense of convergence and lead to a choice of too small a scale, simply because
other modes will not be visited during the scaling experiment.

3.2 The Challenge of Adaptivity

Thus, given the range of situations where MCMC applies, it is unrealistic to hope for a generic MCMC
sampler that would function in every possible setting. The reason for this “impossibility theorem” is that,
in genuine problems, the complexity of the distribution to simulate is the very reason why MCMC is used!
So it is unrealistic to ask for a prior opinion about this distribution, its support, or the parameters of the
proposal distribution used in the MCMC algorithm: intuition is close to null in most of these problems.

However, the performances of off-the-shelf algorithms like the random-walk Metropolis–Hastings
scheme bring information about the distribution of interest or at least about the adequacy of the current
proposal and, as such, could be incorporated in the design of more efficient algorithms. The difficulty is that
one usually misidentifies the appropriate amount of time required to train the algorithm on these previous
performances. While it is natural to think that the information brought by the first steps of an MCMC
algorithm should be used in later steps, the validation of such a learning mechanism is complex, because
of its non-Markovian nature. Usual ergodic theorems do not apply in such cases. Further, it may be that,
in practice, such algorithms do degenerate to point masses due to too a rapid decrease in the variability of
their proposal.
Example 2 Consider a Student’s t-distribution T (ν ,θ ,1) sample (x1, . . . ,xn) with degrees of freedom ν

and scale parameter 1 both known. Assume in addition a flat prior π(θ) = 1 on the location parameter θ .
While the posterior distribution on θ can be easily plotted, up to a normalizing constant, direct simulation
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and computation from this posterior is impossible. In an MCMC framework, we could fit a normal proposal
from the empirical mean and variance of the previous values of the chain,

µt =
1
t

t

∑
i=1

θ
(i) and σ

2
t =

1
t

t

∑
i=1

(θ (i)−µt)
2 .

This leads to a Metropolis–Hastings algorithm with acceptance probability

n

∏
j=2

[
ν +(x j−θ (t))2

ν +(x j−ξ )2

]−(ν+1)/2
exp−(µt −θ (t))2/2σ2

t

exp−(µt −ξ )2/2σ2
t

,

where ξ is generated from N (µt ,σ
2
t ). The invalidity of this scheme (related to the dependence on the

whole past values of θ (i)) is illustrated by Figure 2: for an initial variance of 2.5, there is a bias in the fit,
even after stabilization of the empirical mean and variance. J

q
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Figure 2: Comparison of the distribution of an adaptive scheme sample of 25,000 points with initial variance
of 2.5 and of the target distribution.

The overall message is thus that one should not constantly adapt the proposal distribution on the past
performances of the simulated chain. Either the adaptation must cease after a period of burning (not to be
taken into account for the computations of expectations and quantities related to the target distribution), or the
adaptive scheme must be theoretically assessed on its own right. If we remain within the MCMC approach
(rather than adopting sequential importance methods as in Cappé, Douc, Guillin, Marin, and Robert 2008),
this later path is not easy and only a small community (gathering at the Adap’ski workshops, run every three
year since 2005) is working on establishing valid adaptive schemes. Earlier works include those of Gilks,
Roberts, and Sahu (1998) who use regeneration to create block independence and preserve Markovianity
on the paths rather than on the values, Haario, Saksman, and Tamminen (1999), Haario, Saksman, and
Tamminen (2001) who derive a proper adaptation scheme in the spirit of stochastic optimization by using
a ridge-like correction to the empirical variance, and Andrieu and Robert (2001) who propose a more
general framework of valid adaptivity based on stochastic optimization and the Robbin-Monro algorithm.
The latter actually embeds the chain of interest θ (t) in a larger chain (θ (t),ξ (t),∂ (t)) that also includes the
parameter of the proposal distribution as well as the gradient of a performance criterion. More recent works
building on this principle and deriving sufficient conditions for ergodicity include Andrieu and Moulines
(2006), Roberts and Rosenthal (2007), Craiu, Rosenthal, and Yang (2009), Saksman and Vihola (2010),
Atchadé (2011), Atchadé and Fort (2010), Ji and Schmidler (2011). They mostly contain development of
a theoretical nature.

This line of research has led Roberts and Rosenthal (2009) to establish guiding rules as to when an
adaptive MCMC algorithm is converging to the correct target distribution, to the point of constructing
an R package called amcmc (Rosenthal 2007). More precisely, Roberts and Rosenthal (2009) propose a
diminishing adaptation condition that states that the total variation distance between two consecutive kernels
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must uniformly decrease to zero (which does not mean that the kernel must converge!). For instance, a
random walk proposal that relies on the empirical variance of the sample will satisfy this condition. The
scale of the random walk is then tuned in each direction toward an optimal acceptance rate of 0.44. To this
effect, for each component of the simulated vector, a factor δi corresponding to the logarithm of the random
walk standard deviation is updated every 50 iterations by adding or subtracting a factor εt depending on
whether or not the average acceptance rate on that batch of 50 iterations and for this component was above
or below 0.44. If εt decreases to zero as min(.01,1/

√
t), the conditions for convergence are satisfied.

Another package called Grapham was also recently developed by Vihola (2010).

4 ABC METHODS

4.1 Intractable Likelihoods

When facing settings where the likelihood `(θ |y) is not available in closed form, the above solutions are
not directly available. In the particular set-up of hierarchical models with partly conjugate priors, it may be
that the corresponding conditional distributions can be simulated and this property leads to a Gibbs sampler
(Gelfand and Smith 1990), but such a decomposition is not available in general. In the specific setting of
latent variable models, the likelihood may be expressed as an intractable multidimensional integral

`(θ |y) =
∫

`?(θ |y,u)du ,

where y is observed and u ∈ Rp is not, while the joint distribution π(θ ,z|y) ∝ π(θ)`?(θ |y,u) can be
simulated. The increase in dimension induced by the passage from θ to (θ ,u) may be such that the
convergence properties of the corresponding MCMC algorithms are too poor for the algorithm to be
considered.

Bayesian inference thus needs to handle a large class of settings where the likelihood function is
not completely known, and where exact (or even MCMC) simulation from the corresponding posterior
distribution is impractical or even impossible. The ABC methodology, where ABC stands for approximate
Bayesian computation, offers an almost automated resolution of the difficulty with intractable-yet-simulable
models. It was first proposed in population genetics by Tavaré, Balding, Griffith, and Donnelly (1997) who
bypassed the computation of the likelihood function using simulation. Pritchard, Seielstad, Perez-Lezaun,
and Feldman (1999) then produced a generalization based on an approximation of the target.

4.2 Approximative Resolution

The principle of the ABC algorithm (Tavaré, Balding, Griffith, and Donnelly 1997) is a simple accept-reject
algorithm: if one keeps simulating θ ∼ π(θ) and x ∼ f (x|θ) until x = y, the resulting θ is distributed
from π(θ |y) ∝ π(θ) f (y|θ). However, when the event x = y has probability zero, the algorithm cannot be
implemented. Pritchard, Seielstad, Perez-Lezaun, and Feldman (1999) used instead an approximation of
the above by simulating pairs (θ ,x) until the condition

ρ{η(z),η(y)} ≤ ε

is met, where η is a (maybe insufficient) statistic, ρ is a distance, and ε > 0 is a tolerance level.
The above algorithm is “likelihood-free” in that it only requires the ability to simulate from the

distribution f (x|θ) and it is approximative in that it produces simulations from

πε(θ |y) =
∫

Z
π(θ) f (z|θ)IAε,y(z)dz

/∫
Aε,y×Rd

π(θ) f (z|θ)dzdθ , (1)

where IB(·) denotes the indicator function of the set B and where

Aε,y = {z ∈D |ρ{η(z),η(y)} ≤ ε} .
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Figure 3: Approximations of the genuine posterior distribution (in dark) by ABC versions for ε equal to
the .01, .1,1,10 % quantiles of 106 sampled distances. The prior distribution is the grey curve.

The basic idea behind ABC is that using a representative (enough) summary statistic η coupled with a
small (enough) tolerance ε should produce a good (enough) approximation to the posterior distribution. At
a deeper level, the algorithm implements a non-parametric approximation of the conditional distribution
using binary kernels (Beaumont, Zhang, and Balding 2002, Blum 2010, Blum and François 2010).
Example 3 Considering the toy problem of Example 2, a simple implementation of the ABC algorithm
consists in simulating the location parameter θ from the prior—chosen to be a N (0,1)— and in simulating
n realizations from a T (ν ,θ ,1) distribution until those n realizations are close enough from the original
observations. In generic ABC algorithms, the tolerance ε is chosen as a quantile of the distances between
the true data and the simulated pseudo-data. Figure 3 studies the impact of this choice starting from the
10% quantile down to the .01% quantile. The ABC approximations get closer to the true posterior as ε

decreases, the final approximation differing more for variance than for bias reasons. J

In more realistic problems, simulating from the prior distribution is very inefficient because it does
not account for the data at the proposal stage and thus leads to proposed values located in low posterior
probability regions. As an answer to this problem, Marjoram, Molitor, Plagnol, and Tavaré (2003) have
introduced an MCMC-ABC algorithm targeting (1). Sequential alternatives can also enhance the efficiency
of the ABC algorithm, by learning about the target distribution, as in the ABC-PMC algorithm—based
on genuine importance sampling arguments—of Beaumont, Cornuet, Marin, and Robert (2009) and the
ABC-SMC algorithm—deriving a sequential Monte Carlo (SMC) filter—of Del Moral, Doucet, and Jasra
(2011) and Drovandi and Pettitt (2010).

4.3 Convergence and Limitations

While the original argument of letting ε go to zero is clearly illustrated by the above example, more
advanced arguments have been recently produced about the convergence of ABC algorithms. Besides the
non-parametric parallels drawn in Beaumont, Zhang, and Balding (2002), Blum (2010), Blum and François
(2010), a different perspective is found in the pseudo-likelihoods argument of Fearnhead and Prangle
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(2010) and Dean, Singh, Jasra, and Peters (2011). In this perspective, ABC is an exact algorithm for an
approximate distribution, which is converging to the exact posterior as the sample size grows to infinity.

ABC being able to produce samples from posterior distributions, it does not come as a surprise that it
is used for model choice because the latter often involves a computational higher complexity. Estimating
the posterior probabilities of models under competition by ABC is thus proposed in most of the literature
(see, e.g., Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, and Estoup 2008, Grelaud,
Marin, Robert, Rodolphe, and Tally 2009, Toni, Welch, Strelkowa, Ipsen, and Stumpf 2009, Toni and
Stumpf 2010). However, it has been recently exposed in Didelot, Everitt, Johansen, and Lawson (2011),
Robert, Cornuet, Marin, and Pillai (2011) that those approximations may fail to converge in the case the
summary statistics are not sufficient for model comparison. More empirical evaluations as those tested in
Ratmann, Andrieu, Wiujf, and Richardson (2009) should thus be implemented to assess the relevance of
those approximations, unless one uses the whole data instead of summary statistics.

5 CONCLUSION

The present tutorial is naturally both very incomplete and quite partial. Even within Bayesian methods,
one glaring omission is the area of sequential Monte Carlo methods (or particle filters) used to analyst
non-linear non-Gaussian state space models. While particle filters and improvements have been around for
several years (Gordon, Salmond, and Smith 1993, Pitt and Shephard 1999, Del Moral, Doucet, and Jasra
2006), handling unknown parameters as well is a much harder goal and it is only recently that significant
progress has been made with the particle MCMC method of Andrieu, Doucet, and Holenstein (2011).
This new class of MCMC algorithms relies on a population of particles produced by an SMC algorithm
to build an efficient proposal at each MCMC iteration. (That this approximation remains a valid MCMC
algorithm is quite an involved result, in connection with the results of Andrieu and Roberts 2009). This
area is currently quite active with alternatives and softwares being developed. More generally, parallel
computing is now used in a growing fraction of applications, particularly in genetics, with a direct impact
on the nature of the simulation methods (Tom, Sinsheimer, and Suchard 2010, Jacob, Robert, and Smith
2011), which include more and more non-parametric aspects (Jordan 2010, Hjort, Holmes, Müller, and
Walker 2010).

Simulation techniques are clearly found in too many of current statistical methods to be even mentioned
here and the trend is definitely upward. Speed (2011) concludes “we are heading to an era when all
statistical analysis can be done by simulation”. This is indeed quite an exciting time for computational
statisticians!
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