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ABSTRACT

Value-at-risk and conditional value at risk are two widely used risk measures, employed in the financial
industry for risk management purposes. This tutorial discusses Monte Carlo methods for estimating value-
at-risk, conditional value-at-risk and their sensitivities. By relating the mathematical representation of
value-at-risk to that of conditional value-at-risk, it provides a unified view of simulation methodologies for
both risk measures and their sensitivities.

1 INTRODUCTION

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two widely used risk measures, employed in
the financial industry for risk management purposes. For instance, VaR is used by bank regulators to set
capital requirements for the banks, with the aim to ensure that banks keep enough capital to serve as a
cushion against potential losses (Jorion 1997). By definition, for any α ∈ (0,1), the α-VaR of a random
loss L is the α quantile of L, while the α-CVaR is the average of all β -VaR for β ∈ (α,1). Both VaR and
CVaR provide information on the magnitude of the potential large losses that the investor may suffer.

The sensitivities of VaR and CVaR concern the derivatives of these risk measures with respect to a
parameter associated with the random loss L. They measure how changes in the parameter will affect the
levels of VaR and CVaR, and have a number of important applications in financial industry. In portfolio
optimization problems, for instance, sensitivities of VaR (CVaR) can be incorporated into a gradient-based
optimization algorithms to solve problems with VaR (CVaR) objective and/or constraints (Rockafellar and
Uryasev 2000). In portfolio capital allocation, for instance, individual assets’ marginal risk contributions,
the sum of which is exactly the total risk of the portfolio, can be expressed as sensitivities of the risk
measures under appropriate conditions, see, e.g., Kalkbrener (2003), Kalkbrener et al. (2004) and Kurth
and Tasche (2003).

Monte Carlo simulation has been widely used as an effective tool for calculating VaR, CVaR and their
sensitivities, given that the loss models in practical use are often complicated and analytical formulas of
these quantities may not be available. Over the past two decades, the problem of simulating VaR, CVaR
and their sensitivities has received much attention from the simulation community. Given the existence of a
large amount of work in this area, in this tutorial we do not attempt to provide a thorough and comprehensive
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review of the related literature, but instead, we provide a unified view of the simulation methodologies for
estimating these quantities.

The rest of the paper is organized as follows. Section 2 considers the estimation of VaR and CVaR,
and discusses asymptotic properties of the estimators and variance reduction issues. Section 3 considers
the estimation of sensitivities of VaR and CVaR, and discusses their closed-form expressions, asymptotic
properties, and methods for efficiency improvement. Section 4 concludes.

2 VALUE-AT-RISK AND CONDITIONAL VALUE-AT-RISK

As a starting point, we define VaR and CVaR, and explore their inherent connections. Let L be the random
loss of interest and F(y) = Pr{L≤ y} be the cumulative distribution function (CDF) of L. Then the inverse
CDF of L can be defined as F−1(γ) = inf{y : F(y)≥ γ}. Following the definitions of Trindade et al. (2007),
for any α ∈ (0,1), we define the α-VaR of L as

vα = F−1(α),

and define the α-CVaR of L as

cα =
1

1−α

∫ 1

α

vβ dβ . (1)

Pflug (2000) shows that cα can also be written as the following stochastic program:

cα = inf
t∈ℜ

{
t +

1
1−α

E[L− t]+
}
, (2)

where [a]+ = max{0,a}. Let T be the set of optimal solutions to the stochastic program defined in Equation
(2). Trindade et al. (2007) show that T = [vα ,uα ] where uα = sup{t : F(t)≤ α}. In particular, note that
vα ∈ T . Therefore,

cα = vα +
1

1−α
E[L− vα ]

+. (3)

When L has a positive density in the neighborhood of vα , then vα = uα . Therefore, the stochastic program
defined in Equation (2) has a unique solution, and

cα = E [L|L≥ vα ] , (4)

while the right-hand side of Equation (4) is also known as expected shortfall or tail conditional expectation.

2.1 Monte Carlo Estimation

Suppose that L1,L2, . . . ,Ln are n independent and identically distributed (i.i.d.) observations from the loss
L. Then, the α-VaR of L can be estimated by

v̂n
α = Ldnαe:n,

where Li:n is the ith order statistic from the n observations.
Trindade et al. (2007) suggest to use the estimator

ĉn
α = inf

t∈ℜ

{
t +

1
n(1−α)

n

∑
i=1

[Li− t]+
}
. (5)

to estimate the α-CVaR of L. Let

Fn(y) =
1
n

n

∑
i=1

1{Li≤y}
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be the empirical CDF constructed from L1,L2, . . . ,Ln, where 1{·} is the indicator function. Then

ĉn
α = inf

t∈ℜ

{
t +

1
1−α

E
[
L̃− t

]+}
,

where the CDF of L̃ is Fn. Since v̂n
α = F−1

n (α), then by Equation (3), we have

ĉn
α = v̂n

α +
1

n(1−α)

n

∑
i=1

[Li− v̂n
α ]

+ . (6)

Therefore, we can apply Equation (6) to directly estimate cα instead of solving the stochastic program in
Equation (5).

2.2 Asymptotic Properties

Consistency and asymptotic normality of the estimators v̂n
α and ĉn

α have been studied extensively in the
literature, see, e.g., Serfling (1980) and Trindade et al. (2007). Regarding the asymptotic properties, a
result that is even sharper is the Bahadur representation (Bahadur 1966).

As a unified view, we present the asymptotic properties of v̂n
α and cn

α by using the Bahadur representations.
To this end, we first make the following assumption.
Assumption 1 There exists an ε > 0 such that L has a positive and continuously differentiable density
f (x) for any x ∈ (vα − ε,vα + ε).

Assumption 1 requires that L has a positive and differentiable density in a neighborhood of vα . it
implies that F(vα) = α and cα = E [L|L≥ vα ].

Bahadur representations of v̂n
α and ĉn

α are summarized in the following theorem, whose proof is omitted
here.
Theorem 1 For a fixed α ∈ (0,1), suppose that Assumption 1 is satisfied. Then

v̂n
α = vα −

1
f (vα)

(
(1−α)− 1

n

n

∑
i=1

1{Li≥vα}

)
+An, and

ĉn
α = cα +

(
1
n

n

∑
i=1

[
vα +

1
1−α

(Li− vα)
+

]
− cα

)
+Bn,

where An = Oa.s.(n−3/4(logn)3/4), Bn = Oa.s.(n−1 logn), and the statement Yn = Oa.s.(g(n)) means that
Yn/g(n) is bounded by a constant almost surely.

Consistency and asymptotic normality of v̂n
α and ĉn

α follow straightforwardly from Theorem 1. Specif-
ically, if Assumption 1 is satisfied, then v̂n

α → vα and ĉn
α → cα with probability 1 (w.p.1) as n→ ∞.

Furthermore, if E
(
L2
)
< ∞, then

√
n(v̂n

α − vα)⇒
√

α(1−α)

f (vα)
N(0,1), and (7)

√
n(ĉn

α − cα)⇒ σ∞ ·N(0,1), (8)

as n→ ∞, where “⇒” denotes “converge in distribution”, N(0,1) represents the standard normal random
variable, and

σ
2
∞ = lim

n→∞
nVar(ĉn

α) =
1

(1−α)2 ·Var
(
[L− vα ]

+
)
.

97



Hong and Liu

2.3 Variance Reduction

In the simulation literature, there has been a significant amount of work on the topic of variance reduction
for VaR (also called quantile) estimation. For instance, Hsu and Nelson (1990) and Hesterberg and Nelson
(1998) use of control variates, Avramidis and Wilson (1998) employ correlation-induction techniques for
variance reduction in quantile estimation. Glynn (1996) considers the use of importance sampling and
discusses its asymptotic properties. The problem of estimating portfolio VaR has been studied in Glasserman
et al. (2000) and Glasserman et al. (2002), where importance sampling and stratified sampling are employed.

Among various variance reduction methods proposed in the literature, importance sampling (IS) is
particularly attractive, given the rare-event features of many practical problems. It has proven to be a very
effective variance reduction technique in this context, and much work has been done regarding this issue.

In this tutorial we discuss importance sampling in more details, with a focus on the asymptotic properties
of the IS estimators. Specifically, suppose that L is simulated under another distribution function G(·),
where F is absolutely continuous with respect to G, i.e., F(dx) = 0 if G(dx) = 0 for any x ∈ℜ. We refer
to G as the IS distribution and let S(x) = F(dx)/G(dx) denote the likelihood ratio function (also called
score function) associated with the change of measure. Note that

F(x) = EF
[
1{L≤x}

]
= EG

[
1{L≤x}S(L)

]
,

where EF and EG denote taking expectations with respect to F and G respectively. Then for any x ∈ℜ,
we may estimate F(x) by

Fn,IS =
1
n

n

∑
i=1

1{Li≤x}S(Li).

Then the IS estimators of vα and cα , denoted by v̂n,IS
α and ĉn,IS

α , can be defined as follows.

v̂n,IS
α = F−1

n,IS(α) = inf{x : Fn,IS ≥ α}, and

ĉn,IS
α = v̂n,IS

α +
1

1−α

n

∑
i=1

(Li− v̂n,IS
α )+S(Li).

Recently, Sun and Hong (2010) and Chu and Nakayama (2011) independently study the Bahadur
representations of the IS estimators. To present this result, we follow the framework of Sun and Hong
(2010) and make a further assumption.
Assumption 2 There exist ε > 0 and C > 0 such that S(x)<C for any x ∈ (vα−ε,vα +ε) and there exists
p > 2 such that EG

[
1{L≥vα−ε}Sp(L)

]
< ∞.

Assumption 2 requires that the likelihood ratio function is bounded above in a neighborhood of vα and
has a finite p moment on the right tail of the loss.

Define the notation op(·) such that a random variable Un = op(g(n)) means Un/g(n)→ 0 in probability
as n→ ∞. Then the Bahadur representations of the IS estimators of vα and cα are summarized in the
following theorem. Interested readers may refer to Sun and Hong (2010) for its proof.
Theorem 2 For a fixed α ∈ (0,1), suppose that Assumptions 1 and 2 are satisfied. Then,

v̂n,IS
α = vα −

1
f (vα)

(
(1−α)− 1

n

n

∑
i=1

1{Li≥vα}S(Li)

)
+Cn, and

ĉn,IS
α = cα +

(
1
n

n

∑
i=1

[
vα +

1
1−α

(Li− vα)
+S(Li)

]
− cα

)
+Dn,

where Cn = Oa.s.(t(n,δ )) with t(n,δ ) = max{n−1+2/p+δ ,n−3/4+1/(2p)+δ} and Dn = Oa.s.(n−1+2/p+δ ) for
any δ > 0, Cn = op(n−1/2), and Dn = op(n−1/2). Furthermore, if S(x) ≤ C for all x ∈ (vα − ε,∞), then
Cn = Oa.s.(n−3/4(logn)3/4) and Dn = Oa.s.(n−1 logn).
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Asymptotic normality of the estimators follows immediately from Theorem 2. In particular,

√
n
(

v̂n,IS
α − vα

)
⇒

√
VarG

[
1{L≥vα}S(L)

]
f (vα)

N(0,1),

and
√

n
(

ĉn,IS
α − cα

)
⇒
√

VarG [(L− vα)+S(L)]
1−α

N(0,1),

as n→ ∞.
If S(x) < 1 for all x ≥ vα , then it can be easily verified that VarG

[
1{L≥vα}S(L)

]
< α(1−α) and

VarG [(L− vα)
+S(L)] < Var [(L− vα)

+]. Then compared to Equations (7) and (8), it can be seen that the
asymptotic variances of the IS estimators will be smaller than those of the estimators without IS, given a
sufficient condition that S(x) < 1 for all x ≥ vα . In practice, an effective IS distribution (with a density
function g) often satisfies g(x)> f (x) for x > vα , which implies the sufficient condition. This provides a
guideline for selecting an appropriate IS distribution in practical implementations.

3 SENSITIVITIES OF VALUE-AT-RISK AND CONDITIONAL VALUE-AT-RISK

To analyze the sensitivities of VaR and CVaR, we let θ denote the parameter with respect to which we
calculate sensitivities. Without loss of generality, in this tutorial we assume that θ is one-dimensional
and θ ∈ Θ, where Θ ⊂ ℜ is an open set. If θ is multidimensional, we may treat each dimension as a
one-dimensional parameter, while fixing other dimensions constants.

The random loss of interest may depend on the parameter, and thus we write it as L(θ) to incorporate
the dependence. Correspondingly, we let F(·,θ) and f (·,θ) denote its CDF and probability density function
(PDF) respectively, and vα(θ) and cα(θ) denote the α-VaR and α-CVaR respectively. Furthermore, the
subsequent sensitivity analysis may involve the derivative of L′(θ), In particular, we let L′(θ) = dL(θ)/dθ

be the pathwise derivative, and assume that L′(θ) can be evaluated for all θ ∈Θ.
In this section we attempt to provide a unified view of sensitivities of VaR and CVaR by summarizing the

results presented in several papers of the authors. We first derive the closed-form expressions of sensitivities
of VaR and CVaR, then discuss the issues of Monte Carlo estimation, including asymptotic properties.
Methods to accelerate the rates of convergence of VaR sensitivity estimators will also be discussed.

3.1 Closed-Form Expressions

As a starting point toward deriving the closed-from expressions, we note that VaR (quantile) and probability
distribution function are closely related. Specifically, for a fixed α ∈ (0,1),

F(vα(θ),θ) = α. (9)

We explore this relation to link together VaR sensitivity and probability sensitivity.
Since a probability distribution function is simply an expectation and is easier to analyze, we start

by analyzing probability sensitivity. We let py(θ) = Pr{L(θ) ≤ y} be the probability function for some
threshold y. To facilitate the analysis, we first make the following assumptions.
Assumption 3 For any θ ∈Θ, L′(θ) exists w.p.1 and there exists a random variable K, which may depend
on θ , such that E(K)< ∞ and |L(θ +∆θ)−L(θ)| ≤ K|∆θ | for any ∆θ that is close enough to 0.
Assumption 4 For any θ ∈Θ, F(t,θ) is continuously differentiable at (y,θ).

Assumption 3 is a typical assumption used in pathwise derivative estimation, see, e.g., Broadie and
Glasserman (1996). It guarantees the validity of interchanging differentiation and expectation when
evaluating dE(r(L(θ)))/dθ for any Lipschitz-continuous function r(·). Assumption 4 requires that F(t,θ)
is continuously differentiable at (y,θ). Typically this is satisfied for practical problems. More discussions
on this assumption can be found in Hong and Liu (2010).
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Given the assumptions, Hong (2009) shows the following result.
Theorem 3 Suppose that Assumptions 3 and 4 are satisfied. Then,

p′y(θ) =−∂yE
[
L′(θ) ·1{L(θ)≤y}

]
,

where ∂y denotes the operator of taking partial derivative with respect to y. Furthermore, if E[L′(θ)|L(θ) = t]
is continuous at t = y, then

p′y(θ) =− f (y,θ)E
[
L′(θ)|L(θ) = y

]
.

Theorem 3 shows that probability sensitivity can be written as the product of a density and a conditional
expectation. This is an important step toward developing estimation methods.

Starting from the result of Theorem 3, we may easily arrive at a closed-form expression of VaR
sensitivity. The key is to use relation in (9). Specifically, by differentiating with respect to θ on both sides
of Equation (9), we have

∂tF(vα(θ),θ)v′α(θ)+ ∂θ F(a,θ)|a=vα (θ)
= 0.

Noting that ∂tF(vα(θ),θ) = f (vα(θ),θ) and ∂θ F(a,θ) = p′a(θ), we immediately have

v′α(θ) =−
1

f (vα(θ),θ)
p′a(θ)|a=vα (θ) = E

[
L′(θ)|L(θ) = vα(θ)

]
.

In other words, VaR sensitivity can be written as a conditional-expectation, which is summarized in the
following theorem.
Theorem 4 Suppose that Assumptions 3 and 4 are satisfied at y = vα(θ), and E[L′(θ)|L(θ) = t] is
continuous at t = vα(θ). Then,

v′α(θ) = E[L′(θ)|L(θ) = vα(θ)].

Theorem 4 shows that under appropriate regularity conditions, VaR sensitivity is an expectation taken in
the set defined by {L(θ) = vα}. Because the set is often a probability-zero set in many practical problems,
the representation in Theorem 4 may not be directly applied for estimating VaR sensitivity. However, it
does tell us a fact that only samples that lies in a neighborhood of the set play crucial roles in estimation.

To derive a closed-from expression for CVaR sensitivity from VaR sensitivity, we use the relation:

cα(θ) = vα(θ)+
1

1−α
E[L(θ)− vα(θ)]

+.

The basic idea is that h(x) = x+ is a Lipschitz continuous function, and hence the interchange of expectation
and differentiation is valid under some mild regularity conditions. In particular, the closed-form expression
of CVaR sensitivity is presented in the following theorem.
Theorem 5 Suppose that Assumptions 3 and 4 are satisfied at y = vα(θ), and vα(θ) is differentiable for
any θ ∈Θ. Then for any θ ∈Θ,

c′α(θ) = E
[

L′(θ)
∣∣L(θ)≥ vα(θ)

]
.

Proof. To prove the theorem, we prove that c′α(θ
∗) = E [L′(θ ∗)|L(θ ∗)≥ vα(θ

∗)] for any θ ∗ ∈Θ.
Note that L(θ) has a density at vα(θ), then for any θ ∈Θ,

cα(θ) = E[L(θ)|L(θ)≥ vα(θ)] =
1

1−α
E
[
L(θ) ·1{L(θ)≥vα (θ)}

]
=

1
1−α

E
{
[L(θ)− vα(θ)] ·1{L(θ)−vα (θ)≥0}

}
+ vα(θ). (10)
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For any θ ∗ ∈Θ, because vα(θ) is differentiable at θ ∗, there exist a neighborhood of θ ∗, denoted as (aθ ∗ ,bθ ∗),
and a constant κθ ∗ such that θ ∗ ∈ (aθ ∗ ,bθ ∗), (aθ ∗ ,bθ ∗) ⊂ Θ, and |vα(θ1)− vα(θ2)| ≤ κθ ∗ |θ1−θ2| for all
θ1,θ2 ∈ (aθ ∗ ,bθ ∗). Then by Assumption 3,

|[L(θ2)− vα(θ2)]− [L(θ1)− vα(θ1)]| ≤ (K +κθ ∗) · |θ2−θ1|

for all θ1,θ2 ∈ (aθ ∗ ,bθ ∗), and E(K +κθ ∗) = E(K)+κθ ∗ < ∞. Note that h(x) = x · 1{x≥0} is a Lipschitz
continuous function and h′(x) = 1{x≥0} when x 6= 0. Because Pr{L(θ)−vα(θ) 6= 0}= 1, then applying the
pathwise method at every θ ∈ (aθ ∗ ,bθ ∗)

d
dθ

E
{
[L(θ)− vα(θ)] ·1{L(θ)−vα (θ)≥0}

}
=

d
dθ

E [ f (L(θ)− vα(θ))]=E
{[

L′(θ)− v′α(θ)
]
·1{L(θ)−vα (θ)≥0}

}
.

Then by Equation (10), at every θ ∈ (aθ ∗ ,bθ ∗),

c′α(θ) =
1

1−α
E
{[

L′(θ)− v′α(θ)
]
·1{L(θ)−vα (θ)≥0}

}
+ v′α(θ)

=
1

1−α
E
[
L′(θ) ·1{L(θ)≥vα (θ)}

]
= E

[
L′(θ)

∣∣L(θ)≥ vα(θ)
]
.

Since θ ∗ ∈ (aθ ∗ ,bθ ∗), then c′α(θ
∗) = E [L′(θ ∗)|L(θ ∗)≥ vα(θ

∗)].
This concludes the proof of the theorem.

3.2 Monte Carlo Estimation

To simplify the notation, we let D(θ) denote L′(θ), and suppress the dependence of L and D on θ when there
is no confusion. Let (L1,D1), . . . ,(Ln,Dn) be n i.i.d. observations of (L,D). Moreover, we let L(i) denote
the ith order statistic of {L1, . . . ,Ln}, and D(i) the corresponding pathwise derivative. We are interested in
estimating v′α(θ) and c′α(θ) using these observations.

Hong (2009) proposes a batch-mean estimator for v′α(θ). The key idea is that D(dnαe) can be viewed
as an IPA (infinitesimal perturbation analysis) estimator of v′α(θ). However, it has been shown that this
IPA estimator is not consistent (Hong 2009). To circumvent the problem, a batch-mean estimator can
be devised, which is consistent. Specifically, suppose that there exist positive integers m and k such that
m×k = n. Then, we divide the n i.i.d. observations into k batches and each batch has m observations. For
each batch, we calculate the IPA estimator, denoted by Db

m. Then, we have k observations of Db
m, denoted

as Db
m1, . . . ,D

b
m,k. A batch-mean estimator of v′α(θ) is then proposed:

D̄mk =
1
k

k

∑
l=1

Db
ml. (11)

Another estimator of VaR sensitivity stems from kernel regression estimation, given the observation
that v′α(θ) can be viewed as a regression function in nonparametric statistics (Bosq 1998). Suppose that K
is a bounded symmetric density such that yK(y)→ 0 as |y| → ∞ and

∫
∞

−∞
y2K(y)dy < ∞. Then K is called

a kernel on ℜ. For instance, the standard normal density is a kernel. Moreover, we define the so-called
bandwidth parameter δn which satisfies δn→ 0 and nδn→ ∞ as n→ ∞. Then a kernel estimator of v′α(θ)
can be proposed as follows.

V̄n =
∑

n
i=1 DiK

(
v̂n

α−Li
δn

)
∑

n
i=1 K

(
v̂n

α−Li
δn

) . (12)

Intuitively, the kernel estimator in (12) can be viewed as a weighted average of Li’s. The weight depends
on the distance of Li to vα . If the distance is small, typically a larger weight will be assigned. In other
words, the observation closer to VaR play a more important role in the estimation.
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Compared to VaR sensitivity, estimation of CVaR sensitivity is relatively simpler, in the sense that
a typical sample-mean type estimator can be proposed. Based on the closed-form expression for CVaR
sensitivity, Hong and Liu (2009) propose the following estimator of c′α(θ).

C̄n =
1

n(1−α)

n

∑
i=1

Di1{Li≥v̂n
α}. (13)

Compared to the kernel estimator proposed in Scaillet (2004) for linear loss functions, this estimator
is more intuitive and does not require the selection of kernel function and bandwidth function.

3.3 Asymptotic Properties

In this subsection we outline the asymptotic results, mainly consistency and asymptotic normality, of the
estimators discussed in the previous subsection. We do not go deep into the technical conditions which
are imposed in the asymptotic analysis. But instead, we aim to provide a sketch of the major results.

For the batch-mean estimator in (11), if m→∞ and k→∞ as n→∞, Hong (2009) proves its consistency
under some regularity conditions. Furthermore, if limn→∞

√
k/m = 0, then it can be shown that

√
k(D̄mk− v′α(θ))⇒ σmN(0,1),

for some σm > 0. Therefore, the rate of convergence of the batch-mean estimator is k−1/2, which is always
strictly slower than n−1/3 due to the constraint that limn→∞

√
k/m = 0 and n = m× k.

For the kernel estimator in (12), Liu and Hong (2009) show that it is consistent and follows asymptotic
normality. Specifically, if δn→ 0 and nδ 5

n → c as n→ ∞ for some constant c > 0, and supn(nδ 3
n )
−1 < ∞,

then under some regularity conditions,√
nδn
(
V̄n− v′α(θ)

)
⇒ µ +σN(0,1)

for some constants µ and σ . It can be verified that the optimal bandwidth δn should be of order n−1/5

if the criterion is to minimize the asymptotic mean square error. Under this optimal choice of bandwidth
function, the rate of convergence of the kernel estimator is n−2/5.

For both the batch-mean and kernel estimators, we can see that the rates of convergence is slower than
n−1/2, which is a typical rate of convergence of Monte Carlo simulation. From this perspective, there is
still room for improvement. In Section 3.4, we will discuss in more details how to accelerate the rate of
convergence.

The form of the CVaR sensitivity estimator in (13) is very much like a sample-mean estimator, except
that it involves a VaR estimator v̂n

α . Although v̂n
α induces some technical complications in the analysis of

C̄n, it does not affect the rate of convergence of the estimator. Hong and Liu (2009) show that under some
regularity conditions, √

n
(
C̄n− c′α(θ)

)
⇒ σ1N(0,1),

where
σ1 =

1
(1−α)2 Var

[
(L− v′α(θ))1{L≥vα (θ)}

]
.

In other words, C̄n does achieve the typical n−1/2 rate of convergence.

3.4 Accelerating the Rate of Convergence

In this subsection, we consider an issue related to the estimation of VaR sensitivity. As shown in the previous
subsection, a kernel estimator of VaR sensitivity may not achieve the the n−1/2 rate of convergence, which
is the typical rate of convergence for statistical estimation. To improve the efficiency of the estimation, it
is desirable to develop methods that may accelerate the rate of convergence. This is still an evolving area
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of research that is of great interest to both researchers and practitioners. In general, successful adoption of
such methods depends significantly on the problem being tackled, and it often comes with an exploration of
the specific features of the problem itself. In this tutorial, we present a simulation framework of accelerating
the rate of convergence by using two classical simulation techniques, importance sampling and conditional
Monte Carlo, which has proven to be effective in some practical problems. Interested readers may refer
to Hong and Liu (2010) and Fu et al. (2009) for more details of using importance sampling (IS) and
conditional Monte Carlo in this context.

3.4.1 Importance Sampling

Before the presentation, we want to first clarify a slight difference between the IS we employ here and the
classical use of IS in the context of variance reduction. Our primary goal is to accelerate the asymptotic
rate of convergence, while classical IS has a different focus and may not accelerate the rate of convergence.
Related work on the classical use of IS for estimating VaR sensitivity includes Glasserman (2005) and
Tasche (2009), which apply the IS method developed in Glasserman and Li (2005) to reduce the variance in
estimating risk contributions. However, their methods do not accelerate the asymptotic rate of convergence.

Recall that VaR sensitivity can be written as E[D|L = vα ], the estimation of which involves two key
issues. First, vα is unknown and thus has to be estimated. Second, how to estimate the conditional
expectation given an estimate of vα . It turns out that the first issue can be easily resolved by replacing vα

with a known estimator in the literature, e.g., the sample quantile v̂n
α . Then the second issue is of major

concern, and thus we focus exclusively on this issue during the discussions of accelerating the rate of
convergence. In particular, the problem of interest now is how to estimate r(y)≡ E[D|L = y] for a given y.

As a starting point, we first consider the kernel estimator of r(y). If we choose the kernel function to
be a uniform density over [−1,1], then it can be seen that a kernel estimator of r(y) is

V̄n =

1
2nδn

∑
n
i=1 Di1{y−δn≤Li≤y+δn}

1
2nδn

∑
n
i=1 1{y−δn≤Li≤y+δn}

. (14)

Note that V̄n is a ratio of two estimators. Typically, if both numerator and denominator have the same
rate of convergence, then so does V̄n (Law and Kelton 2000, pp. 532-533). Therefore, we focus our analysis
on the numerator, while analysis of the denominator follows in a similar manner. Specifically, let

M̄n =
1

2nδn

n

∑
i=1

Di1{y−δn≤Li≤y+δn}

denote the numerator. Then it is actually an estimator of r(y) f (y).
An implication of the kernel estimator in (14) is that only the observations in the region {y−δn ≤ L≤

y+δn} play roles in the estimation. Thus we call it an important region. Intuitively, the total number of
observations that lie in the important region is of order nδn. This explains why the rate of convergence of
the estimator is

√
nδn. Then a reasonable guess is that having more observations that fall into the important

region may accelerate the rate of convergence. To do so, IS is a natural choice.
Among many possible alternatives, one choice of IS scheme is to force all observation to fall into the

important region under the IS distribution. We will show how this can be achieved under quite a general
simulation framework. Compared to the typical IS schemes, we should note that such an IS scheme is
atypical, in the sense that it violates absolute continuity.

Because the density of L is typically unknown, a construction of IS scheme directly from density function
of L may not be feasible. However, in simulation models, L can often be expressed as a function of a sequence
of random variables with known densities. Suppose that L = L(X1,X2, . . . ,Xk) and D = D(X1,X2, . . . ,Xk),
where X1,X2, . . . ,Xk are independent random variables with known densities f1, f2, . . . , fk respectively. Then
the joint density of (X1,X2, . . . ,Xk) is f (x1,x2, . . . ,xk) = f1(x1) f2(x2) · · · fk(xk).
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Suppose that X1,X2, . . . ,Xk are generated sequentially in the simulation to obtain observations of (L,D).
Let

A =
{
(x1,x2, . . . ,xk) ∈ℜ

k : L(x1,x2, . . . ,xk) ∈ [y−δn,y+δn] and f1(x1) · · · fk(xk)> 0
}
.

Then A corresponds to the important region. Let A1 be the projection of the set A to the 1st dimension,
A2(X1) be the projection of the set A to the 2nd dimension given X1, . . . , and Ak(X1,X2, . . . ,Xk−1) be the
projection of the set A to the kth dimension given X1,X2, . . . ,Xk−1. Then we may define the IS distribution
as

f̃ (x1,x2, . . . ,xk) =
f1(x1)

Pr{X1 ∈ A1}
· f2(x2)

Pr{X2 ∈ A2(x1)}
· · · fk(xk)

Pr{Xk ∈ Ak(x1, . . . ,xk−1)}

for all (x1,x2, . . . ,xk) ∈ A; and f̃ (x1,x2, . . . ,xk) = 0 otherwise.
Under the IS distribution, we first simulate X1 given that X1 ∈A1, then simulate X2 given that X2 ∈A2(X1),

and so on. Then we can compute L and D, and L ∈ [y− δn,y+ δn] w.p.1. Since the IS distribution f̃ is
absolutely continuous with respect to f in the set A, the likelihood ratio

Pn =
f (X1,X2, . . . ,Xk)

f̃ (X1,X2, . . . ,Xk)

= Pr{X1 ∈ A1} ·Pr{X2 ∈ A2(X1)|X1}· · ·Pr{Xk ∈ Ak(X1, . . . ,Xk−1)|X1, . . . ,Xk−1}.

Since (X1,X2, . . . ,Xk) is a random vector, Pn is also a random variable and Pn ≤ 1. Then IS estimators of
r(y) f (y) and r(y) are

M̄IS
n =

1
2nδn

n

∑
i=1

Pn,i ·Di1{y−δn≤L≤y+δn} =
1

2nδn

n

∑
i=1

Pn,i ·Di,

and

V̄ IS
n =

1
2nδn

∑
n
i=1 Pn,i ·Di

1
2nδn

∑
n
i=1 Pn,i

,

respectively, where the observations (Li,Di,Pn,i) are generated under the IS distribution.
Let Ẽ and Ṽar denote taking expectation and variance under the IS distribution. Then it can be easily

shown that Ẽ(M̄IS
n ) = E(M̄n) and

Ṽar(M̄IS
n ) =

1
4nδ 2

n

[
E
(
D2 ·Pn ·1{y−δn≤L≤y+δn}

)
−E2 (D ·1{y−δn≤L≤y+δn}

)]
≤ 1

4nδ 2
n

[
E
(
D2 ·1{y−δn≤L≤y+δn}

)
−E2 (D ·1{y−δn≤L≤y+δn}

)]
= Var(M̄n).

Therefore, M̄IS
n has a smaller variance than M̄n when both estimators use the same δn.

Note that Ẽ(Pn) = E
(
1{y−δn≤L≤y+δn}

)
= 2 f (y)δn + o(δn). In many situations, we can prove that

Pn = Knδn, where E
(
Kn ·D2 ·1{y−δn≤L≤y+δn}

)
is often of O(δn). Then

Ṽar
(
M̄IS

n
)

=
1

4δ 2
n

[
Ẽ
(
P2

n ·D2)− Ẽ2 (Pn ·D)
]

=
1

4nδ 2
n

[
δnẼ

(
PnKn ·D2 ·1{y−δn≤L≤y+δn}

)
− Ẽ2 (Pn ·D ·1{y−δn≤L≤y+δn}

)]
=

1
4nδ 2

n

[
δnE

(
Kn ·D2 ·1{y−δn≤L≤y+δn}

)
−E2 (D ·1{y−δn≤L≤y+δn}

)]
,
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which is of O(n−1). Then the rate of convergence of M̄IS
n is n−1/2, and so is V̄ IS

n (Law and Kelton 2000,
pp. 532-533), if nδ 4

n → a with a≥ 0 as n→ ∞.
The above framework shows that IS can be employed to improve the performance of the VaR sensitivity

estimators, and may achieve the n−1/2 rate of convergence, which is the best that can be achieved for a
typical Monte Carlo estimator.

We close this section by emphasizing that successful adoption of the above framework is problem
dependent. Other than the examples illustrated in Hong and Liu (2010), Liu (2010) considered the problem
of simulating capital allocations for credit portfolio where the portfolio risk is measured by VaR. The use
of the IS framework in other potential applications is interesting, and deserves further investigation.

3.4.2 Conditional Monte Carlo

Conditional Monte Carlo (CMC) is an important simulation technique that can be used for both variance
reduction and sensitivity analysis, see, e.g., Asmussen and Glynn (2007) and Fu and Hu (1997). It turns
out CMC may also be employed in the context of estimating VaR sensitivities and may lead to estimators
that achieve the n−1/2 rate of convergence.

Recall that
F(vα(θ),θ) = α,

and thus differentiating with respect to θ on both sides we have

v′α(θ) =−
∂θ F(t,θ)
∂tF(t,θ)

∣∣∣∣
t=vα (θ)

.

Note that the CDF F(t,θ) is essentially the expectation of an indicator, i.e., F(t,θ) = Pr{L(θ)≤ t}=
E
[
1{L(θ)≤t}

]
. Because the indicator is a discontinuous function, the interchange of differentiation and

expectation is not valid. However, this problem can be circumvented by using conditional Monte Carlo,
which cancels the discontinuity and thus makes the interchange valid. Specifically, we have the following
theorem, whose proof can be found in Fu et al. (2009).
Theorem 6 Suppose that there exist random variables X1(θ) and X2(θ) such that

F(t,θ) = E [Pr{L(θ)≤ t|Xi(θ)}] = E [Gi(t,Xi(θ),θ)] , i = 1,2,

where G1(t,X1(θ),θ) is differentiable w.p.1 with respect to θ and G2(t,X2(θ),θ) is differentiable w.p.1
with respect to t, and there exist random variables K1 and K2 with E(K1)< ∞ and E(K2)< ∞ such that

|G1(t,X1(θ +∆θ),θ +∆θ)−G1(t,X1(θ),θ)| ≤ K1|∆θ |, and
|G2(t +∆t,X2(θ),θ)−G2(t,X2(θ),θ)| ≤ K2|∆t|,

for all small enough ∆θ and ∆t. If F(t,θ) and vα(θ) are both differentiable, then

v′α(θ) =−
E[∂θ G1(t,X1(θ),θ)]

E[∂tG2(t,X(θ),θ)]

∣∣∣∣
t=vα (θ)

.

Theorem 6 shows that under appropriate conditions, VaR sensitivity can be written as a ratio of two
expectations. In some practical problems, by carefully selecting appropriate X1(θ) and X2(θ), we may be
able to calculate ∂θ G1(t,X1(θ),θ) and ∂tG2(t,X(θ),θ) analytically. In such cases, we may estimate VaR
sensitivity by using a ratio of two sample means.

Specifically, let Y (t) and Z(t) denote ∂θ G1(t,X1(θ),θ) and ∂tG2(t,X(θ),θ) respectively for any t ∈ℜ.
Suppose that, for any t ∈ ℜ, we can observe n i.i.d. samples (L1,Y1(t),Z1(t)), . . . ,(Ln,Yn(t),Zn(t)). Let
Ȳn(t) = (1/n)∑

n
i=1Yi(t) and Z̄n(t) = (1/n)∑

n
i=1 Zi(t). Then we can estimate v′α(θ) by

V̄ cmc
n =− Ȳn(v̂n

α)

Z̄n(v̂n
α)

.

105



Hong and Liu

It has been shown in Fu et al. (2009) that under some regularity conditions, the rate of convergence
of V̄ cmc

n is n−1/2, which is the best that can be achieved.
Typically, the CMC estimators of VaR sensitivities perform very well when applicable. However, as is

always the case in applying conditional Monte Carlo, the choice of appropriate conditioning variables is
problem dependent. Simple examples have been presented in Fu et al. (2009) to illustrate the advantages
of CMC. Further investigation on applying CMC to various practical problems is desirable, and would be
of immense benefit to the simulation practitioners.

4 CONCLUSIONS

This tutorial provides a unified view of the simulation of value-at-risk, conditional value-at-risk and their
sensitivities. We have focused on representations of VaR, CVaR and their sensitivities, as well as the
relations among them. Asymptotic properties of the Monte Carlo estimators of these quantities have been
presented. Furthermore, we discuss the issue of efficiency improvement. For VaR and CVaR, we discuss
the use of importance sampling and its asymptotic representations; and for VaR sensitivity, we consider
the use of importance sampling and conditional Monte Carlo to accelerate the rate of convergence of the
estimators.
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