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ABSTRACT 

Complex manufacturing systems, such as wafer fabrication facilities (wafer fabs), are characterized by a 

diverse product mix that is changing over time, re-entrant process flows due to expensive machinery, dif-

ferent process types, and different kinds of internal and external disruptions. In this paper, we introduce a 

simulation-based architecture dedicated to performance assessment that has been initially designed for 

pure production control schemes and finally extended to planning algorithms. After the description of the 

framework and its implementation, the performance of two mid-term planning approaches is assessed 

with the help of the proposed architecture. The planning performance is evaluated by means of a stability 

measure in a rolling horizon environment. Some computational results are presented. 

1 INTRODUCTION 

Complex manufacturing systems, such as wafer fabs, are characterized by a diverse product mix that is 

changing over time, re-entrant process flows due to expensive machinery, different process types, and dif-

ferent kinds of internal and external disruptions. In this context, simulation-based architectures  have been 

extensively used to assess the performance of different production control approaches (cf. Mönch 2007). 

For example, scheduling approaches in a rolling horizon setting are considered. However, the interaction 

between the production planning and the control process is predominantly neglected so far. Hence, in 

most cases the performance of planning algorithms, also in Enterprise Resource Planning (ERP) and Ad-

vanced Planning and Scheduling (APS) systems, is assessed based on the analysis of single test instances, 

or a performance assessment is even not carried out. Thus, in this paper it is shown how a simulation-

based architecture that allows modeling the typical stochastic and dynamic behavior of a complex manu-

facturing system can be used to assess the performance of production planning approaches. 

The paper is organized as follows. In Section 2, we describe the problem under consideration, and we 

discuss related literature. The respective elements of the proposed architecture are presented as well as its 

implementation and application in Section 3. A performance assessment methodology is also outlined. 

Then, we assess the performance of two master planning schemes for a wafer fab in Section 4. We also 

explain how the simulation model is reduced to decrease the computational burden. Finally, we present 

some conclusions and future research directions in Section 5. 

2 PROBLEM DESCRIPTION AND RELATED LITERATURE 

In this section, we introduce some insights from systems theory to describe the researched problem. Then, 

we discuss related literature. 
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2.1 Insights from Systems Theory and Problem Description 

In systems theory, we differentiate between base system and base process. The base system B comprises 

objects from the manufacturing system that represent the existing resources, i.e., machines, whereas the 

base process BP states how the resources are used by specifying process flows. In addition, a control 

process CP is used to determine instructions mc for the base process. Note that control decisions can only 

affect objects that are already in the base system. The control process is executed by the control system C. 

Moreover, a planning process PP establishes which orders have to be started in which period of time. The 

corresponding instructions are denoted by mp. They are provided to the control process to launch orders 

into the base system. The planning is performed by the planning system P. It also considers objects that 

are not yet released into the base system. The interaction between the planning system, the control sys-

tem, and the base system is summarized on Figure 1. 

 

 
 

Figure 1: Interactions between planning, control, and base systems 

 

In this paper, we aim to assess the performance of specified planning algorithms PAi that are used 

within planning processes PPi. The performance measure values are determined by the base system and 

the base process. As a prerequisite, we assume that the control algorithm CA0 and the control process CP0 

are given. 

2.2 Related Literature 

In this section, we discuss related literature. We distinguish between work that assess the planning per-

formance by considering single test instances and other studies that use simulation to establish a rolling 

horizon environment. Bermon and Hood (1999), Barahona et al. (2005), and Zobolas, Tarantilis, and 

Ioannou (2008) belong to the first category. The limitation of this method is that dynamic and stochastic 

characteristics of the base system and process are not appropriately captured. 

Planning processes are often analyzed in the context of supply chain management by means of simula-

tion models. For this purpose, System Dynamics (Kleijnen 2005) and discrete-event simulation (Horigu-

chi et al. 2001; Chong et al. 2006) are widely used as simulation techniques. Indeed both methods allow 

modeling the time-dependent behavior of the supply chain. In addition, Venkateswaran, Son, and Jones 

(2004) introduce a hierarchical production planning approach that explicitly differentiates between plan-

ning and control levels. These levels are modeled using System Dynamics and discrete-event simulation, 

respectively, while the High-Level-Architecture (HLA) ensures the synchronization between both simula-

tion models. Nevertheless, none of these papers show a dedicated architecture that interlinks the planning 

system, the control system, and the base system since the algorithms are directly implemented in the si-

mulation software. Mönch, Rose, and Sturm (2003) and Mönch (2007) suggest a simulation-based archi-

tecture for performance assessment of production control approaches. The core of the developed architec-
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ture  is a blackboard-like data layer used as an interface between the control system and the base system. 

The base system is represented by an appropriate simulation model. 

Related literature lacks an appropriate architecture devoted to performance assessment that simulta-

neously considers production planning and control approaches. In this paper, we further customize and 

extend the architecture described by the second present author in (Mönch 2008) to bridge this gap. 

3 ARCHITECTURE FOR SIMULATION-BASED PERFORMANCE ASSESSMENT OF 
PLANNING APPROACHES 

In this section, the respective elements of the proposed architecture are described. Then, its implementa-

tion and application are outlined. Finally, it is shown how the developed architecture is used to assess the 

performance of planning algorithms based on the approach in Mönch (2007) for production control 

schemes. 

3.1 Description of the Architecture 

As depicted in Figure 2, the proposed architecture consists of a production planning system whose per-

formance has to be analyzed, a given production control system, a simulation model that represents the 

execution level, i.e. base system and process, a blackboard-like data layer, a demand generator that pro-

vides customer orders and additional forecast, and a performance assessment module. 

 

 
Figure 2: Architecture for simulation-based performance assessment of planning approaches 

 

The core of the proposed architecture is the blackboard-like data layer that is used as an interface be-

tween the simulation model and the planning and control modules. It comprises a mirror image of the ob-

jects of the base system and process (Mönch, Rose, and Sturm 2003). The status of these objects is up-

dated with the help of event-driven notifications from the simulator. For instance, as soon as a lot 

completes a processing step and moves to the next one, its position on the process flow is updated in the 

data layer. Thus, it allows providing the current state of the system to the production planning and control 

process. The data layer mimics the data that is found in operational information systems of the wafer fab. 

Therefore, it includes processing steps, process flows, offered capacities, bottleneck information, product 

aggregation structure, and orders. 

A demand generator is required in the architecture to feed the production planning algorithms. Since 

market requirements are not entirely known while planning is done a couple of weeks or months ahead, 

we have to distinguish between customer orders and additional forecast that are an input of the order 

management process and the sales and operations planning, respectively. The generated demand is stored 
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in the data layer. This allows for the use of statistical methods to determine additional forecast. Finally, 

the architecture also includes a module dedicated to performance assessment. 

3.2 Implementation of the Architecture 

The base system is implemented using the AutoSched AP simulator, a class library that offers customiza-

tion functionalities using the C++ programming language. The data model implemented in the black-

board-like data layer is an extended and refined version of the model proposed in Mönch (2008). It com-

prises objects both from the base system and process as well as some additional classes with aggregated 

data. The blackboard-like data layer is coded in C++. 

3.3 Application of the Architecture 

Algorithm 1 shows the scheme used for simulation-based performance assessment of planning algorithms 

in pseudo-code notation. The repeat loop allows simulating the base process over the entire horizon. 

However, the simulation engine is regularly stopped after a given amount of time to perform the next run 

of the planning algorithm. As soon as the control is given to the planning system, statistics from the pre-

vious simulation period, i.e., throughput, work-in-process, cycle times, and waiting times, are stored in 

the performance assessment module. Then, current customer orders and additional forecast are provided 

by the demand generator to the data layer and the planning algorithm.  

Moreover, the actual state of the base system and process, i.e., work-in-process, is communicated to 

the planning algorithm. Then, the planning algorithm is performed. As a result, we obtain production re-

quests with due dates that are transferred to the production control system. The production control func-

tionality offered by the proposed architecture is rather simple. It basically splits the production requests 

into lots to be started based on the standard lot size, and it assigns start dates to the lots using a simple 

backwards termination scheme based on the average product cycle times. The lots to be released are hold 

in an order pool, and the control is given back to the simulator. Whenever a release date of a lot is reached 

during the simulation, a new lot object is created in the data layer, and its status is updated accordingly to 

its progress. We use simple dispatching rules like First-In-First-Out (FIFO) to dispatch the lots within the 

wafer fab. Finally, the performance assessment module determines performance measure values. 

 
Algorithm 1 // Scheme for simulation-based assessment of planning algorithms 

 Repeat until end of simulation horizon is reached 

  Proceed with simulation of base process 

  Reach a given point in time 

  Break simulation 

   Transfer control to production planning system 

   Provide statistics to performance assessment module 

   Generate customer orders and additional forecast 

   Provide demand and work-in-process to planning system 

   Run production planning algorithm 

   Provide production start dates and quantities to the production  

   control system 

   Run the production control algorithm 

   Provide production start dates to simulation engine 

   Transfer control to simulation 

  End break 

 End repeat 

 Determine final performance measure values 

End algorithm 1 

3.4 Performance Assessment Methodology 

The production planning algorithm focuses on the allocation of limited resources to competing demands 

over time with regard to costs and revenues. Because of the modeling complexity, the production plan-

ning and control system usually cannot fully capture the behavior of the base system and process and the 
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behavior of the customers. Hence, disturbances such as machine breakdowns, new order arrivals, order 

cancelations, and lack of forecast accuracy contribute to the gap between the released production plans, 

i.e. initial plan issued in week t with production starts for weeks t+1 to t+n, and the realized plan, i.e. ac-

tually processed lots on the shop-floor. Thus, the performance of a planning algorithm and also of the cor-

responding planning process can be assessed by measuring the discrepancies between what has been 

planned and what has been realized. This measure is known as stability. A plan is called stable when the 

completed activities deviate as little as possible from the original plan in the face of disruptions (Pfeiffer, 

Kadar, and Monostori 2007; Gören and Sabuncuoglu 2008). 
The proposed architecture enables interactions between the planning and simulation modules in a roll-

ing horizon environment. Production plans are determined in a rolling horizon manner. We assume that 

the planning horizon is finite and shorter than the simulation horizon. Therefore, on the one side we ob-

tain production requests for the current planning horizon after each plan determination, on the other hand 

we obtain completion times of lots after being processed within the simulation. Similar work is presented 

in Kimms (1998). A stability measure S in the context of a rolling horizon setting is given by 
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where i is the product index, n is the total number of products, k is the plan index, K is the total number of 

plans, t is the period index, 
k

t  is the first period of plan k, st  is the last simulated period, L is the length of 

the planning horizon, and k
itQ  is the planned quantity for product i in period t in plan k. In addition, the 

values of the performance measures of the plans are non-linearly weighted according to their respective 

time lag until the execution date. When the parameter [ ]1,0α∈  is decreasing toward zero, changes close 

to their realization date are stronger penalized (Sridharan, Berry, and Udayabhanu 1988; Zhao, Xie, and 

Jiang 2001). 

4 APPLICATION TO MASTER PLANNING APPROACHES FOR A WAFER FAB 

In this section, we show how the proposed architecture can be used to assess the performance of different 

master planning approaches for a wafer fab. First, we introduce two production planning schemes. Then, 

we briefly describe the methodology for reducing the simulation model and outline some results. After-

wards, we explain the design of experiments used to generate the test instances. Finally, we present and 

discuss the results of computational experiments. 

4.1 Description of Master Planning Approaches 

The master planning process belongs to the mid-term planning level. It details the aggregated sales and 

operations plan, and it is the main input for the wafer fab scheduling and the order promising system. The 

master plan contains capacitated production requests for the next six months (Vieira 2006). 

In this paper, we are interested in determining appropriate wafer quantities for several products and 

several periods of time. Note that we explicitly consider only one single wafer fab. Thus, we do not con-

sider routing decisions since these are only relevant for manufacturing networks. The decision problem as 

described in Ponsignon and Mönch (2009) consists in keeping the number of unmet customer orders as 

low as possible and in satisfying additional forecasted demands when capacity is sufficient, while the in-

ventory level has to be minimized. The capacity offer of the wafer fab is related to bottleneck work cen-

ters by taking re-entrant process flows of lots into account. For each bottleneck we set strict minimum and 

maximum loading bounds, and the sum of the processing times of lots on bottleneck machines has to be 

contained within this range. For simplification purposes, we assume that all products have fixed average 

cycle times. 

We introduce two heuristic schemes for solving the master planning problem (Ponsignon and Mönch 

2009). The first scheme, denoted as approach A, is a rule-based allocation algorithm. First, the product 
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with the highest backlog cost or the highest revenue is selected. Then, depending on the remaining capaci-

ty of the wafer fab, the demand for the selected product in the current time period is allocated. When ca-

pacity is not sufficient in the actual period, the algorithm looks for available capacity in previous time pe-

riods. This leads to pre-production and stock building but it avoids backlogs. This procedure is repeated 

until all products and all time periods have been considered. Note that orders are allocated with a higher 

priority than forecast. In addition, minimum and maximum capacity limits are strictly respected. Indeed, 

if the load is too low, it is increased by means of a repair loop. The second scheme, called approach B, 

works almost in the same way expect that products are randomly chosen without taking the costs or reve-

nues into account. In addition, also the wafer fab loading is kept at a high level. 

4.2 Reduced Simulation Models of Wafer Fabs 

As shown in Section 3, the planning system is embedded in a simulation-based architecture since simula-

tion is an effective way of representing base system and base process. However, the simulation is much 

more detailed than necessary for the production planning algorithms that work on aggregated data. Algo-

rithm 1 also causes a high computational burden. In addition, mid-term planning decisions need less de-

tails than short-term production control. For these reasons, a reduced simulation model focusing on the 

principal characteristics of the base system and process is used in our architecture. In the following, Algo-

rithm 2 describes the methodology proposed by Hung and Leachman (1999) and Völker and Gmilkowsky 

(2003) for reducing the degree of detail of simulation models. 

 
Algorithm 2 // Methodology for reducing the simulation model 

 Determine a feasible master plan M 

 Transform due dates into lot release dates M’ 

 Simulate M’ using a detailed simulation model D  

 Rank machines according to the waiting times of the lots in front of the ma- 

 chine and their utilization 

 Do while acceptance criteria is not met 

Reduce D to R by replacing L machines with low utilization or small waiting 

times by fixed or stochastic delays 

  Simulate M’ using the reduced simulation model R 

Compare results from R and D in terms of time and solution quality. 

If acceptance criterion is not met, then adjust L 

 End do 

End algorithm 2 

 

The methodology is applied to a variant of the MASM test data set MIMAC-I (MASM 1997). It consists 

of 12 machine groups, 24 distinct process flows, and 68 processing steps per process flow on average. 

The reduction is carried out for 120 products. The simulation horizon is 364 days.  

As depicted in Algorithm 2, machine groups with long waiting times and high utilization are consi-

dered as bottlenecks. They are modeled in detail in the reduced model. All other machines are represented 

by fixed delays in the process flows of the lots. As a result, the reduced simulation model encompasses 

only four machine groups. Each process flow has an average of 29 non-delay processing steps. The reduc-

tion allows decreasing the computation time for the simulation experiments by around 30%. In order to 

guarantee a similar representation of the base system and process by the detailed and reduced simulation 

models, we compare the cycle time distribution for both models. We see from Figure 3 that both histo-

grams are very similar. The average cycle times depicted by the red doted lines are almost identical. 

4.3 Design of Experiments 

The performances of approaches A and B outlined in Section 4.1 are compared by sequentially varying 

the reference base system and the reference planning system in four different scenarios, respectively. For 

the base system, Scenarios 1 and 2 respectively refer to high and low demand levels; in Scenario 3 ma-

chine breakdowns are frequent and short, while they are rare and long in Scenario 4. For the planning sys-
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tem, Scenarios 5 and 6 show cases where the capacity of the base system is over-estimated or under-

estimated; in the same way Scenarios 7 and 8 correspond to situations where the cycle times that are used 

in the planning algorithm are over-estimated or under-estimated. We obtain eight possible factor combi-

nations. For each of them, four independent instances of the base system and base process are created and 

used to assess the two approaches. The 64 simulation experiments are executed on a computer with a 2.53 

GHz Intel Core2 Duo processor and 2.0 GB memory. Five independent replications are taken.  

 

 
 

Figure 3: Comparison of the cycle time distribution for detailed and reduced simulation models 

 

The planning horizon of both schemes is 26 weeks. The simulation horizon is 728 days. A new plan is 

determined every seven days. The experiments are carried out for 120 products in a single wafer fab using 

the reduced model described in Section 4.2. The standard lot size is 48 wafers. The parameter α in expres-

sion (1) is set to 0.6. The values of other parameters are taken from Ponsignon and Mönch (2009). 

4.4 Computational Experiments  

The performance of approaches A and B is measured by the ratio of the objective function values cumula-

ted over the entire simulation horizon. Furthermore, the performance of both approaches is also measured 

by the ratio of the stability measure values given by expression (1). A ratio value higher than one refers to 

a decreasing planning stability by using a more sophisticated scheme rather than a simple procedure. All 

results are grouped according to the scenarios. The average values are shown in Table 1. It also contains 

additional performance measure values such as the ratio of completed wafers, the difference in percents of 

late wafers, and the difference in days of average cycle times as measured in the base system. 
 

Table 1: Computational Results for approaches A and B. 

Scenario 
Cumul. Obj. Val. 

Ratio A/B 
Stability 

Ratio A/B 
Compl. Wafers 

Ratio A/B  
Late Wafers  

Diff. A-B 
Average CT 

Diff. A-B 
1 1.5263 1.5305 0.9844 -0.30% 0.3 days 

2 1.8714 1.0754 0.9691 0.68% 0.2 days 

3 1.6118 1.5207 0.9634 2.23% 0.5 days 

4 1.6141 1.5173 0.9629 2.35% 0.5 days 

5 0.9563 1.6788 0.9609 0.59% 0.8 days 

6 1.0070 0.7618 0.9818 2.10% 0.5 days 

7 2.4012 1.0738 0.9249 2.62% 0.8 days 

8 1.7982 1.0060 0.9876 4.38% 0.4 days 
 

The ratio of the cumulated objective function values indicates that for all scenarios, except for Scena-

rio 5, approach A outperforms approach B with respect to the objective function. The largest difference is 

obtained for Scenario 7 since longer cycle times increase the influence of the product selection on the ob-

jective function value. In contrast, the instances with over-estimated capacities, i.e. Scenario 5, offer some 

advantage for the scheme that tends to produce more than necessary for later demand fulfillments. 
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Moreover, the ratio of the stability measures shows that in most cases approach B produces more sta-

ble plans in the course of time than approach A. It is particularly true when the simple allocation scheme 

is able to build stocks in advance for a wide variety of products to deal with forthcoming disruptions of 

customer demands. In addition, approach A tends to always concentrate on the same group of products in 

the long-term because of the selection rule, while it is forced to make large changes in the short-term to 

react to new demands and backorders. Note that in Scenario 6 the reduced capacity offer gives fewer op-

portunities to approach B for pre-production, which leads to a poor stability performance. 

Furthermore, the ratio of completed wafers points out that approach B proposes to produce more fi-

nished goods that are stored. It reduces the objective function value because of inventory holding costs, 

but it increases the reactivity. Indeed, there are less late wafers and the average cycle times are shorter. 

5 CONCLUSION AND OUTLOOK FOR FUTURE RESEARCH 

We presented an architecture for simulation-based performance assessment of production planning ap-

proaches. The core of the proposed architecture is a blackboard-like data layer that is used as an interface 

between the simulation model and the production planning and control systems. The algorithm associated 

with the architecture was also outlined. The planning performance is evaluated by means of a non-linearly 

weighted stability measure in a rolling horizon environment. We introduced two master planning ap-

proaches for a single semiconductor wafer fab. The first scheme is a rule-based allocation procedure, whi-

le in the second scheme products are randomly chosen and pre-production is favored. Moreover, a re-

duced simulation model focusing on the principal characteristics of the base system and process is used 

within the architecture. The methodology used to decrease the level of detail of the simulation model 

without altering the quality of the results was briefly presented. Computational results were also provided 

for the reduced model. Finally, the performances of both planning approaches were assessed with the help 

of the proposed architecture for eight different scenarios. From the results of computational experiments 

we concluded that the first scheme reaches larger objective function values, while the second scheme pro-

duces more stable plans in most cases. 

There are some directions for future research. We intent on expanding the base system to a network of 

wafer fabs and to incorporate the routing decision in the planning system. Then, we would like to investi-

gate the possibility of using the proposed architecture to obtain more realistic cycle times by iteratively 

alternate between planning and simulation. Finally, it is interesting to consider the influence of stochasti-

cally defined forecast on master planning approaches in a rolling horizon environment. 
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