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A LAGRANGIAN APPROACH TO DYNAMIC RESOURCE ALLOCATION

Yasin Gocgun
Archis Ghate

Industrial and Systems Engineering
University of Washington

BOX 352650, Seattle, WA 98195, USA

ABSTRACT

We define a class of discrete-time resource allocation problems where multiple renewable resources
must be dynamically allocated to different types of jobs arriving randomly. Jobs have geometric
service durations, demand resources, incur a holding cost while waiting in queue, a penalty cost of
rejection when the queue is filled to capacity, and generate a reward on completion. The goal is to
select which jobs to service in each time-period so as to maximize total infinite-horizon discounted
expected profit. We present Markov Decision Process (MDP) models of these problems and apply a
Lagrangian relaxation-based method that exploits the structure of the MDP models to approximate
their optimal value functions. We then develop a dynamic programming technique to efficiently
recover resource allocation decisions from this approximate value function on the fly. Numerical
experiments demonstrate that these decisions outperform well-known heuristics by at least 35% but
as much as 220% on an average.

1 Introduction

We consider the following class of problems henceforth termed Dynamic Resource Allocation Problems
(DRAPs):

1. (Discrete-time infinite horizon) We work in a discrete-time infinite-horizon setting.
2. (Heterogeneous job types) The index set of job types is denoted I = {1,2, . . . , I}.
3. (Random arrivals) Up to Ki < ∞ new jobs of type i ∈ I may arrive during a time-period for

some positive integer Ki. The probability that 0 ≤ m ≤ Ki new jobs of type i ∈I arrive during
a time-period is pi(m). Arrivals across different types are independent.

4. (Preemption) An ongoing job can be interrupted and resumed later.
5. (Geometric job durations) Type i jobs need to be served for a geometrically distributed number of

time-periods before they are complete. These geometric job durations are independent random
variables with success probability 0 < qi ≤ 1. From a practical viewpoint, an important special
case corresponds to qi = 1 where type i jobs are completed in one time-period (see for instance
recent work on patient service in healthcare (Green, Savin, and Wang 2006)).

6. (Multiple resource constraints)J = {1, . . . ,J}denotes the set of resources and b j < ∞ (positive
integer) is the total quantity of resource j ∈J available for consumption in each time-period.
In order to perform a job of type i ∈ I , a non-negative integer amount ai j ≥ 0 of resource
j ∈ J is required. We assume that for each job type i ∈ I , there is at least one resource
j ∈ J such that ai j > 0.

7. (Jobs in queue) Incomplete jobs form a queue and W i < ∞ denotes the queue capacity for type
i ∈ I jobs.

8. (Rewards and costs) The following rewards/costs are received/incurred:
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• (Completion reward) Reward Ri is received on completing a type i ∈ I job at the end of
a time-period.

• (Holding cost) Each type i ∈ I job in queue incurs a holding cost of Hi per period. We
assume that this cost is charged at the beginning of a period on jobs remaining in queue
after selecting the jobs to be served in that period.

• (Penalty cost) Type i ∈ I jobs that arrive when W i jobs of that type are in queue are
rejected incurring a penalty cost of Gi per rejected job. We assume that this cost is also
charged at the end of a period.

9. (Total discounted profit objective) The goal is to decide which jobs to serve in each period
so as to maximize the total discounted expected profit over an infinite horizon with discount
factor 0 < α < 1.

DRAPs and their variations arise in several applications. In a flexible manufacturing system,
jobs correspond to orders for different products and resources include manufacturing equipment
(Tolio 2009). In high performance computing facilities such as a supercomputer or a multi-processor
machine with an operating system that allows dynamic resource reconfiguration (e.g., Solaris 10 on
Sun), jobs correspond to computing tasks and resources to CPUs, memory, bandwidth, and storage
space (Vengerov 2007). In communication networks, jobs correspond to requests for data, voice, or
video transmission and the resource is bandwidth (Ross and Tsang 1989, Altman 2002). In healthcare
management, jobs relate to elective, that is, non-emergency patient requests for hospital admission
and resources correspond to diagnostic/treatment equipment, hospital beds and personnel such as
residents, doctors, and nurses (Nunes, de Carvalho, and de Cássia Meneses Rodrigues 2009).

Problems related to DRAPs have been studied in the literature. One class is termed Network
Revenue Management Problems (NRMPs) and is described as follows (Topaloglu 2009). Itinerary
requests for a set of flight legs arrive randomly over time. An accept/reject decision is made for each
arriving request. Accepted requests generate revenue and consume capacity on the corresponding flight
legs. A rejected request is lost. The goal is to maximize expected revenue over a planning horizon. The
second group is called Dynamic Stochastic Knapsack Problems (DSKPs) (Perry and Hartman 2009,
Kleywegt and Papastavrou 1998), where items with random weights and rewards arrive according to
a stochastic process and are either accepted or rejected for inclusion in a knapsack. These classes
differ from DRAPs in several ways. First, the resource, for instance, the flight leg capacity is non-
renewable. Second, the complicating notion of “job duration” is irrelevant. Moreover, requests do
not queue. In addition, in DRAPs, arriving jobs are never actively rejected unless the queue is full.
Luh, Miao, Chang, and Castanon (1989) investigate job selection problems with random arrivals but
allow only one renewable resource and deterministic job durations. Moreover, they work with the
simplifying assumption that all newly arriving jobs are of distinct types. Arriving jobs leave the system
if they are not completed by a deadline. This leads to mathematical models entirely different from
those of DRAPs and owing to computational difficulties the authors are only able to solve problems
with two job types. Finally, random job arrivals and stochastic durations distinguish DRAPs from
static-deterministic renewable resource allocation problems that are more common in the operations
research literature (Schwindt 2005).

The reader will also notice conceptual similarities between DRAPs and the now classic multi-
class queuing model with Poisson arrivals (Harrison 1975) and some of its extensions. The main
difference is that DRAPs explicitly include multiple resource constraints, and in addition, accom-
modate an essentially arbitrary discrete-time arrival process along with finite queue capacities and
allow preemption. Some of these points also differentiate DRAPs from problems in which Git-
tins index-based (Gittins 1979, Sonin 2008) and other structured policies are known to be optimal
(Megow, Uetz, and Vredeveld 2006, Pinedo 2008).

A different class of resource allocation problems arising in dynamic fleet management applications
have also received considerable attention (Godfrey and Powell 2002a, Godfrey and Powell 2002b,
Topaloglu and Powell 2005). In these problems, the resources correspond to transport vehicles such
as trains and trucks which occupy different locations in a transportation network. Jobs correspond to
shipping requests of distinct types, for instance, characterized by source-destination pairs. Decisions
include either moving (empty) vehicles from one location to another or servicing shipping requests.
These decisions are assumed to require a fixed number of time-periods to execute. The state of this
system is captured by locations of all vehicles resulting in mathematical models structurally different
from and computationally more challenging than those of DRAPs.
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In this paper, we present a Markov Decision Process (MDP) (Puterman 1994) model of DRAPs.
Exact solution of this model is intractable because its state- and action-spaces are both exponential in
I. We therefore apply a Lagrangian relaxation-based technique (Adelman and Mersereau 2008) that
exploits the structure of our MDP to approximate its optimal value function. We then design a dynamic
programming approach to efficiently recover resource allocation decisions from this approximate
value function. Numerical experiments on randomly generated problem instances indicate that these
decisions outperform myopic and µc-type heuristics that are often used as benchmarks in the queuing
literature (Cox and Smith 1961).

2 A special case with deterministic job durations

We first develop an MDP model for the special case of DRAPs where each job is completed in
one time-period, that is, qi = 1 for all i ∈ I . As we shall see later in Section 3, this MDP model
is structurally identical to that in the geometric durations case but needs much simpler notation
to describe. In this special case, all jobs in queue at the beginning of a time-period are precisely
those that arrived during the previous time-period. Thus the state of our MDP model is defined as
x = (x1,x2, . . . ,xI), where xi, for i = 1,2, . . . , I, is the number of type i jobs in queue at the beginning
of a time-period. Let Xi denote the set {0,1, . . . ,W i} for i = 1,2, . . . , I. The set X of all possible states
is then defined as the Cartesian product X = X1×X2× . . .×XI . The decision vector is represented by
u = (u1,u2, . . . ,uI), where ui, for i = 1,2, . . . , I, is the number of type i jobs that we choose to serve
in a time-period after observing state x. Let Ui(xi) = {0,1, . . . ,xi} and U(x) denotes the Cartesian
product U1(x1)×U2(x2)× . . .×UI(xI). The set Ū(x) ⊆U(x) of all decision vectors feasible in state
x is defined by the resource constraints

Ū(x) =

{

(u1,u2, . . . ,ui) ∈U(x) :
I

∑
i=1

ai jui ≤ b j, j = 1,2, . . . ,J

}

. (1)

The discounted expected profit accumulated during this period is given by

f (x,u) = α
I

∑
i=1

Riui

︸ ︷︷ ︸

reward

−
I

∑
i=1

Hi(xi −ui)

︸ ︷︷ ︸

holding cost

−α
I

∑
i=1

Ki

∑
ni=0

pi(ni)G
i(max{(xi −ui)+ni −W i,0})

︸ ︷︷ ︸

penalty cost

. (2)

Specifically, f (x,u) equals
I
∑

i=1
fi(xi,ui), where

fi(x
i,ui) =

{

αRi(ui)−Hi(xi −ui)−α
Ki

∑
ni=0

pi(ni)G
i(max{(xi −ui)+ni −W i,0})

}

. (3)

Let V (x) be the maximum total infinite-horizon discounted expected profit obtained from the
current and all future periods if the current state is x. This optimal value function can in theory be
obtained as the solution of the following Bellman’s equations for all x ∈ X :

V (x) = max
u∈Ū(x)

{
I

∑
i=1

fi(x
i,ui)+α

K1

∑
n1=0

. . .
KI

∑
nI=0

( I

∏
i=1

pi(ni)
)

V (x′1,x′2, . . . ,x′I)

}

, (4)

where

x′i = min{(xi −ui)+ni,W
i}, for i = 1,2, . . . , I. (5)
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Common approaches for solving these implicit equations and obtaining a corresponding optimal
policy, that is, an optimal decision vector in every possible state, include policy iteration, value
iteration, or linear programming (Ross 1983, Puterman 1994, Bertsekas 2007). These exact methods
however are intractable for most realistic-scale problems as they suffer from the curse-of-dimensionality
stemming from exceedingly large state and action spaces. For instance, in our example above, the
state-space and action-space are both exponential in number of job types I rendering exact computation
of the optimal value function and a corresponding optimal policy intractable. We illustrate this briefly
through the linear programming method.

Let β (x) > 0 for x ∈ S be any numbers indexed by the states in our example such that ∑
x∈S

β (x) = 1.

Thus, β (·) can be interpreted as the initial state probabilities. Then the optimal state values V (x) for
all x ∈ X can be simultaneously obtained as an optimal solution of the following linear program in
variables ν(x) indexed by x ∈ S:

(LP) F(β ) = min
ν(·)

∑
x∈S

β (x)ν(x)

s.t. ν(x)−α
K1

∑
n1=0

K2

∑
n2=0

. . .
KI

∑
nI=0

( I

∏
i=1

pi(ni)
)

ν(x′1,x′2, . . . ,x′I) ≥ f (x,u), ∀x ∈ X , ∀u ∈ Ū(x),

where x′1,x′2, . . . ,x′I are defined in Equation (5). Observe that F(β ) is used in (LP) to denote
the weighted optimal value function ∑

x∈S
β (x)V (x). Note that the number of variables in (LP) equals

the cardinality |S| =
I

∏
i=1

(W i + 1), and the number of constraints is given by ∑
x∈S

|Ū(x)|. Both these

are exponential in I and hence (LP) is intractable for problems with more than a few job types. For
example, the linear program in a problem with ten job types and queue capacity of three for each
type has over a million variables.

Fortunately, the above MDP model has a special structure. The state-space X is a Cartesian
product over I job types — X1 ×X2 × . . .×XI; feasible decision vectors in state x ∈ X belong to a
subset Ū(x) of the Cartesian product U1(x1)×U2(x2) . . .×UI(xI) over the I components x1,x2, . . . ,xI

of state x; the expected profit function f (x,u) is additively separable over job types (recall Equations
(2)-(3)); the “state transition probabilities” are multiplicatively separable over the I job types; and
consequently, the only feature linking the I job types is the presence of the resource constraints
that define the set Ū(x) as in Equation (1). In other words, this MDP model is weakly coupled
(Adelman and Mersereau 2008, Bertsimas and Mersereau 2007, Hawkins 2003). As a result, a La-
grangian relaxation-based approximation technique specifically developed for weakly coupled MDPs
(Adelman and Mersereau 2008) is applicable to our model.

2.1 Problem decomposition by Lagrangian relaxation

The general Lagrangian relaxation approach for approximate solution of weakly coupled MDPs is
based on the intuition that if we dualize the linking constraints on the decision vectors, we should
obtain I separate and much smaller sub-problems. More specifically, in our model above, let λ =
(λ1,λ2, . . . ,λJ) ≥ 0 be any Lagrange multipliers associated with the J resources, and consider the
following modification of Bellman’s equations (4) ∀x ∈ X :

V λ (x) = max
u∈U(x)

{
I

∑
i=1

fi(x
i,ui)+

J

∑
j=1

λ j

(

b j −
I

∑
i=1

ai jui
)

+α
K1

∑
n1=0

K2

∑
n2=0

. . .
KI

∑
nI=0

( I

∏
i=1

pi(ni)
)

V λ (x′1,x′2, . . . ,x′I)

}

.

(6)

It turns out that (see Proposition 1 of (Adelman and Mersereau 2008)) for all x ∈ X ,
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V λ (x) =
1

1−α

J

∑
j=1

λ jb
j +

I

∑
i=1

V λ
i (xi), (7)

where

V λ
i (xi) = max

ui∈Ui(xi)

{

fi(x
i,ui)−

J

∑
j=1

λ ja
i jui +α

Ki

∑
ni=0

pi(ni)V
λ
i (min{(xi −ui)+ni,W

i})

}

, ∀xi ∈ Xi.

(8)

Moreover, for all x ∈ X , V λ (x) ≥ V (x), and Fλ (β ) = ∑
x∈S

β (x)V λ (x) ≥ F(β ) for all λ ≥ 0 (see

Proposition 2 of (Adelman and Mersereau 2008)). Thus the tightest Lagrangian bound on the weighted
value F(β ) = ∑

x∈S
β (x)V (x) is obtained by minimizing Fλ (β ) over λ ≥ 0. Combining this with I

linear programs for computing the componentwise value functions in Bellman’s equations (8), we
obtain the following Lagrangian linear program:

(LLP) Fλ ∗
(β ) = min

νi(·),λ

J
∑
j=1

λ jb j

1−α
+

I

∑
i=1

∑
xi∈Xi

βi(x
i)νi(x

i)

s.t. νi(x
i)−α

Ki

∑
ni=0

pi(ni)νi(min{(xi −ui)+ni,W
i}) ≥ fi(x

i,ui)−
J

∑
j=1

λ ja
i jui,

xi ∈ Xi,u
i ∈Ui(xi), i = 1,2, . . . , I; λ ≥ 0.

Here βi(xi) > 0 are numbers indexed by state components xi ∈ Xi such that βi(xi) = ∑
{x′:x′i=xi}

β (x′).

That is, βi(·) can be interpreted as the marginal initial state probabilities. The optimal values of νi(xi)
(these equal Vi(xi)) and the optimal value of vector λ , denoted λ ∗, obtained after solving (LLP) define
approximate optimal state values V λ ∗

(x) through Equation (7). Also note that Fλ ∗
(β ) ≥ F(β ). Most

importantly, (LLP) has only J +
I
∑

i=1
(W i + 1) variables and at most J +

I
∑

i=1
(W i + 1)W i constraints.

Thus, whereas the numbers of variables and constraints are both exponential in I in the exact linear
program (LP), they are both linear in I in the approximate Lagrangian linear program (LLP). We next
develop a dynamic programming approach to efficiently recover resource allocation decisions from
the approximate value function V λ ∗

(·) on the fly.

2.2 Retrieving resource allocation decisions from approximate value functions

When an approximate value function is available, it can in principle be plugged into the right hand
side of Bellman’s equation (4) (in place of the optimal value function V (·)) to find a decision vector
u ∈ Ū(x) that maximizes the right hand side for each x ∈ X . Such a policy is said to be greedy with
respect to the approximate value function. But this approach is intractable owing to the size of X . In
practice however, a whole policy, that is, a decision vector u ∈ Ū(x) for every x ∈ X , is not needed a
priori — we need to select a decision vector in a particular state only if and when the system reaches
that state during an actual system run. In short, it suffices to retrieve decisions on the fly. Nevertheless,
it is often highly non-trivial to retrieve even one decision vector that is greedy with respect to an
approximate value function because this requires solving a challenging deterministic combinatorial
optimization problem. We develop a dynamic programming approach to achieve this.
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After solving the Lagrangian linear program (LLP), a vector λ ∗ and the corresponding V λ ∗

i (xi)
values for all xi ∈ Xi for i = 1,2, . . . , I are available to us. Now suppose for a specific state x ∈ S, we
wish to compute a decision vector that is greedy with respect to the value function approximation
V λ ∗

(·). This involves solving:

max
u∈Ū(x)

{
I

∑
i=1

fi(x
i,ui)+α

K1

∑
n1=0

K2

∑
n2=0

. . .
KI

∑
nI=0

( I

∏
i=1

pi(ni)
)

V λ ∗
(x′1,x′2, . . . ,x′I)

}

,

wherex′1,x′2, . . . ,x′I aredefined inEquation (5). OnsubstitutingV λ ∗
(x′1,x′2, . . . ,x′I)= 1

1−α
J
∑
j=1

λ jb j +

I
∑

i=1
V λ ∗

i (x′i) from Equation (7), the discrete optimization problem algebraically simplifies to

1
1−α

J

∑
j=1

λ jb
j + max

u∈Ū(x)

{
I

∑
i=1

[

fi(x
i,ui)+α

Ki

∑
ni=0

pi(ni)V
λ ∗

i (min{(xi −ui)+ni,W
i})
]
}

.

Because the term outside the maximization (that does not depend on decision u) is irrelevant to
this policy retrieval problem, we ignore it in the discussion below, and then rewrite the problem in
more detail as follows:

max
u

{
I

∑
i=1

[

fi(x
i,ui)+α

Ki

∑
ni=0

pi(ni)V
λ ∗

i (min{(xi −ui)+ni,W
i})
]
}

(9)

ui ∈Ui(xi) = {0,1, . . . ,xi}, i = 1,2, . . . , I;
I

∑
i=1

ai jui ≤ b j, j = 1,2, . . . ,J.

Problem (9) is a generalized multi-dimensional integer knapsack problem. In general, problems of
this type are very difficult to solve, however, in our case (9) can often be solved efficiently as an I-stage
dynamic program. To see this, let si = (s1

i ,s
2
i , . . . ,s

J
i ) be the quantities of the J resources remaining

to be allocated to job types i, i+1, . . . , I. Let di = min
j=1,...,J

{⌊s j
i /ai j⌋} be the maximum number of type

i jobs that can be served when the amounts of resources remaining are (s1
i ,s

2
i , . . . ,s

J
i ). We define the

set Di = {0,1,2, . . . ,di}. Then problem (9) can be solved using the following dynamic programming
recursion:

Ψi(s
1
i , . . . ,s

J
i ) = max

ui∈Di

(
[

fi(x
i,ui)+α

Ki

∑
ni=0

pi(ni)V
λ ∗

i (min{(xi −ui)+ni,W
i})
]

+Ψi+1(s
1
i −ai1ui, . . . ,sJ

i −aiJui)

)

.

Many realistic problems of interest often involve a few resources, say two or three, thus making the above recursion
tractable. Thus we now have a method to approximate the optimal value function of our MDP and efficiently retrieve
corresponding greedy resource allocation decisions on the fly. We now generalize our MDP model to DRAPs, that is,
problems with geometric job durations.

3 Back to geometric job durations

In this case, given that an incomplete type i job is served during a time-period, the probability that it will be completed
at the end of that time-period is qi independently of everything else in the past. Owing to this memoryless property of
geometric random variables and our assumption that preemption is allowed, the state of the MDP model is still given by
the number of jobs in queue for each type. As before, we now wish to compute f (x,u), the expected profit generated
on implementing a feasible decision u ∈ Ū(x) in a time-period that begins in state x. Let η i denote the random number
of type i jobs completed in this time-period. The probability distribution of η i is binomial(ui,qi). Thus the expected

number of type i jobs completed is uiqi. Consequently, f (x,u) =
I
∑

i=1
fi(xi,ui), where
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fi(x
i,ui) =

{

αuiqiRi −Hi(xi −ui)−α
Ki

∑
ni=0

ui

∑
η i=0

pi(ni)

(
ui

η i

)

(qi)η i
(1−qi)ui−η i

Gi(max{(xi −η i)+ni −W i,0})

}

.

Thus Bellman’s equations for all x ∈ X are now given by

V (x) = max
u∈Ū(x)

{
I

∑
i=1

fi(x
i,ui)+α

K1

∑
n1=0

. . .
KI

∑
nI=0

(
I

∏
i=1

pi(ni)

(
ui

η i

)

(qi)η i
(1−qi)ui−η i

)

V (x′1,x′2, . . . ,x′I)

}

, (10)

where x′i = min{(xi −η i)+ni,W i}, for i = 1,2, . . . , I.
Most importantly, this MDP model is also weakly coupled and hence Lagrangian decomposition and decision

retrieval by dynamic programming discussed in Section 2 naturally extend to this geometric case through minor changes
in notation. We therefore do not repeat that discussion here.

4 Numerical experiments

We demonstrate the power of ideas discussed above through computational experiments on randomly generated
problems. Results are presented both for the deterministic job durations case and the geometric case. We consider
I = 6,8,10,20,30,40,50. The maximum number of job arrivals Ki in a time-period is set to a uniform random integer in
[1,5] for all i. Once such a Ki is sampled, the probability mass function pi(·) is obtained by normalizing Ki +1 uniform
(0,1) random variables. The resource availabilities and consumption values were generated using a technique similar
to a standard method for generating multi-dimensional knapsack problems (Chu and Beasely [1998]). Particularly, the
unit resource consumption values for job type i are set to uniform random integers in [i,3i]. The resource availability
is then obtained by adding unit resource consumption values across all job types and then multiplying this quantity by
a tightness ratio. Tightness ratios of 0.7 and 0.9 were used. Queue capacities W i were set to either 3 or 6 for all i thus
our experiments include problems with state-space as large as 750. The discount factor was set to 0.8. In general, our
experience suggests that interesting economic tradeoffs are generated when the ratios Ri/Hi and Ri/Gi are type-dependent.
The completion reward per job of type i was set to a uniform random integer in [50i,50(i+1)]. The holding cost as
well as rejection cost per job of type i was set to a uniform random integer between [15(i− 1)+ 5,15(i− 1)+ 10].
For geometric job durations, the success probabilities qi are chosen from the interval [0.5,1] and are decreasing in i;
specifically, qi is set to equal a uniform (0.5+0.5(I − i)/I,0.5+0.5(I +1− i)/I) random variable.

We compared the performance of decisions retrieved using the Lagrangian approach with that of two heuristic
policies common in the literature . The first is a myopic heuristic that in state x simply chooses a feasible decision
u ∈ Ū(x) that maximizes f (x,u). Note however that this problem itself is computationally quite difficult in general and
we solve it using a dynamic program similar to that in Section 2.2. The second is a µc-type of heuristic that prioritizes

jobs based on ratios qi(Ri + Hi + Gi)/(
J
∑
j=1

ai j) — the higher this ratio the higher the priority. These ratios relate to

the reward per resource consumed per expected service duration. Linear programs were solved using CPLEX 11.0 via
AMPL on a PC running Windows Vista with 4GB RAM. All performance estimates were obtained by averaging total
discounted profit over N = 20 sample path repetitions of T = 50 time-steps each (0.850 is small enough to ignore the
effect of tail profits) starting with states (x1,x2, . . . ,xI) whose components i ∈ I are chosen uniformly at random from
Xi = {0,1, . . . ,W i}. The results are reported in Tables 1 and 2 below, which list the performance improvement obtained
by the Lagrangian approach over the two heuristics. Table 1 focuses on problems with single-period job durations,
whereas Table 2 on geometric job durations. These results show that Lagrangian policy performs far better than the
two heuristics. The average improvement over the myopic heuristic for problems with single-period job durations is
about 40% with tightness ratio 0.7 and about 35% with tightness ratio 0.9. These numbers equal 20% and 43% for
problems with geometric job durations. The average improvement over the µc heuristic for problems with single-period
job durations is about 220% with tightness ratio 0.7 and about 67% with tightness ratio 0.9. These numbers equal 34%
and 66% for problems with geometric job durations.

5 FUTURE WORK

Our future work will focus on extensions of DRAPs to problems with general stochastic job durations. The states in
the corresponding MDPs will include information on the total time spent servicing each job in queue in the past and
the decisions will need to be modified accordingly. Fortunately these models will continue to be weakly coupled.
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Table 1: Comparison between the performance of Lagrangian and heuristic decisions for problems with single-period
job durations. The percentages listed in the last two columns equal 100×(Lagrangian- heuristic)/(|heuristic|), where
“Lagrangian” represents the average discounted profit obtained by Lagrangian decisions over N = 20 independent sample
path replications of T = 50 time-steps each, and “heuristic” represents the same for myopic and µc. Problems 1-25
use tightness = 0.7, 26-50 use tightness = 0.9.

# I J W i ∀i % improvement over myopic % improvement over µc

1 6 1 3 4.32 19.24
2 8 1 3 41.04 117.01
3 10 1 3 7.33 10.11
4 6 2 3 37.64 57.68
5 8 2 3 19.36 145.10
6 10 2 3 15.87 4438.89
7 6 1 6 21.89 53.40
8 8 1 6 21.45 14.71
9 10 1 6 29.20 27.73

10 6 2 6 50.88 54.73
11 8 2 6 17.85 14.44
12 10 2 6 11.20 21.39
13 6 3 3 10.48 38.52
14 8 3 3 31.77 105.33
15 10 3 3 246.22 143.75
16 6 3 6 51.66 61.08
17 8 3 6 23.99 24.21
18 20 1 3 6.22 3.45
19 30 1 3 5.34 4.29
20 40 1 3 16.44 7.02
21 50 1 3 13.88 6.07
22 20 1 6 184.78 71.57
23 30 1 6 72.47 44.96
24 40 1 6 26.06 14.63
25 50 1 6 42.91 17.20

26 6 1 3 3.92 14.61
27 8 1 3 5.88 8.65
28 10 1 3 1.81 3.62
29 6 2 3 5.80 13.91
30 8 2 3 3.12 17.55
31 10 2 3 1.11 30.32
32 6 1 6 14.31 28.43
33 8 1 6 139.18 523.38
34 10 1 6 15.66 13.03
35 6 2 6 126.94 109.42
36 8 2 6 70.59 62.89
37 10 2 6 61.91 75.46
38 6 3 3 10.01 39.59
39 8 3 3 4.42 14.31
40 10 3 3 9.94 32.12
41 6 3 6 81.94 525.99
42 8 3 6 150.35 131.09
43 20 1 3 0.76 0.61
44 30 1 3 4.70 3.34
45 40 1 3 9.65 3.58
46 50 1 3 6.13 2.50
47 20 1 6 8.64 4.79
48 30 1 6 20.44 8.51
49 40 1 6 94.87 21.54
50 50 1 6 38.87 9.33
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Table 2: Comparison between the performance of Lagrangian and heuristic decisions for problems with geometric
job durations. The percentages listed in the last two columns equal 100×(Lagrangian- heuristic)/(|heuristic|), where
“Lagrangian” represents the average discounted profit obtained by Lagrangian decisions over N = 20 independent sample
path replications of T = 50 time-steps each, and “heuristic” represents the same for myopic and µc. Problems 1-8 use
tightness = 0.7, 9-16 use tightness = 0.9.

# I J W i ∀i % improvement over myopic % improvement over µc

1 6 1 3 -7.74 39.38
2 8 1 3 32.77 31.66
3 10 1 3 72.37 86.03
4 6 1 6 26.96 63.87
5 8 1 6 -0.65 3.67
6 10 1 6 -0.97 1.64
7 20 1 3 14.51 32.54
8 20 1 6 27.04 19.66

9 6 1 3 21.37 34.22
10 8 1 3 -6.65 191.88
11 10 1 3 51.27 64.15
12 6 1 6 -36.66 29.99
13 8 1 6 22.23 21.00
14 10 1 6 7.69 13.02
15 20 1 3 13.44 17.99
16 20 1 6 277.83 162.64
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