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ABSTRACT 

Construction project resource scheduling problems have been interesting and challenging subjects of ex-

tensive research for several decades in the optimization study area in order to put them in practical appli-

cation. Recently, the integrated genetic algorithm rather than the stand-alone GA is being increasingly ap-

plied to solve the problems. An adaptive hybrid genetic algorithm search simulator (AHGASS) for 

resource scheduling problems has been developed in the previous stage of this research. Previous work 

outlined the strategies and practical procedures for the algorithm development, but did not deal with algo-

rithm performance with regard to algorithm runtime, especially against runtime used in generating opti-

mality. Since the major drawback of using GA is a great length of time required, it is meaningful to inves-

tigate the significance in algorithm runtime between AHGASS and optimality. To address this issue, this 

paper attempts to investigate the difference in algorithm performance with regard to algorithm runtime.  

1 INTRODUCTION 

A genetic algorithm (GA) has been continuously utilized as a powerful and applicable optimization tool 

in civil and construction management research domain to solve the resource-constrained project schedul-

ing problem (RCPSP). The optimal solutions to the problem are of great value to project planners in re-

solving resource conflicts. Therefore, many researchers attempt to develop the best procedure to be used 

as a project management tool to allow for the complexities of real-world problems.  

 A recent trend in solving the RCPSP using GA is to develop an integrated meta-heuristic method by 

combining GA with other meta-heuristic method. As an effort, the author developed an adaptive hybrid 

genetic algorithm search simulator (AHGASS) to find an optimal solution to the problem by providing 

the strategies and practical procedures (Kim and Ellis 2009). The study presented intensive computational 

results to demonstrate that AHGASS provides a comparable and competitive performance. However, it 

does not deal with the algorithm performance with regard to algorithm runtime, especially against the run-

time used in generating optimal solutions.  

Since the major drawback of using GA is a great length of time required, in addition to the difficulty 

of choosing an encoding and fitness function, it is meaningful to investigate the significant difference in 

algorithm runtime between AHGASS and optimality. To address this issue, this paper attempts to investi-

gate the difference in algorithm performance with regard to algorithm runtime.  

The following section briefly introduces genetic algorithm for construction resource scheduling prob-

lems, followed by the strategies and practical procedures of the integrated GA approach for RCPSP. Next, 

the computational results and analysis section describes data and variables for obtaining algorithm per-

formance and runtime data, immediately followed by statistical results and analysis. This paper then 

makes concluding remarks that summarize the findings and recommends the further analysis to reinforce 

the research outcomes.  
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2 GENETIC ALGORITHM FOR CONSTRUCTION RESOURCE SCHEDULING 

Construction project resource scheduling problems have been interesting and challenging subjects of ex-

tensive research for several decades in the optimization study area in order to put them in practical appli-

cation. The generalized model of the resource scheduling is valuable in that it can be incorporated into the 

advanced computational methods of commercial project management software for practical applications. 

The resource scheduling problems can be specialized by the objective function, renewable or nonrenewa-

ble resources, preemption or nonpreemption (Lee and Kim 1996). The problems have different versions, 

depending on the objective functions such as (a) the minimization of project duration which is used here, 

(b) the minimization of the total project cost, (c) the maximization of the net present value of cash flows, 

and (d) the resource leveling problem. The objective of the resource-constrained project scheduling prob-

lem (RCPSP) is to allocate the available resources to activities in order to find the shortest duration (ma-

kespan, or fitness) of a project network within the constraints of precedence relationships.  

 Recently, many researchers used meta-heuristic methods such as GA, simulated annealing, tabu 

search, and ant colonies, to solve the RCPSP to overcome the drawbacks of exact solution methods and 

priority rule-based heuristics. Among them, GA has been successfully used to solve construction resource 

scheduling problems (Chan et al. 1996; Hegazy 1999; Leu and Yang 1999; Toklu 2002; Hegazy and Kas-

sab 2003; Liu et al. 2005; Kandil and El-Rayes 2006; Jaśkowski and Sobotka 2006; Kim and Ellis 2008, 

2009). Kim et al. (2010) studied 87 peer-reviewed prestigious journal articles published over the past 20 

years from 1995 to 2010 focusing on areas influenced by genetic algorithm application. The findings in-

dicate that mathematical programming for cost and schedule optimization (40.23%, 35 articles) is the 

most widely applied area, followed by construction method and process (27.59%, 24 articles), design and 

layout (21.84%, 19 articles), and management (10.34%, 9 articles). A recent trend in solving the resource 

scheduling problems using GA is to develop an integrated meta-heuristic method by combining GA with 

other meta-heuristic method. An integrated GA approach has been successfully applied to many engineer-

ing optimization problems such as aerodynamic design, signal analysis, water resources planning and 

management, and others. Although the integrated GA using meta-heuristic methods are becoming popular 

in those areas, the approach to the construction resource scheduling problem is demanding more efforts 

for optimization. 

3 INTEGRATED GA APPROACH: LOCAL SEARCH INTEGRATION 

GA is adopted in many applications such as education, engineering, government, industry, management, 

manufacturing, and others. The wide applicability of GA makes the integration possible in addition to its 

remarkable advantages such as capability and flexibility over exact solution methods and/or priority rule-

based methods. It can be integrated with other techniques, for example, mathematical programming and 

meta-heuristic method in order to solve non-deterministic hard problems. This approach, regarded as the 

integrated GA, can definitely make a more realistic and promising search solution than stand-alone GA.  

 AHGASS, which was developed in the previous stage of this research, combines GA with local 

search using random walk algorithm (RWA) via Baldwinian evolution process. Figure 1 shows a flow 

chart for AHGASS algorithm. The initial population of possible solutions to the RCPSP is created to ap-

ply the algorithm in the very first step of global search using GA. A fitness value (project duration) of an 

individual chromosome in an initial population is calculated, using the serial and/or parallel schedule gen-

eration scheme. Evaluation of local search is achieved before the move to the selection operator embed-

ded in the GA. If local search is needed, it occurs following the selection operator. Otherwise, local 

search is not implemented. The selection of the parent individuals is made through the elitist roulette 

wheel selection operator for the next generation. The elitist roulette wheel selection operator is the com-

bined operator using the elite selection and the roulette wheel selection. Using the parent individuals ob-

tained from the selection operator, one-point crossover operator is performed by exchanging parent indi-

vidual segments and then recombining them to produce two resulting offspring individuals. The uniform 
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mutation operator is performed to play the role of random local search, which searches much smaller por-

tion than the random walk algorithm. 

The local search using RWA is performed only when the performance of the global search using GA 

indicates the needs. The local search integration procedure performs an iterative process on a single sche-

dule of activities. The process attains a better fitness value by taking tiny increments over a local search 

space. A random activity in an individual chromosome is selected and its flexibility of movement within 

the schedule is determined. If a required predecessor activity is directly before the activity, and a succes-

sor activity is directly after the activity, then it has no flexibility and another activity is chosen. Once cho-

sen, the individual chromosome is adjusted iteratively to put the chosen activity in every one of its possi-

ble positions. For each adjustment, the overall fitness value of the individual is computed using schedule 

generation scheme. The location of the chosen activity that corresponds to the best overall fitness of the 

individual is chosen as that activity’s permanent location.  

If the best location found is different from the activity’s permanent location, then an improvement on 

the overall fitness value is made. It is important to note that the objective of local search is not to search 

the best solution located in the neighborhood of the current point, but to provide more information that 

would better give a direction to the portion of the search space where the globally optimal solution is lo-

cated. The RWA switches back to global search when the number of iterations exceeds a user-specified 

maximum value. The major characteristic of AHGASS algorithm is that it adapts in response to recent 

performance of the algorithm with the aid of local search as it converges to the solution. 

 

 
Figure 1: Flow chart for AHGASS algorithm 
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Figure 2 shows the Baldwinian evolution process for local search. The simple genetic algorithm 

(SGA) is performed as an initial search of solution space, identifying a limited set of possible solutions or 

solution regions. Using the solutions obtained from the SGA, the RWA is employed as a starting guess. In 

order to connect two methods, Baldwinian evolution (Baldwin 1896) is used because it helps avoid pre-

mature convergence by preserving only the direction of improvement. It is survival of the fittest following 

the direction of learning. Therefore, it is no doubt to make certain that only the improved fitness values 

are changed after local search occurs. However, its genotype information is not altered. The process from 

the SGA through Baldwinian evolution to the RWA is terminated if it converges to the single point with 

standard deviation of zero.   

 

 
Figure 2: Baldwinian evolution process for local search 

4 COMPUTATIONAL RESULTS AND ANALYSIS 

4.1 DATA AND VARIABLES 

To test algorithm performance with regard to algorithm runtime, especially against runtime used in gene-

rating optimality, a computational experiment is designed using standard project network problems avail-

able from the PSPLIB. The PSPLIB, Project Scheduling Problem LIBrary generated by Kolisch and 

Sprecher (1996), is the source that is now widely used in the resource scheduling optimization study area. 

The experiments consist of twofold: (1) the comparison test in project duration between AHGASS and 

optimality and (2) the comparison test in algorithm runtime between AHGASS and optimality available 

from Demeulemeester and Herroelen (1997). 

 Figure 3 shows the graphical user interface of AHGASS implemented with JAVA programming lan-

guage. It enables users to input the global and local search parameter values, while the numerous project 

network problems can be run simultaneously. The parameters and their values to run AHGASS are tabu-

lated in Table 1. The more detail information on parameters can be found in Kim and Ellis (2009). 

AHGASS is terminated when it meets the number of 100 generations for the experiments.  

 A paired difference experiment, in which the sample data consist of paired observations randomly se-

lected from a population of paired observations, is used to compare the (1) mean values for the project du-

ration and (2) mean values for algorithm runtime in second through the run of AHGASS. The experiment 

method is appropriate because it provides more meaningful information about the difference between two 

means rather than independent sampling procedures since some sampling variability is removed by pair-

ing the observations when possible (Meyer and Krueger 1998; Kuehl 2000). 
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Figure 3: Graphical user interface for AHGASS (After Kim and Ellis 2009) 

 

Table 1:  AHGASS Parameters and Values 

Global search (GS) Symbol Value Local search (LS) Symbol Value 

Population size Pop_size 100 Variation Threshold T 0.75 

Transformation power TP 1.6 LS probability Qo 0.2 

Crossover probability Cp 0.5 LS adaptive parameter ε 0.5 

Mutation probability Mp 0.03 No. of LS iteration LS 5 

Termination condition No. of Gen 100 LS proportion LSp 0.8 

4.2 RESULTS AND ANALYSIS 

First, the mean values for project durations produced by AHGASS using thirty project network problems 

are compared against those obtained from the optimality in order to show the robustness of the algorithm. 

AHGASS was run using thirty project network problems for the first test. Table 2 tabulates the compari-

son results in fitness values (i.e. project duration) between the optimal solutions obtained from Demeule-

meester and Herroelen (1997) and those produced from AHGASS. Four out of thirty project networks re-

vealed the deviation from optimality ranging from 0.02% to 0.09%. In other words, only four pairs 

resulted in different project durations. This result means that AHGASS produced about 86.67% of optim-

al solutions for all of thirty project networks. 

 Second, the mean values for project durations and algorithm runtime produced by AHGASS using 

100 project network problems are compared against those obtained from the optimality in order to test the 

difference in algorithm performance. T-statistic is used to make an inference on the mean of the popula-

tion differences with the assumption that the distribution of differences is approximately normal. The 

point estimate of the mean is the mean of the sample difference. The result indicates that, for most pairs 

of the average fitness values, those produced from AHGASS had same values as those obtained from the 

optimality. The average deviation from the optimality is 0.43%. Also, the result presents a lot of variation 

in the average fitness values of the problems. This variation in the values is accounted for by the matched 

pairs design. A 95% confidence interval for the difference between mean fitness values is constructed. 
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The point estimate of the true mean difference in the average fitness values is 0.26. With 95% accuracy, 

the mean difference in the values is between -3.39 and 3.91. The mean difference means that the values 

produced from AHGASS have the average values from -3.39 to 3.91, which includes the value of zero.  

 

Table 2:  Comparison Results for Fitness Values against Optimality 

Project ID 
Optimality 

(A) 

Fitness by 

AHGASS (B) 

Deviation (%) 

(B-A)/A x 100 

Project 

ID 

Optimality 

(A) 

Fitness by 

AHGASS (B) 

Deviation (%) 

(B-A)/A x 100 

1 43 43 0.00 16 47 47 0.00 

2 47 51 0.09 17 47 47 0.00 

3 47 47 0.00 18 54 54 0.00 

4 62 62 0.00 19 54 54 0.00 

5 39 39 0.00 20 43 43 0.00 

6 48 49 0.02 21 72 72 0.00 

7 60 60 0.00 22 40 40 0.00 

8 53 54 0.02 23 57 57 0.00 

9 49 50 0.02 24 98 98 0.00 

10 45 45 0.00 25 53 53 0.00 

11 38 38 0.00 26 54 54 0.00 

12 51 51 0.00 27 48 48 0.00 

13 43 43 0.00 28 54 54 0.00 

14 43 43 0.00 29 65 65 0.00 

15 51 51 0.00 30 59 59 0.00 

 

 Table 3 tabulates the statistical results for the average fitness values and total algorithm runtime in 

second as a result of scheduling 100-project networks with 30 activities. The hypotheses to test whether 

the average fitness value (µoptimality) obtained from the optimality differs from that (µAHGASS) obtained from 

AHGASS are Ho: µoptimality – µAHGASS = 0 and Ha: µoptimality – µAHGASS ≠ 0. Given that the average project 

duration for 100 project networks is 54.63 from the optimality, AHGASS produced 54.89 average fitness 

values, as they converge to a single point across the number of generations of 100. For the test of the av-

erage fitness values, we do not reject the null hypothesis because the observed significance level or p-

value of 0.888 is greater than α = 0.05. Therefore, we do not have sufficient evidence to conclude that the 

mean values are different between AHGASS and optimality. In other words, AHGASS produces optimal 

and/or near optimal solutions to the project networks employed in this study.  

 

Table 3:  Statistical Analysis for Algorithm Performance 

Measurement 

Optimality 

(Demeulemeester and 

Herroelen 1997) 

AHGASS 

(This paper) 
t score (p-value) 

No. of project networks 100 100 -  

Average project duration 54.63 54.89 0.14 (0.888) 

Total algorithm runtime (sec) 1050.23 438.00 1.34 (0.092) 

 

 The hypotheses to test whether the average CPU runtime in second (µoptimality) obtained from the opti-

mality differs from that (µAHGASS) obtained from AHGASS are Ho: µoptimality – µAHGASS = 0 and Ha: µoptimality 

– µAHGASS ≠ 0. Given that the average CPU runtime for 100 project networks is 10.50 second per project 

network from the optimality, AHGASS produced average CPU runtime of 4.38 second per project net-

work, as they converge to a single point across the number of generations of 100. For the test of the aver-

age CPU runtime, we do not reject the null hypothesis because the observed significance level or p-value 

of 0.092 is greater than α = 0.05. Therefore, we do not have sufficient evidence to conclude that 

AHGASS, integrated GA, takes more time to solve the project network problems than the optimality. 
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5 CONCLUDING REMARKS 

This paper presented the results using the paired difference experiment to compare the mean values for 

the project duration and mean values for algorithm runtime in second. An adaptive hybrid genetic algo-

rithm search simulator (AHGASS) for resource scheduling problem is used for the comparison study. 

This paper deals with algorithm performance with regard to algorithm runtime, especially against runtime 

used in generating optimality. The algorithm performance measures such as project duration and algo-

rithm runtime were compared against the optimality. The results support that the integrated GA approach 

provides optimal solutions to the RCPSP and that it does not require significant amount of time to solve 

the problem as compared to the runtimes used in generating the optimality. The intensive statistical analy-

sis is necessary to prove that the integrated GA approach can definitely make a more realistic and promis-

ing search solution than stand-alone GA. 
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