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ABSTRACT 

This paper fills a gap in the financial and project management literature of examining how financing fees, 
particularly interest, are determined accurately for planning and management of cash flows in construc-
tion projects. For planning purposes, most models assign costs at the activity level, as individual transac-
tions at their actual date of occurrence as yet unknown. The interplay of cash outflows from numerous 
purchases, salaries, and payments for materials, labor, and equipment and regular cash inflows from 
progress payments by the owner to the contractor create a characteristic ‘sawtooth’ pattern. However, in-
terest calculations for such continuously changing balances traditionally used averaging approximations 
that deviate from the exact solution. The derivation for such financing fee is presented and its logarithmic 
expression is compared with the approximations. It is concluded that more detailed research is merited as 
to how assuming a linearization used in manifold examples of cash flow analysis matches with practice. 

1 INTRODUCTION 

Business relies on cash flow, the regular outflow and inflow of money, for its vitality and financial health. 
Construction contractors must carefully plan and manage their cash flow to cover direct costs and pay-
ments to subcontractors and suppliers. Shortfalls can be disruptive even if all physical operations progress 
as planned. Borrowing can temporarily cover such shortfalls, but its financing fees impact profitability. 
Lack of capital from poor cash flow planning can lead to bankruptcy (Harris and McCaffer 2001) and is a 
“leading cause of contractor’s failure” (Touran et al. 2004), necessitating a very detailed analysis. 

1.1 Cash Outflows 

Construction contractors face continued individual expenses as work ensues. These cash outflows include 
intermittent operational expenses, internal payroll, and overhead. In the construction industry, they are as-
sumed a priori as linearized within each activity (Kenley 2003) over time or even simplified further. The 
timing of activities as well as the payment terms to subcontractors and ‘trade credit’ extended by suppliers 
may add flexibility, but overall cash outflows incurs continuous growth. Note that this study did not ex-
amine how well the linearization assumption holds for typical activities of different types of construction. 

1.2 Cash Inflows 

Cash inflows are defined as receipts of cash. In the construction industry they can have a lower frequency 
than in other industries, as bills are paid regularly, e.g. monthly, only after a specific portion of the work 
is completed. Phasing and payment terms like retainage may further exacerbate these regular accumulated 
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payments. Depicting the pay cycle with its billing-to-payment delay gives a stepped pattern that is unba-
lanced from previous expenses. As contractors may undertake several projects of different sizes and activ-
ities in parallel subject to different payment terms, inflows may almost behave as a quasi-random func-
tion. 

1.3 Importance of Combined Cash Flows 

The importance of modeling and optimizing cash outflows versus inflows can hardly be overstated. Com-
bining these disparate and shifted phenomena gives an uneven ‘sawtooth’ pattern (Kenley 2003) that typi-
cally will result in shortfalls. Contractors must therefore augment and ‘front-load’ their inflows with bor-
rowing. This can take two forms, commercial borrowing from financial institutions with associated fees 
or self-financing from retained earnings, profits, or direct equity investment (i.e. self-lending) and the as-
sociated opportunity cost of capital (e.g. the expected rate of return or interest income that is foregone by 
utilizing the given cash for other activities). For the purpose of this paper these methodologies are consi-
dered equivalent and the discussion focuses on commercial borrowing and its predictable fee structure. 

1.4 Financing Fees as Part of Cash Flow 

Financing fees are assessed by financial institutions that act as lenders as charges for temporarily turning 
over funds to borrowers for their beneficial use. Such commercial loans are an important for enabling 
companies, e.g. construction contractors, to perform ventures that are ultimately profitable, but whose fi-
nancial burden currently exceeds the liquidity of the company. The principal is a term used under two dif-
ferent but closely related scenarios; it denotes the currently remaining amount of money that has been 
borrowed and is subject to financing fees (from the perspective of an entity borrowing from a bank) and 
conversely it denotes the currently accumulated amount of money that has been saved and that continues 
to earn interest (from the perspective of an entity investing in a bank). While companies certainly seek to 
growth their cash holdings through investing them for interest, their daily transactions from operating 
capital are often performed in business accounts that are non-interest bearing or have a minimum balance 
requirement to waive fees. Like the reviewed previous studies, this paper takes the perspective of contrac-
tors in order to examine the case of borrowing money from a lender for funding a construction project. 

Once financing has been procured, the borrower must perform revenue generating operations whose 
income exceeds the required payback of principal plus the regularly accumulating financing fees to earn a 
profit. One type of financing fee, the most well known one, is interest on debt. Additional fees are 
charged by banks for performing various service actions, e.g. printing and mailing certain statements, etc. 
Their amounts are posted in a catalog and not treated further, as they are known and easily implemented. 

An additional type that merits closer examination, however, are fees for opening and maintaining a 
commercial credit line (up to a credit limit) and that may be incurred for not using credit that was availa-
ble. These two varieties were termed commitment fee (Garner et al. 1994). The case of a fixed one-time or 
periodic fee also is not treated further. However, if the fee depends on the varying amount of unused cre-
dit, it is subject to the same time value of money considerations as interest, but has a counteracting effect, 
i.e. borrowing more increases interest but reduces the unused credit fee and vice versa, up to the maxi-
mum of the credit limit. For clarity, it is called unused credit fee hereinafter. It was reported that “[o]ften 
.25 to .5 percent is charged on the unused portion of the credit line” (Garner et al. 1994), whereas studies 
in more recent literature assumed even higher values, e.g. 0.8% of the unused credit (Elazouni and Met-
wally 2005). Typically, the percentage of the unused credit fee is lower than the interest rate on actual 
negative balances, because the bank can likely lend the unused funds to another borrower. In effect, this 
allows the bank to earn money from the company for any scenario between no borrowing whatsoever to 
borrowing at the credit limit, while the earnings from interest will typically be the highest. 

Financing fees become part of the cash outflows (from the perspective of the borrower) directly after 
the finish of every period and in previous cash flow models were determined in two different ways; either 
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they were assessed based on one specific balance, e.g. the value at the start of finish of a period, or based 
on an averaging these values. The following sections examine these different approaches in more detail. 

2 LITERATURE REVIEW 

Numerous studies presented example calculations of cash flows for construction projects to demonstrate 
their functioning and to present improvements in analyzing and optimizing the relationship between the 
timing of activities in the schedule, their direct costs plus any indirect costs, and the rules and limitations 
imposed by the available credit line. Cui et al. (2010) developed a systems model of cash flows that con-
sidered interest on borrowing and interest earnings on savings, but calculated it based only on the balance 
at the finish of each previous period and omitted the unused credit fee. Senouci and El-Rayes (2009) ana-
lyzed the tradeoff between timing and costs of different crew configurations versus possible profit after 
financing fees. They calculated interest based on the finish balance and also omitted the unused credit fee. 
Elazouni and Metwally (2005) performed optimization with a genetic algorithm and were the only study 
that explicitly included unused credit. Directly succeeding studies, e.g. Elazouni and Metwally (2007) and 
Elazouni (2009) did not include it, nor did Liu and Wang (2008) who optimized the same example project 
with constraint programming. An example by Singh (2001) gave a flowchart of a computer implementa-
tion of cash flow calculations but even omitted interest. Halpin and Woodhead (1998) gave a small exam-
ple whose approach was later used by Senouci and El-Rayes (2009) and – shifted – by Cui et al. (2010). 

The literature review reveals that previous studies used several approximations of financing fee within 
one period as per the chronological list of Table 1, where i is the interest rate per period in percent, u is 
the unused credit rate per period in percent, l is the credit limit, b is the balance, and t - 1 and t are indices 
that mark the ends of the previous and current periods. All of the equations in Table 1 are written using 
these variables, although some only described the interest calculation in words or it had to be derived 
from calculated values. It is noted that with one exception all studies omitted the unused credit fee. Re-
lated topics were retainage, which most studies included explicitly or at least mentioned, and a potential 
correction for inflation applied to longer projects, which was omitted by most. All of the studies included 
detailed discussions of cash flows and most used specific examples to demonstrate their calculations. 

In several cases it was unclear how interest was calculated for each period, because it was provided as 
a percentage without specifying what basis it had (e.g. “percent” instead of “percent of the balance at time 
x”). While most percentages appeared to apply per each period, some potential for confusion existed if in-
terest was expressed over a different duration than the periods themselves, e.g. as an annual percentage 

rate (APR) for monthly periods. The APR or nominal rate inom is the interest rate i per period multiplied 
by the number of periods per year m, APR = inom = i · m. It omits any exponential compounding for pe-
riods that each are shorter than one year. While by law the APR must be disclosed, it cannot be used di-
rectly in calculating the actual financing costs. For example, an APR = 12% indicates that i = 1% p.p. (per 
period), which gives an effective annual rate EAR = 1.0112 = 1.1268 or 12.68%. The APR thus always un-
derstates the actual financing costs whenever the interest is actually assessed with the true periodic rate i. 

2.1 Approximations Used by Previous Studies 

The following two major approximations were identified from the literature review as commonly used: 
 
Approximation 1: Assessing interest based on the finish-of-the-period balances bt only (or bt - 1). This as-
sumes that all costs during the period are incurred immediately after its start and thus approximates their 
balance as a rectangle. Halpin and Woodhead (1998) described this as interest charged on “the amount of 
the overdraft at the end of the month”. Harris and McCaffer (2001, p. 231) explained further that “[a] 
measure of the interest payable is obtained by calculating the area between the cash-out and the cash-in 
curves”. While this approach is intuitive, it neglects the time value of money within periods and – as will 
be demonstrated in the following – overstates interest by more than doubling it for all periods of the cash 
flow that have the characteristic ‘sawtooth’ shape. Only ¼ of the ‘triangular debt’ of the linearization as-
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sumption occurs in the first half of the time period but ¾ of it occurs in the second half, for which the bor-
rowing time is always less than half of a period long. This approximation thus is expected to perform 
worst. 

 
Table 1: Approximations of Interest and Unused Credit Fee in the Literature. 

 

Study Interest Unused 
Credit Fee 

Remarks 

Cui et al. 2010 Unclear, i · bt - 1 ? (given 12% per 
year or 0.3% per week) 

No Purchase discounts; inter-
est on savings account 

Elazouni 2009 i · bt - 1 + i · 0.5 · (bt - bt - 1) No Retainage; no inflation 

Senouci and El-Rayes 2009 i · bt No Retainage; no inflation 

Liu and Wang 2008 i · bt - 1 + i · 0.5 · (bt - bt - 1) Mentioned Retainage; no inflation 

Elazouni 2007 i · bt - 1 + i · 0.5 · (bt - bt - 1) No No retainage; no inflation 

Elazouni and Metwally 
2007 

Unclear, i · bt - 1 + i · 0.5 · (bt  
- bt - 1) ? (given 0.3% per week) 

No Retainage; no inflation 

Chen et al. 2005 No No No retainage; mentions 
inflation 

Elazouni and Metwally 
2005 

i · bt - 1 + i · 0.5 · (bt - bt - 1) u · (l - bt - 1) Retainage; no inflation 

Motawa et al. 2005 Mentioned, company-level mod-
el 

No No retainage; but inflation 

Elazouni and Gab-Allah 
2004 

i · bt - 1 + i · 0.5 · (bt - bt - 1) No Retainage mentioned 

Touran et al. 2004 Mentioned as APR (no details) No Retainage; no inflation 

Akgun 2001 Mentioned as APR, like Halpin 
and Woodhead (1998) 

No Retainage; no inflation 

Barbosa and Pimentel 2001 Unclear, i · bt - 1 ? No None mentioned 

Harris and McCaffer 2001 Mentioned as APR (15 per year / 
12 months per year) 

No Mentions retainage; no 
inflation 

Khosrowshahi 2001a Mentioned, different for borrow-
ing and investing 

No Retainage; no inflation 

Khosrowshahi 2001b Mentioned, different for borrow-
ing and investing 

No Mentions retainage; no 
inflation 

Singh 2001 No No None mentioned 

Halpin and Woodhead 1998 i · bt No Retainage; no inflation 

Navon 1995 No No Retainage; no inflation 

Kirkpatrick 1994 Yes (not explained) No None mentioned 

Au and Hendrickson 1986 i · bt - 1 + i · 0.5 · (bt - bt - 1) No Mentions retainage; infla-
tion, but payments already 
start after 1 period 

McCaffer 1979 Mentioned as APR (15 per year / 
12 months per year) 

No Mentions retainage; no 
inflation 

Ashley and Teicholz 1977 i · bt No Mentions retainage; no 
inflation 

Reinschmidt and Frank 
1976 

Mentioned (no details) No None mentioned 

Fondahl 1973 Mentioned as compound interest No None mentioned 

Peterman 1973 Mentioned (no details) No Retainage; no inflation 
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Approximation 2: Assessing it based on any start-of-the-period balance bt - 1 plus the interest rate multip-
lied by one half of the difference between the finish-of-the-period and the start-of-the-period balances bt 
and bt - 1. This approach assumes that 50% of the difference between the start and finish balances is in-
curred immediately after the start of the period and no additional costs thereafter. It approximates their 
balance as a rectangle of half the height over the full period. This constitutes an average balance ap-
proach that again ignores the time value of money within periods for any linearly growing balance, as all 
previous studies clearly assumed for their cash flows. Its approximation distributes the debt as ½ in the 
first half of the period and ½ in the second half. The amount of interest alone is calculated by halving the 
interest rate used in this approximation. 
 

Yet another approximation is theoretically possible, although it was not used in any previous studies: 
 
Approximation 3: Assessing it based on the assumption that none of the costs are incurred during the first 
half of the period but 100% of the difference between the start and finish balances during the second half. 
It approximates them as a delayed rectangle of half the width, with the same area as 2. This approach 
would still be an approximation but better reflects the time value of money within periods by unbalancing 
the borrowed amount to the second half of one time period. 
 

Equations (1) through (3) express these three possible approximating approaches mathematically. 
 

( )iAFV +⋅= 1  for approximation 1. (1) 

( ) 21 iAFV +⋅=  for approximation 2, where the interest portion itself is 2iA ⋅ . (2) 

( )2

1

1 iAFV +⋅=  for approximation 3. (3) 

2.2 Need for Derivation of Exact Equation 

Identifying two different approximations for calculating interest as used in the literature, both of which do 
not reflect the compounding nature of interest for linearly growing balances and may significantly deviate 
from the true value, plus one analogously possible but hitherto unused approximation that is expected to 
give results of somewhat better accuracy show a clear need to derive the exact equation. The following 
section gives the background from financial mathematics for repeated payments and use its approach of 
taking the difference between two series that are shifted by one period as inspiration for the new equation. 

3 DERIVATION OF EXACT EQUATION 

3.1 Time Value of Money Derivation for Annuity 

Among the most common equations used in financial management are those that describe the time value 
of money, i.e. the behavior of funds that are subject to financing fees over time, which themselves often 
are compounded, i.e. that interest is draws interest itself. An individual payment of the present value PV 

that draws the periodic interest rate i thus generates the future value ( )n
iPVFV +⋅= 1  over the duration of 

n periods. Inverting this equation isolated the required PV for a desired FV of an investment decision. 
Payments are often repeated each period, e.g. monthly payments to grow a savings account or pay off 

a loan. An annuity is a finite series of such payments, whose amount is often constant. The derivation of 
its equation (e.g. Park 2008, Newnan et al. 2004) inspires deriving the new equation for exact interest and 
unused credit fee on changing balances, which was lacking in previous cash flow models and has not been 
identified in any of the literature. Writing an annuity as a series with exponential interest gives equation 
(4), whose terms are sorted from left to right by the decreasing number of periods over which the com-
pounding has occurred. The payments A are assumed to begin at the finish of the first period (a so-called 
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ordinary or annuity-immediate), not at the start, and continue to be paid over n periods. Note that their du-
rations in the exponent of each term in (4) are the number of periods n that remain until the final payment. 
 

( ) ( ) ( ) ( )
annuity

nn
FViAiAiAiA =+⋅++⋅+++⋅++⋅

−− 0121
1111 K  (4) 

 
The series of additive terms in equation (5) mathematically is a geometric series written in the inverse 

order. Assuming a second independent stream of payments A that already begins at the start of the first 
period (a so-called annuity-due, which represents the common case of e.g. investing in a savings account, 
etc.) gives equation (5), whose terms are shifted by the duration of one period from their counterparts. 
 

( ) ( ) ( ) ( ) ( )iFViAiAiAiA
annuity

nn
+⋅=+⋅++⋅+++⋅++⋅

−
11111

121
K  (5) 

 
Subtracting equation (4) from (5) cancels out all terms except for the very first and last ones in (6). 

 

( ) ( ) ( )0
111 iAiAFViFV

n

annuityannuity
+⋅−+⋅=−+⋅  (6) 

 
Extracting FV on the left side of equation (6) and dividing by the interest rate i gives the FV in (7). 

 

( )

i

i
AFV

n

annuity

11 −+
⋅=  (7) 

 
The elegance of equation (6) lies in its collapsing nature, i.e. it comprises a series of n payments, each 

with their own streams of compounding interest, which are staggered over time and ‘stacked’ additively 
to the final FV. Using an analogous approach, the PV of a limited series of annuity payments can be de-

rived to be ( )( ) iiAPV
n

annuity
+−⋅= 111 . Moreover, financial texts, e.g. Newnan et al. (2004) also provide 

the PV for series whose payment amounts grows either arithmetically or geometrically from one period to 
the next one. These extensions of equation (7) or its inverted PVannuity can also be derived by again assum-
ing series whose difference is collapsed to its short solution. For an arithmetic, i.e. linear, growth of the 
integer multiples of a payment A for an annuity-immediate, i.e. paying 0 · A, then 1 · A, then 2 · A, etc. at 

the finish of each period, the present value is ( )( ) ( )( )( )nn
iiniiAPV +⋅−⋅−+⋅= 111 2 . For a geometric, i.e. 

exponential, growth of a payment A that is multiplied by ( )g+1  where g is the growth rate per period, for 

an annuity immediate, the present value is ( ) ( )( )( ) ( )( )giigAPV
nn

−+⋅+−⋅=
−

111  (Newnan et al. 2004). 

Shortcut equations also exist e.g. to convert annuities of variable payments into annuities with constant 
payments (note that using the terms increasing or decreasing annuities can be misleading, as they may de-
note e.g. adding to an investment or e.g. drawing from retirement savings). The issue of the varying num-
ber of calendar days in each period for higher frequencies of compounding is excluded here for brevity. 

However, the problem that is analyzed in this paper asks a more detailed question over a shorter dura-
tion – that applied to all cash flow models of previous studies, but does not appear to have been asked yet 
– what is the exact interest and any other financing fees if the balance changes already within one period? 

3.2 Derivation for Interest 

Assume a linearly growing balance over one period as shown in Figure 1a. To calculate the exact interest 
on such triangular debt it is decomposed into a series of stepped borrowings as shown in Figure 1b. Each 
of these incremental borrowings generates a separate stream of interest, all of which must be added. Note 
that the previous annuity payment A is now divided into k portions within one period as per equation (8). 
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( ) ( ) ( ) ( ) ( ) 







++++++++⋅=∑ 








+⋅=

−−−

=

k

k

k

k

kk

k

j

k

j

annuity
iiii

k

A
i

k

A
FV

12101

0

11111 K  (8) 

 
where j is a variable counting index within the total number of incremental borrowings k and i is the 

interest rate. Each of the k terms draws ( )k

j

i+1  in interest over its partial duration j within one complete 

period. They are sorted by j from zero to 1−k , thus inverting the decreasing order used in equation (4). 

 
Figure 1a: Linearly Growing Debt. 

 
Figure 1b: Incremental Decomposition. 

 

Equation (9) again is a geometric series, because it is finite and each term is the ( )ki
1

1+ -fold of the 

previous one. Converting this series into an expression that is independent of j first uses an approach that 
is inspired by equation (6). It creates the second stream of equation (9) that is shifted by one incremental 
period against equation (8). Equation (10) subtracts equation (8) from equation (9). This technique of 
canceling out all interior terms is very similar to telescoping series that collapses to a single value, but 
here is deliberately introduced for taking the difference of two overlapping versions of the same series. 
 

( ) ( ) ( ) ( ) ( ) 







++++++++⋅=+⋅

−

k

k

k

k

kkk
annuity

iiii
k

A
iFV 11111

1211

K  (9) 

( ) ( ) ( )kk

k

ann
k

annuity
i

k

A
i

k

A
FViFV

011

111 +⋅−+⋅=−+⋅
+

 (10) 

 
Equation (11) extracts common factors from (10). Dividing it by the bracket on its left half gives (12). 

 

( ) ( ) 







−+⋅=








−+⋅

+

1111
11

k

k

k
annuity

i
k

A
iFV  (11) 

( )
( )

( ) 







−+⋅

−+
⋅=∑ 








+⋅=

+

−

=

11

11
1

1

1

1

0
k

k

k

k

j

k

j

annuity

ik

i
Ai

k

A
FV  (12) 

 
The geometric series, a summation of the k portions of the annuity payment A, has thus first been 

converted into a ratio whose value depends only on k and is now independent of the previous variable j. 
Second, finding its exact value so that it does not even depend on k anymore requires making the duration 
of each incremental step infinitesimally small, i.e. equivalently making their number k infinitely large, i.e. 

∞→k . Following the mathematical rule of equation (13) that the limit of a fraction of two any functions 

 

 

 

  y [time]

z [debt] 

  
 

 

 

  y [time]

z [debt] 
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( )kf1  and ( )kf 2  is the fraction of their limits, the limit operator can be applied separately to the numera-

tor and denominator of equation (12) to give equation (14) that is examined further for its limit values. 
 

( )

( )

( )[ ]

( )[ ]kf

kf

kf

kf

k

k

k
2

1

2

1

lim

lim
lim

∞→

∞→

∞→
=







 (13) 

( )
( )

( ) 















−+⋅







−+

=







∑ 








+⋅

∞→

+

∞→−

=∞→

11lim

11lim

1
1

lim
1

1

1

0
k

k

k

k

kk

j

k

j

k

ik

i

i
k

 (14) 

 
The numerator of equation (14) is determined by inserting the variable k directly into its exponent, 

which cancels out for ∞→k  in (15). The entire term is thus simplified to being the interest rate i itself. 

 

( ) ( ) iii k

k

k
=−+=





−+ ∞

+∞+

∞→
1111lim

11

 (15) 

 

The denominator of (14) is determined by replacing kh 1=  and 11 >=+ νi  temporarily. This leads to 

the somewhat surprising finding that the term approaches the natural logarithm of i+1  for ∞→k  in (16). 

 

( ) ( )( ) ( ) ( ) ( )ivv
h

i
h

ik
h

h

h

h

k

k
+==








−⋅=








−+⋅=
















−+⋅

→→∞→
1lnln1

1
lim11

1
lim11lim

00

1

 (16) 

 
Finally, equation (17) provides the final new expression for interest on a linearly growing balance. 

 

( )i
i

AFV
annuity

+
⋅=

1ln
 (17) 

 
A comprehensive literature search, including scholarly papers as well as various textbooks on ac-

counting, finance, and economics, did not identify any previous publication of this exact calculation of the 
interest, as all of them focus on discrete, period-by-period calculations, not this continuous phenomenon. 

3.3 Derivation for Unused Credit Fee 

As mentioned before, the unused credit fee has a counteracting effect to the interest. From the bank’s 
perspective it ensures earnings even if the borrower does not use the available credit line. It is also subject 
to the time value of money within periods and has a linearly shrinking balance. It applies u to the differ-
ence between credit limit l and bt - 1 (i.e. a triangle or even a trapezoid if l < bt) by deducting (17) from a 

‘block’ to give the fee as ( ) ( )( )( )( )11ln1 −+−⋅−
−

uuubl
t

. Just like interest, is it assessed and charged di-

rectly after the finish of every period and contributes to the compounding of negative balances and financ-
ing fees. 
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4 ANALYTICAL COMPARISON 

The behavior of these approximations is now examined for a unit model with a duration of only one pe-
riod over which the interest accrues. For brevity, the unused credit fee is excluded. Figure 2 shows equa-
tions (1) through (3) graphically as gray shaded areas overlaid upon the linearly growing cash outflow. 

 

Figure 2a: Approximation 1. Figure 2b: Approximation 2. Figure 2c: Approximation 3. 
Figure 3 shows the actual interest that accrues on a linearly growing balance over one period. The 

balance itself remains constant and can be assumed as an even value, e.g. $100. These approximations 
depend only on the periodic interest rate i as the independent variable with the actual interest costs as the 
dependent variable. It is normalized to a percentage of the finish-of-period balance A to allow neutral 
comparisons. The possible input i ranges from 0% to 50% to cover any interest rates that could be reason-

ably expected to occur. The diagonal of ( )iA +⋅ 1  describes a linear relationship of input and output. 
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Figure 3: Exact Interest and Approximations within Period. 

Figure 4 is based on Figure 3 but provides comparisons of the relative differences between the three 
approximations and their baseline, the new exact equation, thus showing only three curves. Examining the 
steepness and growth rates of the interest curves in Figure 3 and the deviation curves in Figure 4 shows 
that approximation 1, used recently by Senouci and El-Rayes (2009) and also by Halpin and Woodhead 
(1998), strongly overestimates interest to more than doubling the exact value. The rectangular approxima-
tion 1 of the interest based on only the finish-of-the-period balance bt should therefore not be used in any 
cash flow calculations, where balances are continuously changing and offset only by periodically stepped 
cash inflows from progress payments. An important observation is made for the average balance approx-
imation 2 (Liu and Wang 2008, Elazouni and Metwally 2005, Au and Hendrickson 1986). The curve is 
consistently slightly above the curve with the exact values. Moreover, it is also concave, thus deviating 
stronger from the exact value for larger interest rates. In other words, this approximation of financing fees 
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that construction contractors incur from using their overdraft business account is always slightly in favor 
of the bank. The larger i and/or the balance itself, the larger becomes this deviation. This effect is not due 
to any rounding error, but results from the purposeful averaging, which creates the balance of 50% of A 
that is subject to compound interest over the entire period. Figure 2b shows that adding such triangular 
area during the first half of the period and subtracting it from the second half (indicated by an arrow and a 
dashed line) significantly increases the duration over which the bulk of interest accumulates. Such ‘redi-
stribution’ of areas within the cash flow diagram to simplify interest calculations ignores the time value of 
money for its compounding. Interest thus is overstated, which is contrary to the cost minimization strate-
gy of the contractor. While the percentage of the deviation itself is small, as it is applied to a percentage, 
the dollar amount of such deviation can give an order of hundreds of dollars monthly or thousands of dol-
lars total for large multi-month projects whose cash flows and respective balances that must be financed 
can reach the order of millions of dollars monthly. Note that this consideration applies regardless of 
whether a contractor finances via a bank or uses their own capital; in the latter case the financing costs 
would be incurred as opportunity costs from not being able to invest said capital elsewhere for growth. 
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Figure 4: Relative Differences of Exact Interest and Approximations. 

The new approximation 3 as per equation (3) redistributes the area between the first and second 
halves of the period and provides a counterpoint to (2). Once again, the balance that is financed remains 
constant, but shifting all of it into the second half of the period significantly decreases the duration over 
which interest accumulates. Figures 3 and 4 confirm that it always slightly underestimates the exact value. 
The larger i and/or the balance itself, the larger becomes this deviation due to its convex shape. The expo-
nential growth of compound interest causes the underestimation to be smaller in absolute value than the 
overestimation of approximation 2. In light of the simplicity of the exact equation (17), neither of the ap-
proximation with their exacerbating positive or negative deviations is recommended for use in practice. 

5 CONCLUSIONS 

In an ever more competitive marketplace, calculating financing fees precisely and being able to perform a 
detailed analysis toward minimizing them is a competitive advantage. While the dollar amount of the in-
consistency in applying the time value of money is small in comparison to the balances that must be fi-
nanced, it should nonetheless be taken seriously. In practice, interest is typically charged on average daily 
balances in a way that is favorable to the lender and worsens with increased balances and today’s prepon-
derance of prolonged schedules and mega-projects. The current outward focus – using period approxima-
tions of interest – rather than inward, i.e. within the period of triangular debt, falls short of the proverbial 
‘valuing the cent to earn the dollar’. The new exact model can produce greater accuracy and positive fi-
nancial results. It is recommended that future research perform a comprehensive study of actual cost data 
to validate – or augment – the widely used assumption of linearized cash outflows of individual activities. 

Exact - Approx. 1 (bt · (1 + i)) 

Exact - Approx. 2 (bt · (1 + i) / 2) 

Exact - Approx. 3 
(bt · (1 + i)1/2) 
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