
Proceedings of the 2010 Winter Simulation Conference 
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. 

 
 
 
DISCRETE EVENT SIMULATION MODEL FOR ANALYSIS OF HORIZONTAL SCALING IN 

THE CLOUD COMPUTING MODEL 
 
 

Joseph Idziorek 
 

Iowa State University 
2215 Coover Hall  

Ames, IA 50011, USA 
 

 
 

ABSTRACT 

One of the distinguishing characteristics of the cloud model is the ability for the service users to horizon-
tally scale computing resources to match customer demand.  Because the cloud model is offered in a pay-
as-you-�������	�
� ��� ��� �� ������������������������ �������� ���	���	������������������������������������� 
high quality of service to the customer.  This paper describes a discrete event simulation model that is 
used to explore the relationship between the horizontal scaling profile configurations and the functionality 
of the cloud model.  Initial results show that both a state-aware load distribution algorithm and the para-
meters that dictate the elasticity of the horizontal scaling ability are essential to achieving high rates of 
utilization.  Through modeling and simulation, this paper presents both a framework and initial results to 
further explore the cloud model. 

1 INTRODUCTION 

The cloud computing model provides the user with the ability to exploit massively scalable computing 
environments which are distributed across geographically disperse data centers and are offered in a pay-
as-you-go model.  The seemingly infinite resources Cloud Service Providers (CSPs) offer supersede the 
capacity of costly in-house compute clusters or private grid architectures.  Potential users now have 
access to computing power that was once only available to exclusive groups.  The benefit of a highly 
scalable and flexible environment is that customers can implement applications within an infrastructure 
that is able to scale up resources as demand for the application increases and scale down when demand 
decreases and resources are no longer needed.  This functionality, known as horizontal scaling, alleviates 
service users (customers of the cloud service) from the burden of up-front investment in capital expenses 
such as hardware and software licenses or complex usage forecasting.   
 One of the key characteristics that keeps the concept of cloud computing ���	�����������������old 
wine in a new bottle� �������������	�������������������������self-provision resources (Voas and Zheng 
2009).  The responsiveness of the cloud model���������� to scale capacity to meet fluctuating demand is 
determined by user-specified horizontal scaling parameters.  However, the ability afforded to the user 
does not guarantee that the resulting configuration of cloud-based resources will produce the favorable 
functionality. The horizontal scaling configurations are an essential step in this process.  On one hand, a 
conservative approach will lend the cloud configuration under-utilized, costing the user unnecessary fees.  
On the other hand, an over-utilized cloud configuration will diminish the quality of service for all cus-
tomers as the backend servers become saturated with service requests, potentially resulting in rejected 
connections.  The goal of this study is to investigate the fundamental performance issues within the cloud 
computing model.  The paper focuses on the benefits of using state-aware load distribution algorithms as 
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well as the effect that horizontal scaling profile configurations have on the trade-off between utilization 
and quality of service. 
 The paper is organized as follows.  In Section 2, the background of the cloud computing model is pre-
sented.  Section 3 provides a description of the cloud model by outlining the architecture of the model as 
well as the essential components necessary for a discrete event simulation model.  Section 4 describes the 
simulation experiments and presents initial results. Finally, in Section 5, a summary is provided as well as 
direction for future work. 

2 BACKGROUND 

The information technology (IT) industry is on the cusp of a transformation that is changing the way 
people interact with computers and access Internet-based resources.  The current path that computing 
management models have been following for the past two decades is likely to diverge as the economic 
advantages of renting computing resources increase.  Furthermore, Internet user demographics show that 
there is a desire for pervasive access to an omnipresent persona in the Internet.  This shift in both econom-
ic models and user expectations has brought about the advent of the cloud computing model.  Cloud com-
puting as a whole is not a new nor a distinct technology but an aggregation of existing technologies that 
have matured to a point where massively scalable and dynamic compute environments can be offered as a 
variety of services with a pay-as-you-go pricing model.   

Cloud computing seeks to provide a massively scalable computing environment that can be abstracted 
and delivered as different levels of service (Mell and Grance 2009).  Outsourcing IT services has pro-
vided economic advantages for some organizations in comparison to traditional in-house operations. Flex-
ible business commitment duration and pay-as-you-go payment models are very attractive conditions un-
der which to manage computing resources. Users of the cloud are not burdened with the up-front costs of 
infrastructure investment and forecasting of infrastructure demands.  Furthermore, renters of cloud-based 
services also may benefit from the scalability and seemingly infinite resources made possible by the 
economies of scale achieved in a multitenant model.  

When fundamentally broken down, cloud computing is a specialized distributed computing model.  
Building upon the desirable characteristics of cluster, grid, utility, and service-oriented computing, cloud 
computing introduces a compliment of unique features to create a new computing paradigm (Foster, 
Yong, and Raicu 2008). The technologies comprising much of cloud computing have been around for 
some time now (e.g. virtualization, broadband, high-density storage, multi-core processors); however, it 
has not been until recently that these technologies have together all matured to the point where a novel 
synthesis of these foundational components could be realized.   

3 DESCRIPTION OF THE SIMULATION MODEL 

In this section, a simulation model and framework are presented for the cloud computing model.  The use 
of modeling and simulation are appropriate in this context due to the lack of open source cloud computing 
software platforms that support horizontal scaling.  Furthermore, the cost and inflexibility of performing 
research on ��!�� systems is not currently a feasible option.  It follows that a simulation model provides 
a sound alternative to further explore the interactions and performance considerations of the cloud model, 
particularly when the cloud architecture is subjected to large amounts of service requests. 
 The simulation model discussed in this paper is represented in Figure 1.  By its very nature, the public 
cloud computing model is Internet-facing, allowing clients to gain access to cloud-based resources from 
any Internet-accessible device, ���������������������������������"��#����������������	��������������$��r-
net-facing resources, the supporting infrastructure of a cloud computing model must be able to handle dy-
namic loads created by persistent user demands. 
 Individual clients or customers initiate connections with the cloud-based resources via a public IP ad-
dress assigned to the public facing portal of the load balancer.  The load balancer accepts incoming re-
quests from clients and appropriately forwards the requests to back-end Web servers (which are given 
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private IP addresses) depending on the given scheduling algorithm.  The advantage of physically and log-
ically separating the public-facing access portal of the load balancer and the back-end resources is that 
private IPs are not routable from the Internet, which provides a layer of security.  Furthermore, the inclu-
sion of a load balancer abstracts the pool of resources in the horizontal scaling group so that it appears to 
the client as though they are accessing a single server.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cloud Computing Network Model 

 The horizontal scaling group consists of a pool of homogeneous Apache Web servers.  Each of these 
servers possesses the same hardware and software configurations as well as an equal ability to process 
customer service requests.  The number of servers in the available scaling pool as well as the number of 
active servers that can accept customer requests at any given moment are determined by the configuration 
settings which are in turn specified by the user. 

3.1 Load Balancer 

The primary tasks of the load balancer are to efficiently distribute incoming requests and to perform state-
checking functionality to monitor the utilization of back-end servers.  State monitoring becomes particu-
larly useful for load-balancing algorithms such as least-connection, in which the next service request is 
routed to the server that is least utilized. Server load-balancing is an indispensible method for providing 
high-quality services to Internet-facing resources.  In addition to the load balancer, the quality of the ser-
vice, in part, depends on the overall capacity of the supporting system in respect to user demand.  Effec-
tive scheduling performed by the load balancer seeks to ensure that the support infrastructure is efficiently 
utilized. While the back-end servers provide reliability through replication, the single load balancer does 
indeed present a single point of failure.  Although this scenario is outside the scope of this paper, previous 
work has been conducted that seeks to increase the availability of load balancers through replication, ac-
tive-standby, or active-active scenarios (Friedrich, Krahmer, and Schneidenback 2006; Bourke 2001). 
 The discrete event simulation model proposed in this paper examines a first-in, first-out (FIFO) 
queuing model for a cluster of web server instances with the load balancing architecture shown in Figure 
2 (Ying-Wen and Yu-Nien 2006).  The load balancer, much like the Web servers, handles incoming re-
quests individually and thus can be modeled as a FIFO single-server queue in which customer arrival 
times are modeled as a Poisson distribution and service times are generated from an exponential distribu-
tion (Judge 1999). 
 In this paper, load distribution policies are examined in respect to the cloud model wherein the aggre-
gation of backend web servers are homogeneous and appear to the user to function as a single, high-
performance Web server.  In attempt to achieve effective load distribution across available Web servers, 
three load balancing algorithms are considered: 
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Figure 2: Load Balancer Configuration 

 
Random % Service requests are randomly assigned by the load balancer to Web servers.  Each server 
has an equal probability of receiving a request and the current state of the server is not considered. 
 
Round-Robin % Service request are effectively cycled among the available Web servers.  Only the 
previously routed decision is used to determine the next choice. 
 
Least-Connection % Service requests are directed to the server with the least amount of active connec-
tions.  State checking is performed to monitor the utilization of available Web servers. 

 
 There exist numerous scheduling algorithms with which the load balancer can distribute inbound re-
quests to back-end servers. A survey of these algorithms can be found in Shirazi, Krishna, and Ali (1995). 
Previous works have analyzed and compared load balancing techniques for scalable web servers (Bryhni, 
Klovning, and Kure 2000)"��&������
�������������������������������������������	���������������������a-
pacity by possessing the inherent ability to support additional workstations.  Although on the surface this 
work appears to have similar goals - the expansion of the capacity - as in the cloud model, it is not trig-
gered by real-time utilization parameters.  Despite the fact that Bryhni, Klovning, and Kure (2000) results 
show that the Round-Robin scheduling algorithm exhibits the best performance among homogenous serv-
ers that have the same processing capacity, these results are not applicable to the cloud computing model. 

3.2 Web Server 

The back-end Web servers in the cloud framework are modeled as separate processes and queues.  Each 
Web or HTTP server is modeled as if it has its own network interface, CPU, memory and hard disk.  In 
addition, the web server software is modeled as if it were an Apache server.  In this setup, the HTTP 
daemon process listens for client requests, relayed via the load balancer.  When a client initiates a service 
request, the listening processes spawn a new child process or awaken a dormant child process to handle 
the request.  As specified in the HTTP/1.1 protocol, each Web page forks a new HTTP process that serves 
the request and all associated content.  Although at any particular point in time multiple child processes 
may be concurrently active, the client requests are still processed initially by the HTTPD process, which 
is inherently re���������������� ��������'������� �����-in first-out (FIFO) queuing policy (Casalicchio and 
Tucci 2001; Laurie and Laurie 1997).  As a result, the web server is modeled as a single server queue and 
service times are exponentially distributed.  

3.3 Horizontal Scaling 
The horizontal scaling ability afforded to the user by the cloud infrastructure is based on the needs of the 
system and can efficiently allocate and de-allocate computing resources (Beaty, Kochut, and Shaikh 
2009).  Those who employ cloud-based services no longer have to worry about anticipating appropriate 
amounts of computing resources.  Similarly, service providers are better suited to actively monitor system 
utilization and more accurately assess capacity planning.  The ability to run a business that has seemingly 
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infinite resources without making investments in hardware and software is unprecedented in the history of 
IT (Armbrust et al. 2009). 
 In static resource allocation configurations there inevitably exists a trade-off between capacity dep-
loyment and resource demand.  On one hand, as seen in Figure 3, when the capacity of the system super-
sedes the demand, the supporting infrastructure is heavily under-utilized.  As a consequence, the customer 
unnecessarily incurs financial costs.  On the other hand, if the system capacity is not able to serve all of 
the user-generated service requests, as seen in Figure 4, the quality of service of the system diminishes as 
customers experience delays or unavailable resources.  

 
 
 
 
 
 
 
 
 
 
 

  Figure 3: Capacity Over-Provisioning                 Figure 4: Capacity Under-Provisioning  

 If it is possible to predict peak-capacity, then the system can be designed to accommodate for peak-
load as seen in Figure 5.   Regardless of which one of the three previously described methods is em-
ployed, the system will inevitably experience either underutilized resources, resulting in less than desira-
ble return on investment, or overutilization, in which the quality of service experienced by the customer 
diminishes.  In reality, although flash-crowds present a formidable challenge, the more common of the 
two setbacks is under-utilization.  It has been estimated that server utilization in data centers range from 
5% to 20% (Armbrust et al. 2009).   
 Represented in the simulation model and the resulting framework presented in this paper are horizon-
tal scaling functionalities that allow the cloud-based resources to respond dynamically to service requests 
by scaling capacity either up or down according to user-defined conditions, as illustrated in Figure 6.  
This type of capacity scaling is particularly useful to web applications that are subjected to a utility pric-
ing model that experiences hourly, daily, weekly, or seasonal variability in usage.  In addition, the advan-
tage of the cloud model in this situation is that resource provisioning allows additional servers to be made 
available in a matter of minutes, rather than days or weeks. 

 
 
 
 
 
 
 
 
 
 

 

     Figure 5: Peak-Load Capacity Provisioning              Figure 6: Capacity On-Demand Provisioning  
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3.4 Horizontal Parameters 

The horizontal scaling profile is composed of parameters that define the cloud model metrics and thre-
sholds that dictate that responsiveness of the system - namely, whether or not to increase or decrease re-
sources in response to customer demand.  Horizontal scaling profiles, defined by the customer, are the es-
sential components of the cloud model.  The descriptions of the horizontal scaling parameters as 
described by Ama�����+���������	�����������are as follows (Amazon 2010): 

Table 1: Horizontal Scaling Parameters 

Horizontal Scaling Parameters Definition
Period Frequency of time in which measurements are taken for the 

trigger metric. 
Trigger A metric that is monitored during a period (i.e. CPU utilization, 

network activity, or disk utilization).
Breach Duration The amount of time (in seconds) used to evaluate and determine 

if a breach has occurred. 
Horizontal Scaling Group The number of available servers to be allocated or de-allocated. 

UpperThreshold The upper limit for the trigger. 
UpperBreachScaleIncrement The incremental amount of resources applied when the Up-

perThreshold has been breached.
LowerThreshold The lower limit for the trigger.

LowerBreachScaleIncrement The incremental amount of resources de-allocated when the 
LowerThreshold has been breached. 

 
 In this simulation model, for example, horizontal scaling is enabled when the defined trigger (e.g. 
CPU utilization) exceeds 70% capacity or falls below 30% capacity utilization.  When the Breach Dura-
tion of the Trigger surpasses the UpperThreshold the UpperBreachScaleIncrement is reflected upon the 
system (e.g. increase available servers by one).  Likewise, when the Breach Duration of the trigger dips 
below the LowerThreshold or the LowerBreachScaleIncrement, resources are subtracted from the horizon-
tal scaling group. 

The trigger metric used in the simulation model is the overall percent utilization of the system calcu-
lated as the aggregation of the load experienced across all the active servers in the horizontal scaling 
group divided by the maximum load for each Web server.  The trigger metric is calculated as follows: 
 

Ut �
loadi, j /ni�1

n�j�1

m�
max load

 

4 SIMULATION EXPERIMENT AND RESULTS 

4.1 Metrics 

The performance of the load balancing algorithms and horizontal scaling profile configurations of the 
cloud model are analyzed by means of the Load Balance Metric (LBM) proposed in (Bunt, Eager, and 
Oster 1999).  The measure of load balancing between nodes is calculated by means of the peak-to-mean 
ratio of Web server load based on the current state of Web server at periodic times throughout the simula-
tion.  The LBM is then calculated by taking the weighted average of the peak-to-mean ratios experienced 
across the Web servers.  The load of the Web server is defined as the number of requests being simulta-
neously processed or in queue among the active Web servers. 
 The load of Web server i (of n servers) at the jth observation (of the observation period m) is 
represented as loadi,j and peak_loadj is a measure of the highest load experienced by any of the active 
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servers at the jth sampling point; where qi is the weighted average of each Web server.  The LBM is de-
fined as follows: 

 
 
 

 
 
 The value of the LBM can range from one to the number of n Web servers.  The smaller values of the 
LBM indicate better load balance performance, with an LBM of one being an ideally-balanced load.  The 
weighted average of each Web Server is necessary when evaluating the performance of the cloud compu-
ting model due to the imbalance of time each server experiences throughout the simulation.   
 When the threshold of capacity of the available Web servers in the cloud computing model is ex-
ceeded, the resulting action is packet loss.  The amount of packet loss experienced by the system is calcu-
lated as the ratio between rejected and received packets for all servers.  Where fj is the number of packets 
rejected by serverj and rj is the number of packets served by server j.  The Rejection Ratio (RRatio) is de-
fined as follows: 

 
 
 In the following section, the behavior of the cloud computing model will be analyzed in respect to the 
described load balancing algorithms and also the horizontal scaling configurations defined by the cloud 
computing model in respect to the LBM and Rejection Ration metrics. 

4.2 Preliminary Results 

Initial simulation experiments were performed to evaluate the impact of the load balancing algorithms on 
the LBM for a standard configuration policy (Table 2).  Analysis was performed on the simulation model 
as the UpperThreshold varied between 0.6 and 0.9 percent tolerance while the LowerThreshold remained 
fixed at 0.2 percent tolerance. 

Table 2: Profile 1 

Horizontal Scaling  
Parameters 

Value 

Period 10 Seconds 
Trigger % Utilization 

Break Duration 200 Seconds 
Horizontal Scaling Group 10 

UpperBreachScaleIncrement +1 
UpperThreshold 0.6 % 0.9 

LowerBreachScaleIncrement -1 
LowerThreshold 20 % 

 
Figure 7 represents a graph of the resulting LBM for the described simulation.  The Least-Connection 

distribution algorithm outperforms both the Round Robin and Random algorithms, achieving a LBM 
close to one.  As the cloud model reacts to service requests, the load balancer is most effective when a 
state-aware algorithm is deployed.  Because state-aware algorithms can serve as the bottleneck of the sys-
tem, more sophisticated algorithms were not considered.  Instead, both Round Robin and Random algo-
rithms were chosen.  However, the results of the study indicate that these two algorithms simply do not 
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effectively distribute the service requests, and as a result, both of these algorithms in the cloud model ex-
periences a non-zero rejection rate when subjected to constant service requests. 

Figure 7: LBM Experimental Results

Analyzing the previously described simulation experiment further shows that the selection of the load 
balancing algorithm also has a significant effect on both the overall utilization of the servers (Figure 8) as 
well as the rejection ratio (Figure 9), which in turn directly affects the quality of service by the customers.  
In respect to overall utilization of the servers available in the horizontal scaling group for Profile 1 (Table 
2), the least-connection distribution algorithm outperforms both the Round Robin and Random algo-
rithms.  This is no surprise considering that the results were obtained from the analysis of the LBM.  Si-
milarly, the rejection ratio experienced by the Least-Connection algorithm was zero while the other two 
algorithms under consideration performed poorly in comparison.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure 8: Utilization Comparison       Figure 9: Rejection Ratio Comparison 
 

The second set of initial simulations was performed to better understand the effect that the number of 
available resources in the horizontal scaling group had on both the utilization and rejection ratio as the 
upper threshold varied between 0.6 and 0.9 percent.  From the previously described results, the Least-
Connection algorithm was chosen for the following analysis.  Both Profile 2 (Table 3) and Profile 3 (Ta-
ble 4) have the same respective configurations while only deviating only in the size of the horizontal scal-
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ing group, five and six servers, respectively.  As seen in Figure 10, overall utilization significantly de-
creases as the number of available servers in the horizontal scaling group increases.  Similarly, the rejec-
tion ratio of service requests increases; which is to be expected as the utilization approaches 98%.  There 
is a clear threshold that is surpassed when the horizontal scaling group is increased by a single server.  In 
the case of Profile 2 (Table 3), the service user experiences higher utilization at the cost of a higher rejec-
tion ratio, while in Profile 3 (Table 4) the service user is subjected to marginal utilization with a nearly ze-
ro rejection ratio. 
 In this same experiment, it was also shown that percent utilization of the overall system increases as 
the UpperThreshold increases.  Although this particular result should come as no surprise, the resulting 
side effect of connection rejections increases with the increased utilization as servers experience a work-
load closer to their overall peak capacity. 
 
        Table 3: Profile 2                         Table 4: Profile 3 
 

Horizontal Scaling  
Parameters 

Value 

Period 10 Seconds 
Trigger % Utilization 

Break Duration 200 Seconds 
Horizontal Scaling Group 5 

UpperBreachScaleIncrement +1 
UpperThreshold  Figure 10 

LowerBreachScaleIncrement -1 
LowerThreshold 20 % 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 10: Utilization Comparison           Figure 11: Reject Ratio Comparison 

 
Overall, the Least-Connection algorithm in this given context outperforms both the Round-Robin and 

Random distribution algorithms.  From the initial results presented in this paper, it can be seen that the 
horizontal scaling parameters have a significant impact on the inevitable trade-offs that occur between the 
overall utilization of the system and quality of service in the cloud model. 

Horizontal Scaling  
Parameters 

Value 

Period 10 Seconds 
Trigger % Utilization 

Break Duration 200 Seconds 
Horizontal Scaling Group 5 

UpperBreachScaleIncrement +1 
UpperThreshold  Figure 10 

LowerBreachScaleIncrement -1 
LowerThreshold 20 % 
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5 DISCUSSION AND FUTURE WORK 

The limitations of this work are in the granularity and protocol complexity of the model.  Because of 
these constraints and to provide more robust and application-specific analysis, future work will be con-
ducted in the NS-2 network simulator.  Further experimentation will also be performed on existing physi-
�����	���	�����������������������	������	�������������#	������+�=
���������������������	����a-
tion for this paper.  Although there has been significant work in areas closely related to the cloud model, 
�����������������������������>�������������������������������������������>���������������	���ling the 
utilization and resource allocation in the pubic cloud computing model.   

There exist a number of research questions to be answered with the cloud model and future work in 
this area will be significant.  Areas of interest for future evaluation include price-based scaling parameters 
that allow the consumer to not only control their cloud resources based on consumption metrics but also 
on financial parameters.  One of the largest motivations for adopting the cloud model is cost savings and 
��������������!������	�������������������������������������������������a forecasted budget.   

While the utility pricing model presents a flexible payment option, it also is vulnerable to malicious 
resource use that is intended to run up the operating expenses for public cloud service customers.  Re-
search that focuses on Denial of Service attacks that seek to not only to disrupt cloud services but also to 
abuse the utility model on which cloud service are based will be necessary to ensure the long-term eco-
nomic viability of the public cloud computing services. 

6 CONCLUSION 

The cloud computing model represents a significant shift in the computing paradigm.  The discrete event 
simulation model described in this paper presents a framework with which to analyze the many facets of 
the cloud computing model. As evidenced in the experimental results presented in this paper, a state-
aware load balancing algorithm is preferable to achieve this goal.  The inevitable trade-off presents an in-
teresting research area in which higher granularity of profile configuration settings can be explored to 
achieve higher efficiency and fewer rejections. Furthermore, to increase utilization, there exists a trade-off 
between overall utilization and the rejection ratio.  This paper provides preliminary results to better un-
derstanding the cloud computing model and a framework within which further research can be conducted.  
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