
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

HIGHWAY MOBILITY AND VEHICULAR AD-HOC NETWORKS IN NS-3

Hadi Arbabi
Michele C. Weigle

Old Dominion University

Department of Computer Science
Norfolk, VA 23529, USA

ABSTRACT

The study of vehicular ad-hoc networks (VANETs) requires efficient and accurate simulation tools. As
the mobility of vehicles and driver behavior can be affected by network messages, these tools must in-
clude a vehicle mobility model integrated with a quality network simulator. We present the first imple-
mentation of a well-known vehicle mobility model to ns-3, the next generation of the popular ns-2 net-
working simulator. Vehicle mobility and network communication are integrated through events. User-
created event handlers can send network messages or alter vehicle mobility each time a network message
is received and each time vehicle mobility is updated by the model. To aid in creating simulations, we
have implemented a straight highway model that manages vehicle mobility, while allowing for various
user customizations. We show that the results of our implementation of the mobility model matches that
���������	�
���
������
�	������	��
����
��
���������������implementation in ns-3.

1 INTRODUCTION
Vehicular ad-hoc networks (VANETs) are networks in which each node is a vehicle. Such systems aim to
provide communications between individual vehicles and between vehicles and nearby fixed equipment,
or roadside units. The goal of VANETs, and more broadly vehicular networks, is to improve traffic safety
by providing timely information to drivers and concerned authorities. The development of VANETs has
received much attention from the automotive industry and government agencies, including the US De-
partment of Transportation (DOT) which has launched the IntelliDrive initiative (US-DOT 2010). The US
DOT reports that in 2008, 37,000 people died in traffic accidents in the US. The agency sees the promise
of IntelliDrive, and VANETs in general, to be able to significantly reduce that number.

In order to provide applications that can fulfill this vision, approaches must be thoroughly evaluated.
There are a limited number of testbeds with instrumented vehicles and roadside units. As this is prohibi-
tively expensive for most academic researchers, the majority of evaluation studies have been performed
via simulation. VANET simulations have typically been segregated into traffic simulations and network
simulations. Traffic simulators, such as CORSIM (Halati, Lieu, and Walker 1997), SUMO (Krajzewicz,
Bonert, and Wagner 2006), VISSIM (PTV America 2010), and VanetMobiSim (Fiore et al. 2006) have
been used to generate realistic mobility traces of vehicle traffic. These traces would then be fed into well-
known network simulators such as ns-2 (Breslau et al. 2000), QualNet (Scalable Network Technologies
2010), OPNET (2010), or GloMoSim (Zeng, Bagrodia, and Gerla 1998) to measure network performance.
VANET tools such as TraNS (Piorkowski et al. 2008) and MOVE (Karnadi, Mo, and Lan 2007) have
been used to facilitate this interaction between traffic and network simulators. More recently, researchers
have developed integrated simulators such as ASH (Ibrahim and Weigle 2008) and Gorgorin et al. (2006)
that allow feedback between the applications using the network and the traffic model. This is important

2991978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Arbabi and Weigle

because the goal of most VANET applications is to provide drivers with information that may change
their driving behavior or allow them to make more informed decisions (e.g., start braking now, or take the
next exit to avoid a traffic jam). Interested readers can find detailed comparisons of various VANET si-
mulators in Hassan (2009) and Yan, Ibrahim, and Weigle (2009).

The problem with integrated simulators is that often either the mobility model is overly simplified or
the network model is overly simplified. In order to study important networking properties of VANETs, a
high quality network simulator is essential. We have chosen to balance these two concerns by taking the
latest version of the highly-regarded network simulator, ns-3 (Henderson et al. 2006), and adding a well-
known traffic mobility model in order to provide an integrated simulator for VANET research. ns-3 is a
discrete-event network simulator written in C++, targeted primarily for research and educational use, and
intended as a replacement for the popular ns-2 simulator. ns-3 promises to be a more efficient and more
accurate simulator than its predecessor (especially for wireless protocols). In addition, during the first
quarter of 2010, ns-3 averaged almost 7000 downloads per month (NSNAM 2010). For this reason, we
were interested in using ns-3 to perform our VANET simulations. ns-3 provides various mobility models,
but none are appropriate to simulate the mobility of vehicles. The mobility of a node in the mobility mod-
els included in ns-3 depends only on the node itself. In realistic vehicular mobility, the mobility of the
node must depend on the surrounding nodes and the conditions on the road. Furthermore, this node de-
pendency becomes essential when messages in the network can affect the mobility of the nodes on the
roads. For example, the receipt of a safety message may result in a speed reduction. Fiore and Harri
(2008) and Fiore (2009) investigated the effects of node mobility on network characteristics. They found
that realistic mobility, especially at intersections, has a great impact on networking connectivity metrics
and that car-following models, such as the Intelligent Driver Model (IDM) (Treiber, Hennecke, and Helb-
ing 2000), provide realistic movement. In addition, they found that multi-lane scenarios are important
when considering network-level clustering.

We have implemented IDM and the MOBIL lane change model (Treiber and Helbing 2002) in ns-3.
In addition, we have provided a Highway class to represent a straight multi-lane, bi-directional roadway.
In our simulations, the Highway object ��������brain� of the system and efficiently manages the behavior
of vehicles and their mobility on the road. Each vehicle is a fully-fledged wireless node in ns-3. In this
way, vehicles can move with realistic mobility and communicate with each other to form a VANET. In
our network and mobility combined design, a user can simulate VANETs in highways with customized
road-side and on-board units. Users can create user-defined actions and event handlers to customize simu-
lation scenarios, allowing them to study vehicular traffic, network traffic, or both.

We explain the main components of our design in Section 2 and highlight possible user customiza-
tions, such as adding helicopters or embedded highway sensors, in Section 3. In Section 4, we discuss va-
lidation of our IDM/MOBIL implementation in ns-3, and in Section 5 we discuss an example of our addi-
tions to ns-3. We conclude in Section 6 with a summary and discussion of future work.

2 ARCHITECTURE
Here we describe the components of our design, which consists of five main classes (Figure 1):

1. Vehicle - a mobile node that contains a wireless communications device
2. Obstacle - a Vehicle that has no mobility
3. Model - the IDM car-following mobility model
4. LaneChange � the MOBIL lane change model
5. Highway - holds Vehicle and Obstacle objects and uses a Vehicle���Model and LaneChange prop-

erties to control its mobility

 Highway uses the first four classes to generate the traffic in a highway. Since vehicular mobility mod-
els, and especially car-following models like the one we implement, need to know the position and mobil-
ity of other vehicles, the Highway object must be used to control the mobility of all vehicles. Users can

2992

Arbabi and Weigle

customize Highway (including highway length, uni- or bi-directional traffic flow, number of lanes, lane
width, and center median width) to create a variety of simulation scenarios.

Figure 1: Class diagram of the main components in our design.

In the following sections, we will describe each of the classes in order. The source code, including an
example and documentation, is available online (ODU 2010).

2.1 Vehicle

A Vehicle is a mobile node that contains a wireless communications device. A Vehicle has the following
properties:

� vehicleID
� width � width of the vehicle in meters
� length � length of the vehicle in meters
� lane � lane number on the highway where the vehicle is located
� direction � {-1, 1} (Assume eastbound is 1 and westbound is -1).
� position � a vector (x, y, z), where x is the rear position of the vehicle, y is the center of the ve-

hicle, and z is the altitude of the vehicle above the highway (all units in meters)
� velocity � in m/s
� acceleration � in m/s2
� model � mobility model settings, desired velocity is associated with the mobility model
� lanechange � lane change model settings

In our design, the Highway object is in charge of managing the positions, directions, and the lane

numbers of its vehicles. A Vehicle���acceleration and velocity can be set manually or can be calculated
based on the IDM mobility model rules. A Vehicle is able to change lanes, if necessary and if possible,
based on the MOBIL lane change model. Vehicle objects can either be manually created and inserted onto
the Highway or can be automatically injected onto the Highway.

Since a Vehicle contains a wireless communications device, we can control the vehicle's WiFi capa-
bilities. Vehicles are able to communicate (send/receive) through the standard ns-3 WiFi channels. The
messages, including sent and received packets, and all related events can be captured by setting the ap-
propriate event handlers to the implemented callbacks, which are designed and considered for these pur-
poses. A Vehicle can unicast packets or it can send broadcast messages. The user has full control on how
to schedule the sending process and how to handle the receive callback. There are also several callbacks
for the purpose of tracing the different layers of the network and the mobility of the vehicle. These help
the user create and trace simulation scenarios easily.

2993

Arbabi and Weigle

2.2 Obstacle

An Obstacle is a static node that contains a wireless communications device. It is inherited from the Ve-
hicle class and has all of the capabilities of a Vehicle except that it cannot be mobile (i.e., velocity =
acceleration = model = lanechange = 0). An obstacle can be used as an barrier to close a lane
or to temporarily create stoppages that result in congestion on the highway. An obstacle can also be used
as a roadside unit or other piece of infrastructure along, but outside of, the highway. If an Obstacle is
placed on the highway, it must have a direction and lane number. Anything that can be done to a Vehicle
object can be done to an Obstacle object (aside from affecting mobility), so in the rest of this paper we
will just use the term Vehicle.

2.3 Mobility Model

Model is the class that implements the mobility model for a Vehicle. We have implemented the Intelligent
Driver Model (IDM) in ns-3 based on equations and parameters developed by Treiber (Treiber, Hen-
necke, and Helbing 2000; Treiber 2006a). IDM is a car-following model, meaning that each ve���
����
c-
celeration or deceleration depends upon its own velocity, its desired velocity, and the position and veloci-
ty of the vehicle immediately in front in the same lane, which Treiber calls the front vehicle.

Each vehicle in IDM has a desired velocity, safety time headway (time needed to cover a gap between
���������
����������������������	���
�����
���
��
������������-flow traffic, comfortable braking deceleration,
and desired minimum distance to the front vehicle. IDM uses these parameters and the current state of the
vehicle and front vehicle to compute the new acceleration. Acceleration is, in turn, used to update the ve-
locity and position of the vehicle. Note that acceleration necessarily decreases towards 0 when the veloci-
ty of the vehicle approaches the desired velocity.

The function CalculateAcceleration in the Model class uses the IDM equations to calculate and return
the new acceleration at each time step. ���������
����������
����!�
�	����������
��������
	"����	�#
��	����
this new acceleration.

For customizability, each vehicle can have its own set of IDM parameters. Treiber suggests different
parameter settings for cars and trucks. For example, trucks have a lower desired velocity, acceleration in
free-flow, and comfortable deceleration than cars. �$
����
��	����������
	��
���
�������
���!��������
d-
�
!��
�	������!��	����������
	��
���
�
����
���!��������
	�
!���������	�����	���
����!��
���
eration in
free-flow, and comfortable deceleration.

In our design, we also allow each Vehicle object to have its own IDM parameters. We have included
reasonable default values for cars (the Sedan class) and trucks (the Truck class). The user can create their
own vehicle types with different parameter values for specific experiments. For example, a user may want
to create a mix of careful and pushy drivers, or include sports cars, police cars, emergency vehicles, and
buses, all of which would have very different mobility characteristics.

2.4 Lane Change Model
LaneChange is the class that implements the lane changing model for a Vehicle. We have implemented
the MOBIL lane change model based on equations and parameters developed by Treiber (Treiber 2006b,
Treiber and Helbing 2002). Each lane change in this model must satisfy both the safety criterion and the
incentive criterion. The safety criterion states that the lane change must not cause the vehicle that is being
changed in front of (the back vehicle) to decelerate unsafely (faster than a certain threshold). The incen-
tive criterion is satisfied if the lane-��
�����������
����
	�
��
���������
������
�����������������
����	��
d-
vantages. Note that although the incentive criterion is usually much easier to satisfy than the safety crite-
rion, both must hold for the lane change to occur. In addition, the IDM rules still apply, meaning that the
new front vehicle must be a certain distance ahead in order for the lane change to occur.

To compute the incentive criterion, MOBIL first calculates the lane-��
������ �����
����
	�
��
���
������������
!�����	����������#����������������
������������
���
��
�����
�	����������
��������
���
��
�����
after the lane change. The goal is to increase the acceleration, or to reduce the braking deceleration, which

2994

Arbabi and Weigle

are essentially the same things. The disadvantage to both the back vehicle in the current lane and the back
vehicle in the new lane are considered. Again, this is done by comparing the acceleration before the lane
change with the acceleration after lane change.

To allow for some variability in how aggressive drivers are in deciding when to change lanes,
%&*<=��������� ���������������
����	��
	�
��
��������
���
���������
����, p. When p > 1, the driver is
�����	��
���
�	��������������	��
	�
��
�����?�

�������
��
	��������������
	�
��
��� In reality, most driv-
ers are in the 0 < p � J�X��
���	��������	��
	�
��
��� If p=0, the
driver is inconsiderate, discounting the disadvantage to others.

MOBIL also includes a right-lane bias parameter when computing the incentive criterion. This para-
meter allows for modeling situations in countries where passing a vehicle on the right is not allowed. The
parameter can also be used to allow vehicles to pass from either side or prevent trucks from travelling in
the leftmost lanes.

The function CheckLaneChange in our LaneChange class returns a boolean to indicate if the lane-
change can take place or not. CheckLaneChange uses the MOBIL equations and suggested parameters
along with the statuses of the lane-changing vehicle, the current front vehicle, the new front vehicle, and
the new back vehicle. As with our IDM implementation, we have included reasonable default values for
each of these parameters. We provide a Considerate driver class and an Inconsiderate driver class. The
user can, of course, create their own driver types with different parameters.

2.5 Highway
Highway is the class that holds Vehicles and manages their mobility. We will discuss �������	
 physical
properties, Vehicle management tasks, and how users can control vehicles on the highway in order to cus-
tomize simulations.

2.5.1 Physical Properties

Highway represents a straight highway topology and has the following physical properties:
� length � length of the highway in meters (up to 10,000 m)
� number of lanes � in each direction [1,5]
� lane width � in meters
� median gap � width of the median, in meters
� bidirectional � true if the highway contains two-way traffic, false if the highway is one-way

Figure 2 shows two example highway configurations. Figure 2a is a unidirectional highway with three
lanes, and Figure 2b is a bidirectional highway with four lanes in each direction.

Figure 2: A small segment of a highway. Cars are represented by small blue rectangles, and trucks are
represented by larger red rectangles. (a) unidirectional highway with three lanes, (b) bidirectional high-
way with four lanes in each direction and a separating median.

2995

Arbabi and Weigle

2.5.2 Vehicle Management

There are several Vehicle management functions that Highway performs. Highway can automatically
create Vehicle objects with certain parameters, automatically insert these created objects into lanes, and
move each Vehicle according to its mobility and lane change models.

2.5.2.1 Automatic Creation and Injection of Vehicles

When the AutoInjection parameter of Highway is true, Vehicle objects will be automatically created and
injected onto the highway. For this purpose, Highway creates default mobility models with parameters set
appropriately for the standard car and truck, named SedanModel and TruckModel, respectively. Highway
also creates default lane change models with appropriate parameters set for cars and trucks. The ratio of
cars to trucks that are created is controlled by the injectionMix parameter. Automatically-created Vehicle
objects are provided with default WiFi Phy/Mac settings appropriate for VANETs.

Highway stores each lane as a list structure. When a Vehicle object is added to Highway, it is inserted
in its proper place according to its lane, direction, and x position. For auto-injection, there is a minGap pa-
rameter that specifies the minimum distance between two vehicles entering the highway. Newly created
Vehicle objects are not inserted until the x position of the last Vehicle in the lane is at least minGap meters
from the start of the highway. Vehicles are inserted with a negative x position, so that the front of the ve-
hicle starts at the start of the highway (x = 0). Each lane is checked to see if a Vehicle can be added, in
round-robin fashion, starting with the rightmost lane (lane = 0) in the eastbound direction (direction
= 1) and ending with the leftmost lane in the westbound direction (direction = -1, if using bidirec-
tional traffic). Thus, on a bidirectional highway, vehicles are added to both directions at the same rate.

2.5.2.2 Mobility of Vehicles

Every DeltaT seconds, Highway calls its step function which updates the position, velocity, and accelera-
tion of each Vehicle according to its mobility model. In this way, vehicles with different mobility charac-
teristics (e.g., trucks, emergency vehicles) can be represented on the same highway. Vehicles are updated
by lane in round-robin fashion, starting with the Vehicles in the rightmost lane in the eastbound direction.
After the update, if a Vehicle��� x position is greater than the length of the Highway, the Vehicle is re-
moved from the lane list. After all Vehicle positions have been updated, automatic injection of new Ve-
hicles occurs.

The opportunity for each vehicle to change lanes is evaluated every 10 * DeltaT seconds to prevent
unrealistic lane-changing patterns (e.g., vehicles changing lanes multiple times in less than 1 second). If a
vehicle can safely change lanes (according to the Vehicle's MOBIL parameters), Highway removes the
Vehicle from the current lane and adds it to the target lane at the x position specified according to
IDM/MOBIL. When a lane change is allowed, it occurs before mobility is updated, so a Vehicle changing
lanes only has its mobility updated one time in DeltaT seconds.

The best case driver reaction time is 0.7 seconds (Green 2000). Vehicle positions should be updated
more often than the driver reaction time, and we choose 0.1 seconds for the default value of DeltaT as a
tradeoff between efficiency and accuracy. Reducing DeltaT (i.e., having the step function called more of-
ten) will produce a more detailed translation of the position of the vehicle, but will result in a slower si-
mulation (Figure 3). Increasing DeltaT (i.e., having the step function called less often) will cause less ac-
curacy in mobility since each step may result in a larger displacement of the vehicles (Figure 4).

2.5.3 User Control of Vehicles

���

����������	#
�_�#�����������������_�
�	�������#�
��!���	�
�������������#��
��
!����������������
application code to interact with individual Vehicle objects. Highway allows the user to access any Ve-

2996

Arbabi and Weigle

hicle object through its VehicleID using FindVehicle(). The user can then use this object to change any of
the Vehicle����
�
������� In addition, Highway provides FindVehiclesInRange() which returns a list of all
Vehicle objects within range meters of the given Vehicle. FindVehiclesInSegment() returns a list of all
Vehicle objects in a particular lane between positions x1 and x2. To access these Vehicle objects at particu-
lar times, Highway triggers several events that can be bound to an event handler created by the user. The
events InitVehicle, ControlVehicle, and ReceiveData are discussed below. In addition, there are several
other events, such as DevRxTrace and PhyRxErrorTrace, for the purposes of tracing the communication
channel, the PHY/MAC layer, and the behavior of the network devices installed on vehicles.

Figure 3: The elapsed real time for 1 minute of dense traffic simulation (average 180 vehicle/km).

Figure 4: A vehicle's displacement vs. velocity in a single simulation step with different DeltaT values.

InitVehicle is triggered at Highway initialization time. This gives the user the ability to create custo-
mized scenarios or modify the initial settings. Although the user can create and position Vehicle objects at
any time, inside this event handler is the ideal place to create and place initial objects on the highway. If
AutoInjection is set to true in Highway, automatically-created Vehicles will move around the previously
placed Vehicles. The event handler is passed a pointer to the Highway and a reference to a vehicleID (set
to 1 initially). Any manually-created Vehicles should use and increment this vehicleID so that all objects
will have unique IDs. Note that any manually-created Vehicles will be controlled by Highway according
to the ����
��	
 mobility model. The event handler should return true if Vehicles have been manually
added to the Highway or default settings have been modified. In this case, Highway will sort the lane lists
based on the Vehicle positions. If no Vehicles have been added, there is no reason to sort the lists, so the
event handler should return false.

For each Vehicle, ControlVehicle is triggered by the step function, which is executed every DeltaT
seconds. In this way, the user has full control of each Vehicle at each time step. For example, a particular

2997

Arbabi and Weigle

Vehicle could be made to decelerate or stop in order to create traffic congestion. In addition, this event
handler is an ideal place to output the locations of all Vehicles in order to produce traffic visualizations.
The event handler is passed a pointer to the Highway, a pointer to the particular Vehicle, and the value of
DeltaT. If the event handler has changed the Vehicle��������������������
	��������true, so that the Vehicle���
acceleration will not be updated by the mobility model. Otherwise, the event handler should return false
so that Highway will adjust the ����
��	
 position according to its mobility model.

ReceiveData is triggered when any Vehicle successfully receives data from the network. The event
handler is passed a pointer to the Vehicle that received the data, a pointer to the data packet, and the ad-
	�������������
�_��������	���

3 CUSTOMIZATIONS
We provide a basic framework for a straight highway scenario and tools for generating communicating
vehicles traveling with a realistic mobility. There are many possible customizations that can be made us-
ing this framework. We describe a few customizations that can be made with Vehicle objects.

Any Vehicle can be associated with a parameterized mobility or lane-change model. This allows the
user to create simulations that contain various types of vehicles. For example, a police car is a vehicle that
during a chase has a higher desired speed and acceleration than a normal vehicle. In addition, the user
could set the networking parameters such that the police car also has a more powerful transceiver than a
normal vehicle. In another instance, a helicopter used to transmit advertisements, warnings, or reports
could be simulated as a Vehicle with a positive z value (altitude). Since the helicopter does not travel on
the highway, it should not be added to or managed by Highway. Instead, at every time step (i.e., in the
ControlVehicle �������
�	
�����������
����������position should be updated manually.

Stationary roadside units, such as digital guides, placed outside the highway can be created using Ob-
stacles. As with Vehicles that are outside the highway, these devices should not be added to Highway. As
another example, a gantry on top of a highway could be represented as an Obstacle with a positive z val-
ue. Sensors under the road could be Obstacles with negative z values. These devices may have different
communications requirements than standard vehicles, so the user is free to adjust the network parameters
as well.

4 VALIDATION

In this section, we validate our implementation of IDM/MOBIL in ns-3
�
���������#�����own implemen-
tation of IDM/MOBIL in a Java applet (Treiber 2010). The first step is to validate that the functions Mod-
el::CalculateAcceleration() and LaneChange::CheckLaneChange() produce output correctly in compari-
son with Treiber's formula, model, and code individually with various input and mobility model settings.
The second step is to produce simple traffic in a one lane roadway and compare the vehicle's acceleration,
deceleration, velocity, and position at each simulation interval. Finally, we need to show that despite the
difference in our design and the logic of step function, we are able to create traffic similar to that created
#!�����#�����
��
����

The first two steps have been performed during code implementation and testing. We omit these for
brevity. Here we show the results of the third step of validation. We use Treiber's Java applet to produce
traffic on a straight two lane roadway for several traffic inflow rates. We record traffic statistics (simula-
tion time, vehicle type, acceleration, velocity, position, and lane) at two points. Point A is the roadway en-
trance, and point B is 500 m from the entrance. We apply the generated traffic recorded at point A in Trei-
#�����
��
��� ��� our ns-3 simulation and record the traffic statistics at point B. This is to mitigate the
	��������� ��"������� ��	�
�����	�#!�����#�����
��
���
�	� ���� ��	���|�� compare the traffic at point B in
����#�����
��
��������������
�����
��������B in our ns-3 code during a 5 minute simulation. Figure 5 shows
the average traffic density over the 500 m as the traffic inflow rate increases and with different desired
speeds. The results between the two applications are almost identical. Figure 6 shows the average differ-
ences in position and speed between the two applications for each vehicle as it passes point B. Again,

2998

Arbabi and Weigle

there is very little difference between the two. The position differences are less than 7 mm, and the speed
differences are less than 1 cm/s.

Figure 5: Comparison between average density results of our code in ns-3 and Java applet for different
traffic inflow and different desired velocity.

Figure 6: Average difference in position (m) and average speed (m/s) between ns-3 version and Treiber
Java applet for different traffic densities.

5 EXAMPLE
We have provided an example to show how to create a customized highway, set parameters, handle
events, and control which vehicles send and receive customized messages. This example, available online
(ODU 2010), demonstrates how a user can have full control of events to produce the desired scenarios
and experiments. The example generates output suitable for plotting vehicle positions using gnuplot or
other graph-plotting tool.

We have created a Controller class to handle events and create special vehicles. The highway is a bi-
directional 1 km roadway with two lanes in each direction. The lane width and median width are both 5
meters. The sedan-truck mixture is 80%, so 80% of vehicles are sedans and 20% are trucks. Automatical-
ly-generated vehicles will enter and be injected to the highway with at least a 10 meter gap. We place a
broken car (Obstacle object) in the middle of the highway (lane=0, direction=1, x=500) which
broadcasts a safety message revealing its location and asking for help every 5 seconds. We also create a
police car with a VehicleID of 2. The police car is faster than a normal car and has a higher wireless
transmission range. It listens for messages and unicasts a reply for each received request. The police car
will decelerate when it reaches the broken car and will eventually stop nearby.

The generated output points can be directed to gnuplot to be plotted and animated. Figure 7 shows the
gnuplot snapshot after 2 minutes and 40 seconds of the simulation. The police car reached the broken car
at 500 meters after 20 seconds and stopped in the second lane, causing congestion.

2999

Arbabi and Weigle

Figure 7: A sample plotted highway output for a 1000m roadway with two lanes in each direction. This
snapshot is taken at time 2 minutes, 40 seconds. The police car has stopped in the lane next to the broken
car at time 20 seconds, causing the congestion behind it.

Below, we show a skeleton of a Controller class and main() function. Comments that are shown in
italics are placeholders for user-defined code.
Controller.h

class Controller : public Object
{
 private:
 Ptr<Highway> m_highway;
 // other local variables
 public:
 Controller();
 Controller(Ptr<Highway> highway);
 // event handlers
 bool InitVehicle (Ptr<Highway> highway, int& vehicleID);
 bool ControlVehicle (Ptr<Highway> highway, Ptr<Vehicle> vehicle, double dt);
 void ReceiveData (Ptr<Vehicle> veh, Ptr<const Packet> pckt, Address addr);
 // other function declarations
};

Controller.cc
Controller::Controller() {}
Controller::Controller(Ptr<Highway> highway) {m_highway = highway;}

bool Controller::InitVehicle(Ptr<Highway> highway, int& vehicleID)
{

 // objects to create, settings to change at highway initialization time
 return true; // let Highway sort vehicles in highway lanes
}

bool Controller::ControlVehicle(Ptr<Highway> hw, Ptr<Vehicle> veh, double dt)
{
 // actions that should occur each time this vehicle’s mobility is updated
 return false; // let Highway manage the mobility of this vehicle
}

void Controller::ReceiveData(Ptr<Vehicle> veh, Ptr<const Packet> pckt, Address addr)
{
 // actions that should occur each time a message is received by this vehicle
}

3000

Arbabi and Weigle

main()
int main (int argc, char *argv[])
{
 // Create Highway and Controller
 Ptr<Highway> highway = CreateObject<Highway>();
 Ptr<Controller> controller = CreateObject<Controller>(highway);

 // Set highway parameters

 // Bind highway events to event handlers in controller

 highway->SetInitVehicleCallback(MakeCallback(&Controller::InitVehicle, controller);
 highway->SetControlVehicleCallback(MakeCallback(&Controller::ControlVehicle, controller);
 highway->SetReceiveDataCallback(MakeCallback(&Controller::ReceiveData, controller);

 // Schedule the highway and run the simulation
 Simulator::Schedule(Seconds(0.0), &Start, highway);
 Simulator::Schedule(Seconds(100.0), &Stop, highway);
 Simulator::Stop(Seconds(100.00));
 Simulator::Run();
 Simulator::Destroy();
 return 0;
}

6 CONCLUSION AND FUTURE WORK
In this paper, we described the first implementation of a vehicular mobility model integrated with the
networking functions in ns-3. Integrated VANET simulators that include both mobility and network mod-
els are essential, allowing network communications to affect vehicle mobility, which is one of the main
goals of future VANET deployments (e.g., network messages may prompt drivers to slow down early or
to take an alternate route). Our implementation allows for this feedback by triggering an event each time a
network message is received and each time vehicle mobility is updated. User-created event handlers can
then send network messages or alter the mobility of the vehicle in response to the triggered event. These
features can facilitate more detailed simulations of VANETs.

Realistic vehicle mobility is achieved through the validated implementation of the IDM car-following
model and the MOBIL lane-change model. We introduced the Highway class, which not only simulates a
straight roadway, but also manages the mobility of all vehicles on the highway. Our implementation also
allows the user to take advantage of automatically created and inserted vehicles or to manually insert ve-
hicles at any point along the highway. In addition, our implementation allows for the customization of
almost all aspects of the simulation so that the research can study a wide variety of scenarios.

In future work, we plan to extend our implementation for urban areas (intersections) and add the abili-
ty to read in and use detailed maps instead of a single straight highway. We also have plans to implement
and develop the WAVE/DSRC standard in ns-3. This will allow users to simulate realistic wireless com-
munication for VANETs based on the standard, which includes multi-channel operation. We hope that
this addition to ns-3 along with our future work will allow researchers to easily perform high-quality
VANET simulations.

REFERENCES

Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. 2000. Advances in Network Simulation. IEEE Computer 33(5):59-67.

Fiore, M., J. Härri, F. Filali, and C. Bonnet. 2006. VanetMobiSim: Generating realistic mobility patterns
for VANETs. Proceedings of ACM VANET. Los Angeles, CA. 96-97.

Fiore, M., and J. Härri. 2008. The networking shape of vehicular mobility. Proceeding of the 9th ACM in-
ternational symposium on Mobile ad hoc networking and computing. 261-272.

3001

Arbabi and Weigle

Fiore, M. 2009. Vehicular Mobility Models, In Vehicular Networks: From Theory to Practice, ed. S. Ola-
riu and M. C. Weigle, Boca Raton: CRC Press/Taylor & Francis.

Gorgorin, C., V. Gradinescu, R. Diaconescu, and L. Iftode. 2006. An Integrated Vehicular and Network
Simulator for Vehicular Ad-hoc Networks. In Proceedings of the 20th European Simulation and
Modelling Conference (ESM).

Green, M. 2000. 'How Long Does It Take To Stop?' Methodological Analysis of Driver Perception-Brake
Times. Transportation Human Factors 2(3):195-216.

Halati, A., H. Lieu, and S. Walker. 1997. CORSIM-corridor traffic simulation model. In Proceedings of
the Traffic Congestion and Traffic Safety in the 21st Century Conference. 570-576.

Hassan, A., 2009. VANET Simulation. Högskolan i Halmstad. Master Thesis and Technical Report.
Henderson T., S. Roy, S. Floyd, and G. F. Riley. 2006. ns-3 Project Goals. In Proceedings of the 2006

workshop on ns-2: the IP network simulator.
Ibrahim, K. and M. C. Weigle. 2008. ASH: Application-aware SWANS with Highway mobility, In Pro-

ceedings of IEEE INFOCOM Workshop on MObile Networking for Vehicular Environments (MOVE).
Karnadi, F. K., Z. H. Mo, and K. Lan. 2007. Rapid Generation of Realistic Mobility Models for VANET.

In Proceedings of IEEE Wireless Communications and Networking Conference. 2506-2511.
Krajzewicz, D., M. Bonert, and P. Wagner. 2006. The open source traffic simulation package SUMO.

RoboCup 2006 Infrastructure Simulation Competition.
NSNAM 2010. The ns-3 network simulator. Available via: <http://www.nsnam.org> [accessed

April 12, 2010].
ODU 2010. Vehicular Networking @ Old Dominion University. Available online:

<http://cs.odu.edu/vanet/Software/ns3-highway/> [accessed April 12, 2010].
OPNET. 2010. OPNET Modeler Software. Available at

<http://www.opnet.com/solutions/network_rd/modeler.html> [accessed April
12, 2010].

Piorkowski, M., M. Raya, A.L. Lugo, P. Papadimitratos, M. Grossglauser, and J.-P. Hubaux. 2008. Trans:
Realistic joint traffic and network simulator for VANETs. ACM SIGMOBILE Mobile Computing and
Communications Review 12(1): 31�33.

PTV America. 2010. VISSIM Traffic Simulation Software. Available via
<www.ptvamerica.com/software/ptv-vision/vissim> [accessed April 12, 2010].

Scalable Network Technologies. 2010. QualNet Simulation Software. Available at <www.scalable-
networks.com/products/qualnet> [accessed April 12, 2010].

Treiber, M., A. Hennecke, and D. Helbing. 2000. Congested Traffic States in Empirical Observations and
Microscopic Simulations. Physical Review E, 62(2):1805�1824.

Treiber, M., and D. Helbing. 2002. Realistische Mikrosimulation von Straßenverkehr mit einem einfachen
Modell , In Proceedings of the 16th Symposium Simulationstechnik (ASIM 2002), 514�520.

Treiber, M. 2006a. Intelligent Driver Model (IDM). Available via <traffic-
simulation.de/IDM.html> [accessed April 12, 2010].

Treiber, M. 2006b. Minimize Overall Braking decelerations Induced by Lane changes (MOBIL). Availa-
ble via <traffic-simulation.de/MOBIL.html> [accessed April 12, 2010].

Treiber, M. 2010. Microsimulation of Road Traffic. Available via: <http://www.traffic-
simulation.de> [accessed April 12, 2010].

US-DOT 2010. IntelliDrive Website. U.S. Department of Transportation. Available via
<http://www.intellidriveusa.org/> [accessed April 12, 2010].

Yan, G., K. Ibrahim, and M. C. Weigle. 2009. Vehicular Network Simulators, In Vehicular Networks:
From Theory to Practice, ed. S. Olariu and M. C. Weigle, Boca Raton: Chapman & Hall/CRC.

Zeng, X., R. Bagrodia, and M. Gerla. 1998. GloMoSim: a Library for Parallel Simulation of Large-scale
Wireless Networks, In Proceedings of the 12th Workshop on Parallel and Distributed Simulations.

3002

Arbabi and Weigle

AUTHOR BIOGRAPHIES

HADI ARBABI is a PhD candidate in Computer Science at Old Dominion University. He received his
B.S. in Computer Engineering from Shiraz University in 2001. He received his M.S. in Computer Science
from ODU under the supervision of Dr. Stephan Olariu in 2007 and is pursuing his PhD at ODU under
the supervision of Dr. Michele C. Weigle. His PhD focus is on VANETs, specifically their application to
monitoring roadway traffic. His email address is <marbabi@cs.odu.edu>.

MICHELE C. WEIGLE is an Assistant Professor of Computer Science at Old Dominion University.
She received her Ph.D. from the University of North Carolina at Chapel Hill in 2003. Her research inter-
ests include vehicular networks, wireless and mobile networks, network protocol evaluation, network si-
mulation and modeling, and Internet congestion control. She is a member of ACM, ACM SIGCOMM,
ACM SIGMOBILE, IEEE, and IEEE ComSoc. Her e-mail address is <mweigle@cs.odu.edu>.

3003

