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ABSTRACT 

A reliable server assignment (RSA) problem in networks is defined as determining a deployment of 

identical servers to maximize a measure of service availability.  In networks, the communication between 

a client and a server might be interrupted since the server itself is offline or unreachable as a result of 

catastrophic network failures.  In this paper, a novel simulation optimization approach is developed based 

on a Monte Carlo (MC) simulation and embedded into Particle Swarm Optimization (PSO) to solve the 

RSA problem.  The experimental results show that the simulation optimization embedded PSO is an 

effective heuristic method.   

1 INTRODUCTION 

The availability and accessibility of servers in communications networks are crucial.  For example, a 

computer network will not properly function if the servers providing the Domain Name System (DNS) 

service to the network are inaccessible.  Therefore, the Reliable Server Assignment (RSA) problem is an 

important problem to tackle with.  In this paper, the RSA problem in communications networks is defined 

and solved using a simulation optimization approach based on Particle Swarm Optimization (PSO), which 

is a recent nature inspired metaheuristic method.  The term “simulation optimization” is usually used for 

the problems where the relationship between the input variables and the system output is very complex in 

order to estimate the output for a given setting of the input variables.  Simulation optimization approaches 

are among the most frequently used tools to solve many real-world problems.  Andradottir (1998) and Fu 

(2002) surveyed common approaches to simulation optimization.  Discussion about the latest 

advancements in simulation optimization can also be found in April et al. (2003), Law and McComas 

(2000 and 2002), Ling, Liang and Da-zhong (2003), Olafsson and Kim (2002), and Swisher et al. (2000). 

 Consider an undirected network G=(N, E), where N={1,…,n} is the node set, E={(i, j)} is the edge 

set, and (i, j)≡(j, i).  The cost of deploying and maintaining a server at node i is given as ci.  For the 

successful operation of the network, each node must have access to at least one server.  However, both 

nodes and edges of the network are subject to failure with known probabilities.  Let r(i, j) be the reliability 

of edge (i, j) and ri be the reliability of node i.  When edge (i, j) fails, the communication between nodes i 

and j is interrupted if it cannot be rerouted through an alternative path.  When a node fails, all of its 

incident edges become inoperative.  Therefore, if a server node fails, the server located on this node 

becomes unreachable by all users.  The RSA problem is defined as determining a deployment of servers 

to maximize a measure of service availability while not exceeding the available budget and is formulated 

as follows: 
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where si is the binary server assignment decision variable indicating whether a server is assigned to node i 

(si=1) or not (si=0), R( ) is a measure of the service availability, and C is the allowable budget for the 

server deployment and maintenance in the network. 

 Section 2 gives a summary of the network reliability and availability measures defined in the 

literature.  In this paper, a new reliability measure, which is called critical service rate (CSR) and 

proposed by Kulturel-Konak and Konak (2008), is used.  CSR is defined as the probability that more than 

a predetermined fraction (α) of the operational nodes has access to at least one server in case of a 

catastrophic component failure as follows: 
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where X denotes a state vector of the network; τi(X)=1 if there exists at least one path between node i and 

a server node, and τi(X)=0 otherwise; δi(X)=1 if node i is operational in state X, δi(X)=0 otherwise; and α 

is the critical service level. 

 The organization of the paper is as follows: Section 2 provides the background on the RSA problem.  

Then, the novel simulation optimization embedded PSO is introduced in Section 3 followed by 

experimental results in Section 4.  Finally, Section 5 concludes the paper and presents the future 

directions in the area of RSA.  

2 BACKGROUND 

The RSA problem that is defined in the previous section is closely related with the p-median problem.  

The deterministic p-median problem is originally defined by Hakimi (1964) as locating p identical 

services at p distinct nodes of a network to minimize the total weighted distance between nodes and the 

closest servers.  Several researchers (Drezner 1987; Nel and Colbourn 1990; Melachrinoudis and 

Helander 1996; Nakaniwa et al. 2000; Snyder and Daskin 2005; Eiselt, Gendreau and Laporte 1992) 

study the reliable p-median problem, which is to try to minimize the service unavailability due to the 

infrastructure disruptions or component failures.  In the reliable p-median problem, the nodes and/or 

edges of the underlying network are subject to failure with known probabilities.  The overall objective is 

to maximize service availability, which is usually expressed in the form of an expected value of service 

level or a probability that the service is reachable.  Therefore, the evaluation of the objective function 

requires techniques from network reliability analysis which is concerned with computing the probability 

that a network maintains a desired connectivity.  However, evaluating this type of a stochastic function is 

a daunting task requiring considering all possible failure scenarios.  In fact, most network reliability 

problems are NP-hard (Ball 1980).  Because of its difficulty, in the literature the reliable p-median 

problem has usually been studied either for special cases or with assumptions to make the evaluation of 

the objective function computationally feasible.   

 Nel and Coulbourn (1990) formulate the reliable p-median problem to identify a single node on a 

network such that the expected number of nodes connected to that node is maximized in the presence of 

edge failures.  Since computing this expected value is intractable, an efficient upper bound on the two-

terminal reliability is utilized to identify promising nodes.  A similar problem on tree networks with 

unreliable edges is studied by Melachrinoudis and Helander (1996).  Unlike the general networks 

considered in our paper, on a tree network, it is computationally feasible to compute the objective 

function.  Berman and Drezner (2003) also study the stochastic one-median problem on general networks 
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where the objective is to maximize the probability of reaching all nodes from the service center within a 

time threshold.   

 As mentioned earlier, Eiselt, Gendreau and Laporte (1992) study the reliable p-median problem on 

general networks.  However, they consider a special case of the problem where only a single edge failure 

is considered at a time.  They propose an algorithm to transform a general network into a tree network 

while preserving failure probabilities.  Then, the problem is solved on the transformed tree network.  Note 

that, his transformation is only possible because of the assumption that only a single node failure could 

occur at a time.  Eiselt, Gendreau and Laporte (1996) extend this approach to networks with unreliable 

nodes.   

 Berman, Drezner and Wesolowsky (2003) define a reliable p-median on distribution networks to 

minimize the expected amount of unsatisfied demand.  Nakaniwa et al. (2002) study the optimal mirror 

Web server assignment problem considering reliability.  In their problem, network edges are perfectly 

reliable and nodes are subject to failure.  For a given server to node assignment, it is assumed that users 

are served by the closest Web server.  Therefore, the probability that a user could access to a particular 

server is computed as a function of the failure rates of the nodes on the shortest path from the user to the 

server.  An integer programming formulation is developed to maximize the overall system reliability 

under cost, delay and capacity constraints.  Snyder and Daskin (2005) formulate a reliable p-median 

problem where nodes and edges of the network are perfectly reliable, but service facilities fail with 

known probabilities.  For each customer, a primary facility and a set of backup facilities are determined 

using a Lagrangian relaxation algorithm.  Snyder and Daskin (2006) present a novel robustness measure 

that combines the objectives of minimizing expected cost and minimizing worst-case cost or regret, which 

is called p-robust.  For many instances of the problems, finding a feasible solution and even determining 

whether the instance is feasible are difficult.  Therefore, they first discuss a mechanism to assess the 

infeasibility, and then suggest a heuristic method to solve the problem. 

3 SIMULATION OPTIMIZATION EMBEDDED PARTICLE SWARM OPTIMIZATION 

Exactly evaluating CSR for the problems studied in this paper is not practical in reasonable CPU times.  

Therefore, the objective functions of solutions created by the PSO algorithm are evaluated by a Monte 

Carlo (MC) simulation.  The PSO algorithm, the MC simulation, and a hashing method are integrated in a 

novel way to minimize the computational effort to efficiently evaluate candidate solutions and reduce the 

effect of the noise in the objective function due to the evaluation process by the MC simulation. 

3.1 Particle Swarm Optimization  

PSO was originally proposed by Eberhart and Kennedy (1995) based on the social behavior of species 

living in the form of swarms in nature.  These species have the ability to exchange valuable information 

such as food locations in the habitat by means of simple interactions.  As a result of such simple 

interactions among the members of a swarm, a global swarm behavior such as flocking may emerge.  

Similar to evolutionary algorithms, PSO is a population-based meta-heuristic algorithm, and population 

members are called particles.  In PSO, the position of a particle in n-dimensional space represents a 

solution to a problem with n continuous decision variables.  The current position of particle j in an n-

dimensional solution space is represented by vector Sj={sj1,…, sjn}.  In each iteration of PSO, particles 

move to new positions with the goal of discovering the optimal point in the search space.  Each particle j 

moves to a new position in the solution space according to its velocity vector Vj={vj1,…, vjn} as follows: 

 j j j
= +S S V

 

 

Particles communicate with one another by broadcasting about the fitness of their best positions and 

learning about the best positions of others.  Based on these interactions as well as their past experiences, 

particles adjust their velocities in each iteration.  The velocity vector of each particle j is updated as 

follows: 

 1 1 2 2
( ) ( )

j j j j j
ω ϕ ϕ= + ⋅ − + ⋅ −V V U B S U G S

 

(1) 
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where Bj={bj1,…, bjn} represents the position where particle j has had its best fitness so far and G={g1,…, 

gn} is the position of the global best fitness so far by any particle in the population, and ω is called the 

inertia coefficient used to balance exploration versus exploitation of the solution space.  Values of ω close 

to 1 usually encourage exploration of new areas in the solution space, and for small values of ω such as ω 

< 0.4, the search shifts to the exploitation mode.  Parameters ϕ1 and ϕ2 are called cognition and social 

coefficients, respectively, and they are very important for facilitating convergence in PSO.  Based on an 

empirical study (Ozcan and Mohan 1999), as well as theoretical results (Clerc and Kennedy 2002), ϕ1 and 

ϕ2 are recommended to be set such that ϕ1+ϕ2 <4.  U1 and U2 are two vectors of n uniform random 

numbers between 0 and 1.  Note that operator (⋅) in (1) indicates element-by-element vector 

multiplication. 

 The pseudo code of the generic PSO is presented in the following procedure for a maximization 

objective function f( ).  In the pseudo code, U(a, b) represents a random sample from the uniform 

distribution on [a, b], and the initial positions of particles are randomly determined between the minimum 

and maximum values of each decision variable (si
min

 and si
max

, respectively).  Particle velocities are also 

randomly initialized between the minimum and maximum velocity limits (vi
min

 and vi
max

, respectively). 

Velocity limits usually depend on the ranges of the decision variables. 

Procedure Generic PSO (){ 

 For j=1...µ do { 

  Set sji=U(si
min

, si
max

) for i=1,…, n 

  Set vji= U(vi
min

, vi
max

) for i=1,…, n 

  Set Bj=Sj and update G if necessary  

 } 

 While (stopping criterion is not satisfied) { 

  For j=1...µ do { 

   Set vji= vji+U(0, ϕ1)×(bji-sji)+U(0, ϕ2)×(gi-sji) for i=1,…, n 

   Set sji= sji+ vji for i=1,…, n 

   If (f(Sj)> Bj) set Bj=Sj 

   If (f(Sj)> G) set G=Sj 

  } 

 } 

Return G 

} 

 

 As briefly described above, PSO is originally designed for problems with real-valued decision 

variables.  In the binary PSO, which is introduced by Kennedy and Eberhart (1997), the values of decision 

variables are randomly determined using particle velocities and a logistic function as follows: 

 

11 if (0,1) (1 exp( ))

0 otherwise.

ji

ji

U v
s

− < + −
= 


 (2) 

In (2), the value of a binary decision is defined using a logistic function.  Other than this modification, the 

rest of the binary-PSO algorithm is the same with real-value PSO algorithm.  

 Compared to other meta-heuristic approaches such as Simulated Annealing (SA), Genetic Algorithms 

(GA), and Tabu Search (TS), the main advantage of PSO is its ease of implementation.  PSO is a very 

simple algorithm to implement, but it has been proven to be effective to solve wide variety of problems.  

PSO does not rely on special operators (e.g., crossover in GA or move operator in SA and TS).  PSO has 

a limited number of parameters to tune and the convergence properties of PSO with respect to various 

parameter settings are well studied in the literature (Ozcan and Mohan 1999).  Equation (1) can be used in 

wide variety of problems where a solution can be represented as a vector.  
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3.2 Solution Construction   

The binary PSO introduced in (Kennedy and Eberhart 1997) is used to develop the search algorithm in 

this paper.  However, the RSA problem is a constrained problem and using (2) to determine the values of 

decision variables may result in many infeasible solutions.  To address this problem, procedure 

Create_Solution() given in the following is used in this paper to construct feasible particle positions with 

the following probabilities: 

 

1

1

A

(1 exp( ))
( )

(1 exp( ))

ji

j

jk

k

v
p i

v

−

−

∈

+ −
=

+ −∑
 (3) 

where A is the set of admissible nodes for server assignment and pj(i) represents the probability of 

assigning a server to node i while determining the new position of particle j based on Vj (i.e., pj(i)=Pr{sji 

=1}).  A node is called admissible if a server has not been assigned to that node and there is an adequate 

residual budget (C′) to assign a server to the node.  Notice that in (3), the relative weights of the 

probabilities in (2) are preserved, and procedure Create_Solution() randomly selects nodes for server 

assignment based on their selection probabilities. 

Procedure Create_Solution () { 

 Set A=N, C′=C, sji =0 for each node i∈N 

 While (A≠{}) {  

  Calculate pj(i) for each node i∈A 

   Randomly select node i from A with probability pj(i) 

  Set sji =1 and C′=C′-ci  

  Update set A 

 } 

 Return solution Sj 

} 

3.3  Hashing to Check Solutions 

In PSO, as the search converges, same solutions will appear in the population with increasing frequencies.  

Therefore, computationally expensive simulation might be used to evaluate same solutions again and 

again in the RSA problem.  To prevent this, hashing is used to rapidly detect whether a solution has been 

previously investigated or not.  Hashing has been previously proposed in (Woodruff and Zemel 1993; 

Battiti and Tecchiolli 1994) to record the solutions encountered during recent iterations in tabu search.  

All solutions investigated during a search are stored in a list, called solution list (SL).  A hash table (HT) 

is used as a pointer to quickly access the solutions stored in SL.  A second list, called collision list (CL) is 

used to store solutions with a hash collision.  After a solution S is created, the hash value of the solution is 

calculated as follows: 

 1

( ) mod( ( ) , )i

n
s

i

i

d e H
=

= ∏S  

where H is the hash size and ei is a prime number corresponding to decision variable si.  Hash table HT is 

an integer array such that HT[d(S)]=0 if a solution with a hash value of d(S) has not been searched yet, or 

HT[d(S)]=t if the first solution with a hash value of d(S) is the t
th
 solution in solution list SL.  In other 

words, SL[t] stores the t
th
 evaluated solution without any hash collision.  After calculating d(S) for a 

solution S, there are three cases possible.   

Case 1: If HT[d(S)]=0, then S has not been investigated before.   

Case 2: If HT[d(S)]=t and S=SL[t], then S has been investigated before.  

Case 3: If HT[d(S)]=t and S≠SL[t], then a hash collision occurs (i.e., two different solutions have the 

same hash value).  In this case, S is compared with all solutions in collision list CL.  If S is not in CL, 

then it has not been searched before and added to CL.   
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 As it is demonstrated in the computational experiments, Case 3 occurs very rarely.  In most cases, 

therefore, it is possible to check whether a solution has been previously searched or not in O(1) 

comparisons after calculating d(S).  The procedure of checking solution using hashing is given as follows: 

Procedure Check_Solution (S){ 

 Calculate d(S) 

 If (HT[d(S)]=0) { 

  t=t+1 

  HT[d(S)]=t and SL[t]=S 

  Return TRUE 

 } 

 If (HT[d(S)]≠0 and SL[ HT[d(S)] ]= S) Then return FALSE 

 If HT[d(S)]≠0 and SL[ HT[d(S)] ] ≠S { 

  If S∉CL { 

   cl=cl+1 

   CL[cl]=S 

   Return TRUE  

  }  

  Else Return FALSE 

 } 

} 

3.4 Monte Carlo Simulation and Solution Evaluation 

As mentioned earlier, the objective function of the problem, CSR, is estimated using MC simulation.  

Evaluating solutions using simulation within an optimization algorithm has two important drawbacks.  

First, simulation output includes a statistical error which might affect the performance of the optimization 

algorithm.  Second, simulation is computationally expensive, especially if a small margin of estimation 

error is required.  To remedy these problems, a hierarchical approach to solution evaluation is used in the 

PSO as follows.  At first, a solution is evaluated using a low number of simulation replications (K1), and if 

the solution seems to be promising after this first evaluation, then it is rigorously evaluated using a higher 

number of replications (K2).  The best b solutions found so far during the search are maintained in a sorted 

list called elitist list (EL) such that CSR(EL[1])> CSR(EL[2])>…> CSR(EL[b]).  After the first 

evaluation, a solution is identified as promising if the solution has a better objective function value than 

the worst elitist solution.  After rigorously evaluating a promising solution, the solution is compared with 

each elitist solution, and the elitist list is updated if necessary.  Finally, after the whole search terminated, 

all elitist solutions are evaluated again using a very high number of simulation replications (K3).  

Procedure Evaluate_Solution (S){ 

If Check_Solution(S)=TRUE { 

 Evaluate S using K1 simulation replication 

 If (CSR(S)> the worst CSR in EL) { 

  Evaluate S using K2 replications 

  Update EL by including S if necessary} 

 } 

} 

3.5 A PSO Algorithm to the RSA problem  

The PSO algorithm proposed in this paper is based on the binary-PSO algorithm (Kennedy and Eberhart 

1997) described in Section 3.1.  The differences are: (i) solutions are randomly constructed as opposed to 

being randomly generated in the binary-PSO; (ii) hashing is used for detecting whether a solution has 

been previously evaluated; and (iii) the objective function is evaluated using simulation.  In the PSO 
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algorithm, the best elitist solution (EL[1]) is used as the global best position so far (i.e., G) to update 

particle velocities.  The overall procedure of the PSO is given below: 

 

Procedure PSO { 

 Set SL=∅, CL=∅, EL=∅  

 Set t=0, cl=0 

 For j=1...µ do { 

  Set vji=0 for i=1,…, n 

  Sj=Create_Solution()  

  Evaluate_Solution(Sj) 

  Set Bj=Sj 

 } 

 Set G=EL[1] 

 While (stopping criterion is not satisfied) { 

  For j=1...µ do { 

   Set vji= vji+U(0, ϕ1)×(bji-sji)+U(0, ϕ2)×(gi-sji) for i=1,…, n 

   Sj=Create_Solution()  

   Evaluate_Solution(Sj) 

   If (CSR(Sj)> Bj) set Bj=Sj 

   Update EL if necessary 

  } 

  Set G=EL[1] 

 } 

 Evaluate each elitist solution using K3 replications 

 Return the best elitist solution 

} 

4 EXPERIMENTAL RESULTS 

The PSO algorithm is tested using random problems ranging from 30 to 100 nodes as given in Table 1.  

The performance of the PSO algorithm is compared with the Ant Colony Optimization (ACO) algorithm 

given in (Kulturel-Konak and Konak 2008).  For each test problem group, ten random instances are 

created by randomly assigning node and edge reliabilities from [0.90, 0.95] and node costs from [1, 2].  

Each random problem instance is solved by both PSO and ACO algorithms for ten replications for a 

budget constraint of C=8.  The solutions found by the PSO and ACO algorithms are compared using a 

Multivariate Analysis of Variance (MANOVA) model to test whether there are significant differences 

among their performances.  For each problem group, a MANOVA model is built to compare the best and 

the worst elitist solutions found by the PSO and ACO algorithms.  The MANOVA models include the ten 

problem instances and the heuristics as fixed factors and ten random replications as a random factor.  In 

all runs, the simulation related parameters are K1=10
3
, K2=8x10

3
, K3=10

5
 (i.e., the number of simulation 

replications), H=99001 (i.e., the Hash size), and |EL|=20 (i.e., the elitist list).  PSO parameters ϕ1 and ϕ2 

are set to 2 as generally recommended in the PSO literature.  The population size is 50, and the number of 

solutions searched so far (maximum of 8000 solutions) is used as the stopping criterion for both 

algorithms.  The averaged CSRs of the best elitist and the worst elitist solutions (i.e., EL[1] and EL[20], 

respectively) and p-value of the MANOVA models are given in Table 1.  Based on the MANOVA 

results, the PSO algorithm outperforms the ACO algorithm in terms of the best and worst elitist solutions 

in the majority of the problem groups.  Only for the problems with 30 nodes, the worst elitist solutions 

found by the ACO are statistically better than the ones found by the PSO.  The difference between two 

algorithms is statistically significant with p-values of almost zero in many cases.  ACO algorithms are 

known to quickly converge that may become a drawback in the large-sized problems studied in this paper 
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because the search may stagnate around a few good solutions discovered early in the search.  In this 

paper, the main difference between the ACO and the PSO is in the calculation of the probabilities of 

assigning servers to nodes in the solution construction procedure.  In the ACO, all ants use the same 

pheromone trails to calculate those probabilities, while in the PSO, each particle maintains its individual 

velocity vector which may aim a different direction in the search space.  This causes a slow convergence 

of the PSO, but also reduces the likelihood of being trapped in local optima and encourages exploration of 

different regions in the search space. 

In Table 1, (Elitist Range)/σ is the ratio of the CSR range of the elitist list (i.e., the difference between 

the best and the worst elitist solutions) to the estimation of the standard deviation in simulation.  (Elitist 

Range)/σ is an indicator for the quality of the best solution with respect to the solutions in the elitist list.  

In each case, the gap between the best and worst elitist solutions is much larger than the estimated 

standard deviation.  Therefore, it can be assured with a high confidence that the final elitist list will 

include the true best solutions found during the search.  Collision% is the ratio of the |CL| to |CL|+|SL| at 

the termination (i.e., the percent of hash table collisions).  A small value of Collision% indicates how 

efficiently hashing can detect whether a solution has been previously investigated or not.  This ratio is 

very low for all cases.  For example, 2.5% collision rate means that the solution check can be performed 

in O(1) time (i.e., checking the hash table after calculating the hash value) in 97.5% of solutions searched.  

Finally, average CPU seconds (with the 3.0 GHz Intel Xeon E5450 Quad-Core Processors and 32 GB 

memory) are given for the PSO algorithm. 

 

Table 1:  Comparisons of the PSO and the ACO algorithms and computational results. 

 Best Elitist  Worst Elitist     

(n, m)
* 

ACO PSO 

p-

value ACO PSO 

p-

value 

(Elitist 

Range)/σ 

Collision 

% 

CPU 

Sec. 

(30,36) 0.88711 0.88744 0.613 0.86984 0.86897 0.035 24.0 0.4 65 

(40,53) 0.88728 0.88799 0.000 0.87091 0.87314 0.000 36.8 0.7 111 

(50,98) 0.98518 0.98504 0.190 0.97948 0.98027 0.000 19.8 1.6 261 

(60,118) 0.99340 0.99376 0.000 0.98956 0.99047 0.000 17.3 1.9 429 

(70,138) 0.98891 0.98934 0.000 0.98355 0.98512 0.000 17.8 2.5 589 

(80,158) 0.97732 0.97799 0.000 0.96927 0.97207 0.000 11.6 3.0 881 

(100,115) 0.40935 0.41664 0.000 0.37216 0.38985 0.000 13.2 3.6 1446 
*
: n is the number of nodes and m is the number of links. 

5 CONCLUSIONS 

The reliable server assignment problem (RSA) in networks is studied in this paper.  A novel simulation 

optimization approach is developed based on a MC simulation and embedded into PSO to solve the RSA 

problem.  During the search, hashing method is used to rapidly detect whether a solution has been 

previously investigated or not in order to prevent costly evaluation process of same solutions again and 

again.  The experimental study shows that the PSO algorithm is promising. 
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