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ABSTRACT

We present a computationally efficient simulation procedure for point estimation of expected shortfall. The procedure
applies tools for ranking and selection to allocate more computational resources to estimation of the largest losses,
which are those that affect expected shortfall. Given a fixed computational budget, our procedure estimates expected
shortfall with a much lower mean squared error than a standard simulation procedure and much more precisely than
an existing interval estimation procedure.

1 INTRODUCTION

Nested simulation makes some risk management problems computationally challenging. To measure risk, we may want
to know the value of our portfolio in many possible future scenarios, generated by historical simulation or Monte Carlo
sampling from a distribution of relevant risk factors. If our portfolio contains derivative securities, we may need to use
Monte Carlo simulation to estimate its value in each scenario. The resulting computational burden can be quite large,
with thousands of Monte Carlo replications performed in each of thousands of scenarios, for a total of millions of
replications. Researchers have developed two approaches to making nested simulation more computationally efficient.

Authors such as Frye (1998) and Shaw (1998) proposed to use dimension reduction and interpolation to approximate
the portfolio value in all scenarios after performing Monte Carlo simulations to estimate the portfolio value in only some
scenarios. That is, even though scenarios may involve a high-dimensional vector of risk factors, the analyst identifies
just a few principal components that explain most of the variability in portfolio value, chooses certain scenarios in which
to value the portfolio by simulation, and then uses linear interpolation among those simulated values to approximate the
portfolio value in all other scenarios. This approach is promising, but it requires analyst effort to perform dimension
reduction and to design and validate the simulation experiment, since little is known about how to quantify or reduce
the errors caused by interpolation and by Monte Carlo sampling.

The other approach is more automated and generic. The earliest work is the thesis of Lee (1998), who studied point
estimation of a quantile of the distribution of a conditional expectation. This is related to point estimation of value at risk
(VaR): let the portfolio value V in scenario Z be V (Z) = E[X |Z], where X is the discounted payoff of the securities in
the portfolio and E represents risk-neutral expectation. Recently, this literature has focused on two-level simulation, in
which the outer level of simulation samples scenarios, and the inner level samples payoffs conditional on the scenarios.
Lee (1998) discusses how to reduce the mean squared error (MSE) of the point estimator by jackknifing to reduce its bias
and by choosing the number of scenarios to sample in an asymptotically optimal way. Gordy and Juneja (2006, 2008)
use similar ideas in proposing a simulation procedure for point estimation of a portfolio’s VaR via two-level simulation.
Broadie, Du, and Moallemi (2010) develop efficient sequential simulation procedures for estimating the probability that
loss exceeds a specified threshold, which is closely related to VaR. Expected shortfall (ES) is another widely used risk
measure, closely related to conditional value at risk and tail conditional expectation, which is the conditional expectation
of loss given that it exceeds VaR. Gordy and Juneja (2008) mention ES but do not provide a simulation procedure for
estimating it. A two-level simulation procedure for interval estimation of ES is the topic of Lan, Nelson, and Staum
(2007, 2010), who increase computational efficiency by dynamic allocation of the computational budget in multi-stage
simulation.

We focus on point estimation of ES and on the inner level of simulation. Our methods are related to those of
Lan, Nelson, and Staum (2010) and of Lesnevski, Nelson, and Staum (2008), who considered another risk measure,
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but we apply them differently because our goal is efficient point estimation. To get an estimator with low MSE,
we create a heuristic simulation procedure. Although we present some justifications for our heuristics based on the
assumption that the simulated data is normally distributed, we do not prove anything about the performance of the
procedure. We merely craft and explain a simulation procedure, then use experiments with normal and non-normal
data to show that it performs well. More details of our procedure can be found in Liu, Nelson, and Staum (2008) and
Liu (2010). Our procedure can attain a sufficiently low MSE even when the computational budget is so small that
other methods for estimating ES yield answers that are not accurate enough to be useful. We compare our method to
a standard two-level simulation of ES without any efficiency techniques, and to the confidence interval procedure of
Lan, Nelson, and Staum (2010). We report experimental results in which our procedure delivers root mean squared error
(RMSE) between 1% and 10% of the true ES while the RMSE of a standard two-level simulation and the confidence
interval width of Lan, Nelson, and Staum (2010) are about the same magnitude as ES, indicating that those procedures’
answers are not useful.

2 EXPECTED SHORTFALL

Let V be a random variable denoting the value of a portfolio at a future time T . Its cumulative distribution function is
denoted by FV . A risk measure, such as VaR or ES, is a functional T (FV ) of this distribution. The expected shortfall
at level 1− p is defined as

ES1−p =−
1
p

(
E[V 1{V≤vp}]+ vp(p−Pr[V ≤ vp])

)
(1)

where vp is the p-quantile of FV ; −vp is VaR at the 1− p level. In our analysis, we will assume that FV is continuous
at vp, so that the second term on the right side of Equation (1) vanishes, but our procedure works even if this is not so.

Let us suppose we have k scenarios describing the state of the financial markets at time T . Each scenario specifies
the levels of a vector Z of risk factors that determine the portfolio’s value V . Examples of risk factors are underlying
asset prices, volatilities, or interest rates. Define Vi = E[X |Z = Zi], the value of the portfolio in scenario i, expressed
as a conditional risk-neutral expectation of the total discounted payoff X of the securities in the portfolio. To simplify
notation, we let Xi represent a random variable whose distribution is the conditional distribution of X given Z = Zi, so
that Vi = E[Xi], and we refer to Xi as a “payoff.” The expectation is estimated by Monte Carlo simulation.

Let πV be a permutation of {1,2, . . . ,k} such that VπV (1) ≤VπV (2) ≤ . . .≤VπV (k), that is, scenario πV (i) is the one
in which the portfolio value is the ith lowest. Also define γ to be the set of the ⌈kp⌉ portfolios with the smallest
values, i.e., γ = {πV (1),πV (2), . . . ,πV (⌈kp⌉)}. We use the terms “tail” and “non-tail” to refer to γ and {1,2, . . . ,k}\ γ ,
respectively. Then ES at level 1− p of the empirical distribution of V1,V2, . . . ,Vk is

ES1−p =
⌈kp⌉

∑
i=1

wiVπV (i) where wi =
{ −1/kp, for i = 1, . . . ,⌊kp⌋ ,
−1+ ⌊kp⌋/kp, for i = ⌊kp⌋+1.

(2)

The efficient procedure we propose focuses on estimating ES as specified by Equation (2) when the scenarios are
given. The scenarios could be generated by historical data or sampled from a distribution FV . If we sample them, this
represents the outer level of a two-level simulation procedure. We focuse on inner-level simulation, estimating the value
of the portfolio in each scenario by simulating payoffs. We will give examples of historical simulation and two-level
simulation in §5.

3 THE STANDARD PROCEDURE

In this section, we present the simplest possible simulation procedure for estimating ES as specified by Equation (2).
There is a fixed computational budget expressed as a total number C of payoffs that can be simulated. The standard
procedure divides the budget equally among the k scenarios and then treats the resulting sample average payoffs as
though they were the true values of the scenarios. The procedure is:

1. Simulate payoffs Xih for i = 1,2, . . . ,k, h = 1,2, . . . ,⌊C/k⌋. Calculate sample averages X̄1, X̄2, . . . , X̄k.
2. Select the ⌈kp⌉ smallest sample averages X̄(1), X̄(2), . . ., X̄(⌈kp⌉), where the subscript (i) denotes the scenario

with the ith smallest sample average.

3. The standard estimator of ES is ∑⌈kp⌉
i=1 wiX̄(i).

There are two main reasons that this standard procedure does not work well when the budget C is small. First,
from the standard estimator, we see that only ⌈kp⌉ sample averages actually appear in the estimator, which means that
only about pC payoffs appear. The other (1− p)C payoffs are used solely to eliminate k−⌈kp⌉ scenarios. This way of
selecting ⌈kp⌉ scenarios to use in the estimator is inefficient. The second reason is that for all i = 1,2, . . . ,⌈kp⌉, X̄(i) is
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a biased estimator of VπV (i), due to selection bias. Selection bias is defined as E[X̄i|i ∈ γ̂]−E[X̄i], where γ̂ is the set of
scenarios corresponding to the ⌈kp⌉ smallest sample averages. When the budget C is small, the standard estimator can
be badly biased.

4 AN EFFICIENT PROCEDURE

In this section we propose an efficient simulation procedure to estimate expected shortfall. This procedure overcomes
the two disadvantages of the standard procedure mentioned above and can give an accurate point estimator of ES when
the budget is small.

To avoid spending too much of the budget on scenarios which can be easily excluded from the tail, we follow
Lan, Nelson, and Staum (2010) and Lesnevski, Nelson, and Staum (2008) in using screening. Screening is a method,
based on the t-test, that eliminates (“screens out”) some scenarios to concentrate computational resources on the scenarios
that are most likely to be in the tail γ . We combine the goal of screening in Lan, Nelson, and Staum (2010), to screen
out all non-tail scenarios, with the highly efficient screening tactics of Lesnevski, Nelson, and Staum (2008), that use
multiple stages of screening that terminate when a stopping rule judges that screening is no longer a good use of
computational resources. That is, at each stage of the simulation procedure, we simulate more payoffs conditional on
all surviving scenarios (the scenarios that we have not screened out yet) and screen out more scenarios that now seem
unlikely to be in the tail. Thus, we overcome the first disadvantage of the standard procedure by allocating fewer
payoffs to the non-tail scenarios.

We overcome the second disadvantage by avoiding selection bias altogether with a technique called “restarting”
(Boesel, Nelson, and Kim 2003): we throw out all the payoffs used in screening. After screening, we select a set γ̂ of
scenarios which we believe belong to the tail, and allocate the remaining computational budget to scenarios in γ̂ . We use
only the sample averages of these new payoffs in our ES estimator. Those sample averages were not used in the decision
about whether or not to include a scenario in γ̂ , which makes E[X̄i|i ∈ γ̂] = E[X̄i], and then they have no selection bias.
This restarting technique is also used in Lan, Nelson, and Staum (2010) and Lesnevski, Nelson, and Staum (2008).
The only source of bias in our procedure comes from the possibility that we may choose γ̂ incorrectly, i.e., unequal to
the true tail γ .

An important difference between our screening procedure and those of Lan, Nelson, and Staum (2010) and
Lesnevski, Nelson, and Staum (2008) is that we dynamically select the error level of the t-tests at each stage. Because of
their goal of providing a confidence interval with a minimum guaranteed coverage probability, Lan, Nelson, and Staum (2010)
and Lesnevski, Nelson, and Staum (2008) were restricted to using a pre-specified, very low error level for the t-tests.
Our procedure tends to choose higher error levels, thus screening more aggressively and concentrating more of the
computational budget on the scenarios whose sample averages are used in the ES estimator.

4.1 OUTLINE OF THE PROCEDURE

We outline our procedure in this section, and elaborate on some steps in subsequent sections. For clarity, we split the
procedure into two phases, Phase I and Phase II. Phase I includes multi-stage screening and selection of γ̂ . Phase II
allocates the remaining computational budget to the selected scenarios, simulates more payoffs, and computes the ES
estimator. Because Phase I contains multiple stages, we use j = 0,1,2, . . . to index the stages.

The user specifies the computational budget C, the sample size n0 of the first stage, and the rate R at which the
cumulative sample size grows from one stage to the next. The computational budget can be chosen based on the time
available for the simulation experiment or on experience with the budget required to attain the desired precision. An
experiment in §5.2 illustrates that it is not difficult to choose good values of n0 and R, and leads to the recommendation
of n0 = 30 and R = 1.2 for most simulation problems.

Define I j to be the set of scenarios that survive to the beginning of stage j and Nj to be the cumulative number of
payoffs simulated for each scenario in I j after stage j, so N0 = n0. Given the sample size growth factor R, Nj = Nj−1R

for j≥ 1. Let X̄i( j) be the sample average of scenario i after stage j, i.e., X̄i( j) = N−1
j ∑

Nj
h=1 Xih. Let π j(·) be a mapping

of
{

1,2, . . . , |I j|
}

to I j such that X̄π j(1)( j)≤ X̄π j(2)( j)≤ ·· · ≤ X̄π j(|I j |)( j). That is, for any i = 1,2, . . . , |I j|, π j(i) is the
scenario with the sample average that is ith smallest after stage j among the scenarios in I j. Let Cj be the remaining
budget at the beginning of stage j, and let J be the index of the last screening stage in Phase I, as determined by the
stopping rule. Let α j be the error level of each t-test at stage j, which we refer to as the error level for screening at
stage j. An outline of our procedure follows; for the full details, see Liu (2010).

Initialization. Set N0← n0, I0←{1,2, . . . ,k}, C0←C, and j← 0.
Phase I.

1. If j > 0, set n j← Nj−Nj−1. Simulate n j payoffs for each scenario in I j using common random numbers
(CRN; see Law and Kelton (2000)) to sharpen screening in Step 3. Calculate the remaining budget
Cj+1←Cj−|I j|n j.
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2. Choose the error level for screening, α j (§4.3).

3. Screening: Screen to compute I j+1, the set of scenarios that survive screening after stage j (§4.2).

4. If the stopping rule is not satisfied (§4.5), then set j← j +1 and go to Step 1.

5. Selection: Set J← j and γ̂ ←{πJ(1),πJ(2) . . . ,πJ(⌈kp⌉)}.

Phase II. Restart, allocate the remaining computational budget to scenarios in γ̂ , and compute the ES estimator
(§4.4).

4.2 Screening

In this section we present the screening method given the target error level α j at stage j; we will show how to choose
α j in §4.3. For all ordered pairs (i,r) in I j× I j, we consider a t-test of the hypothesis that Vi ≤Vr at significance level
α j. If this hypothesis is rejected, we say scenario i is “beaten” by scenario r, i.e., i is beaten by r if and only if

X̄i( j) > X̄r( j)+
t1−α j ,Nj−1Sir( j)

√
Nj

where t1−α j ,Nj−1 is the 1−α j quantile of the t-distribution with Nj−1 degrees of freedom,

S2
ir( j) =

1
Nj−1

Nj

∑
h=1

(Xih−Xrh− (X̄i( j)− X̄r( j)))2

is the sample variance of Xi−Xr, and X̄i( j) is the sample average of Xi1,Xi2, . . . ,XiNi . Scenarios beaten at least ⌈kp⌉
times are screened out, therefore

I j+1 =

{
i : ∑

r∈I j

1

{
X̄i( j) > X̄r( j)+

t1−α j ,Nj−1Sir( j)
√

Nj

}
< kp, i ∈ I j

}
.

The use of the t-test is motivated by the observation that, if Nj is sufficiently large, (X̄i( j)− X̄r( j)− (Vi−Vr))
√

Nj/Sir

is approximately Student t distributed (Henderson 2006). For convenience in analysis, we will treat each payoff Xi as
though it were normal. The adequacy of this assumption of normality in a closely related procedure was evaluated in
Lesnevski, Nelson, and Staum (2008). Furthermore, our procedure neither provides a confidence interval nor guarantees
a minimum probability of correctly identifying the tail, so the t-tests here do not need to be valid. We merely use them
as a tool for decreasing the MSE of our point estimator given a fixed computational budget.

4.3 Error Level for Screening

The purpose of the stopping rule (§4.5) is to make sure that enough of the computational budget is left for Phase II to
accurately estimate the values of the scenarios selected in Phase I, so in choosing the error level α j for screening at
stage j, we only consider how this affects the quality of the set γ̂ of scenarios that we select in Phase I. In particular,
define CS := {γ̂ = γ} to be the event of selecting γ at the end of Phase I. We would like to choose α0,α1, . . . ,αJ to
maximize Pr{CS}, the probability of correct selection. Unfortunately, this maximization problem is too hard to solve,
primarily because we cannot express Pr{CS} in a useful form to allow it to be optimized over the error levels.

However, the principle behind the existence of an optimal choice of α j is clear. A small α j means screening
cautiously at stage j, not screening out many scenarios, but having a low probability of mistakenly screening out a
scenario that really belongs to the tail γ; a large α j means screening aggressively, screening out many scenarios, but
with a larger probability of mistakenly screening out tail scenarios. If α0,α1, . . . ,αJ are too big, we are very likely to
make screening mistakes. If we do, some scenarios in γ will not be in IJ+1, i.e., will not survive screening, which will
prevent us from making a correct selection at the end of Phase I. If α0,α1, . . . ,αJ are too small, we will probably not
screen out many scenarios before we use up so much of the computational budget that we have to go to Phase II, when
we must select exactly ⌈kp⌉ scenarios. If the number |IJ+1| of scenarios that survive to this point is too large, each one
has a small sample size NJ because the computational budget was depleted after a small number J +1 of stages. Then
we will be forced to choose among many scenarios on the basis of sample averages that have high variance, because
their variances are inversely proportional to NJ . This implies a large probability of making selection mistakes at the end
of Phase I. In other words, by being too cautious during screening, we would waste much of the computational budget
on scenarios that we should have been bold enough to eliminate. Then we would quickly find ourselves in a situation
in which we would be forced to guess, on the basis of inadequate information, the identities of the tail scenarios from
among a large set of scenarios. We will attempt to choose a moderate α j that balances the risks of screening mistakes
during Phase I and selection mistakes at the end of Phase I.
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Figure 1: Multi-stage screening (left) and operation of the stopping rule (right) during one run of our procedure on
the historical simulation example (§5.2). In the left panel, solid lines represent sample averages of surviving scenarios,
and the dashed line is the error level for screening.

Our method chooses α0,α1, . . . ,αJ dynamically, on the basis of an approximation to Pr{CS} that is updated at
every stage of screening. We choose the error level α j at the end of stage j, just before screening. To simplify the
problem, we assume while choosing α j that this error level will be used in screening at the current stage j and all
future stages. This is not how our procedure actually works: at stage j +1 we will choose α j+1 on the basis of new
information, and α j+1 is generally not the same as α j. However, the assumption relieves us of the need to consider
α j+1,α j+2, . . . ,αJ while choosing α j, which would be difficult to do.

To choose α j, we would like to maximize the probability Pr
{

CS j
}

of selecting all tail scenarios that have survived
to stage j: CS j :=

{
γ ∩ I j ⊆ γ̂

}
. Unfortunately, we can not write Pr

{
CS j

}
as an explicit function of α j; we have to

replace it with some sort of approximation. Our approach is to use a forecast of the behavior of our procedure in later
stages to construct the following approximation to Pr

{
CS j

}
when the error level is α:

P̃( j,α) = (1−⌈kp⌉α)J̃( j,α)− j+1 /

(
|Ĩ( j,α)|
⌈kp⌉

)

where J̃( j,α) is the forecasted final stage of Phase I and Ĩ( j,α) is the forecasted set of scenarios that will survive
screening after stage J̃( j,α). The procedure for making these forecasts is described in Liu (2010). We choose α j to
maximize P̃( j,α) instead of Pr

{
CS j

}
, which we can not compute. The derivation of P̃( j,α) is in Liu (2010). Briefly,

the numerator is related to the probability that none of the tail scenarios are screened out in stages j, j +1, . . . , J̃( j,α),
while the reciprocal of the denominator is related to the probability of correctly choosing ⌈kp⌉ scenarios out of the
|Ĩ( j,α)| scenarios that are forecasted to survive screening.

The left panel of Figure 1 illustrates how the scenarios’ sample averages and the error level for screening α j change
during a single run of the procedure. At many stages, α j is quite low, because the procedure judges that the number
of surviving scenarios is small compared to the remaining computational budget. The same low level is chosen for
α j at many stages because we chose α j using a search algorithm (Liu 2010) that confines the search to a grid, and
this level is the smallest in the grid. At other stages, such as 6, 9, and 21, the procedure judges that there are too
many surviving scenarios compared to the remaining budget, so it increases the screening error level α j and screens
out many scenarios. In this run of the procedure, after stage 21, there are only 11 scenarios left, while we must select
kp = 10. However, even though the 11th scenario is not screened out, the stopping rule takes until stage 32 to decide
that screening is no longer worthwhile. This run is atypical; in replications of this example, screening usually stops
when only 10 scenarios remain. We chose to present an atypical run because its later stages show that the error level
α j selected by the procedure can vary greatly depending on the remaining budget and the current sample averages,
even when the number of surviving scenarios does not change.

4.4 Allocating the Remaining Budget to Compute the Estimator

In this section, we describe Phase II of the procedure. After restarting, it is necessary to allocate the remaining
computational budget to scenarios in γ̂ . We do this so as to minimize the variance of the ES estimator. First we describe
Phase II simulation and the ES estimator, then derive the optimal allocation.
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Conditional on each scenario i∈ γ̂ , we simulate Mi payoffs in Phase II and calculate the sample average X̄i. Because
we do not do any comparisons between scenarios in Phase II, CRN is not used; typically, independent sampling leads
to a lower variance for the ES estimator

ÊS1−p =
⌈kp⌉

∑
i=1

wiX̄πJ(i).

Now we consider how to choose the Phase II sample size Mi for i ∈ γ̂ . Because we use restarting, the bias of
the ES estimator only comes from the possibility of a wrong selection γ̂ 6= γ in Phase I. The bias does not depend on
Phase II sample sizes, so if we want to minimize the MSE we only need to minimize the variance. The variance of
ÊS1−p is

Var(ÊS1−p) = Var

(
⌈kp⌉

∑
i=1

wiX̄πJ(i)

)
=
⌈kp⌉

∑
i=1

w2
i

σ2
πJ(i)

MπJ(i)
,

where σ2
πJ(i)

= Var[XπJ(i)|πJ(i)] is the conditional variance of the payoff given that the scenario is πJ(i). Notice that,

conditional on Phase I, Var(ÊS1−p) is not a random variable. Since we do not know σ2
πJ(i)

, we use the sample variance

S2
πJ(i)

(J) of the NJ samples in Phase I instead. Then we consider the optimization problem

min
⌈kp⌉

∑
i=1

w2
i

S2
πJ(i)

(J)

MπJ(i)
s.t.

⌈kp⌉

∑
i=1

MπJ(i) = CJ+1.

Using the Karush-Kuhn-Tucker (KKT) condition, the optimal Mi is

MπJ(i) = CJ+1
wiSπJ(i)(J)

∑⌈kp⌉
r=1 wrSπJ(r)(J)

. (3)

4.5 Stopping Rule

At the end of each stage in Phase I, our procedure has to decide whether to go on screening, continuing Phase I, or to
stop screening, select γ̂ , and end Phase I. Because of restarting, we do not want to continue Phase I too long, or we
will throw out a lot of simulated payoffs, leaving too small a computational budget for Phase II, which will produce
a high-variance estimator. On the other hand, if we end Phase I too soon, when it is not yet clear which scenarios
belong to the tail, a large bias arises because we are likely to select γ̂ badly. In this section we give a stopping rule
for Phase I that balances these considerations.

We focus on the decision whether to stop Phase I after stage j, when I j+1 has just been computed. If |I j+1|= ⌈kp⌉,
there is no need to do any more screening, so we stop. Otherwise, we approximate the MSE of the ES estimator if we
stop now and if we continue, then make the decision that leads to the smallest MSE. In approximating the MSE if we
stop now, our procedure is pessimistic about the bias of the ES estimator. In approximating the MSE if we continue, our
procedure is optimistic in believing that only scenarios belonging to the tail will survive screening at stage j +1, and
that these are the scenarios with the smallest conditional payoff variances σ2 of all scenarios in I j+1. Because we are
optimistic about the next stage of screening and pessimistic about stopping, our procedure tends to continue screening
when the remaining computational budget Cj+1 is sufficiently large. As the remaining computational budget shrinks,
the variance of the ES estimator grows, and this eventually forces the procedure to stop Phase I to save enough budget
for ES estimation in Phase II. We adopt this idea of being pessimistic about stopping and optimistic about continuing
because it performed well in Lesnevski, Nelson, and Staum (2008).

Because of restarting, a Phase II sample average X̄πJ(i) is an unbiased estimator of VπJ(i). Thus the bias of our ES
estimator defined in Equation (3) is

Bias(ÊS1−p) = E
[
ÊS1−p

]
−ES1−p =

⌈kp⌉

∑
i=1

wi
(
E
[
X̄πJ(i)

]
−VπV (i)

)
=
⌈kp⌉

∑
i=1

wi
(
VπJ(i)−VπV (i)

)
. (4)

From the definition of wi, πV (·), and π j(·), it follows that Bias(ÊS1−p) is negative.
When we consider whether to stop screening after stage j, we can split the bias into two parts: the bias from

screening mistakes up to stage j and the bias from any screening or selection mistakes after stage j. The bias due
to screening up to stage j is the same whether we stop or continue after stage j, so we ignore it in formulating the
stopping rule and only consider the bias due to screening or selection mistakes after stage j. To simplify matters, we
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suppose γ ⊆ I j+1, that is, no screening mistakes have occurred so far. Given our optimistic view of continuing, we
suppose there will be no screening or selection mistakes after stage j if we continue, producing zero bias. If we stop
after stage j, the only bias comes from selection mistakes due to |I j+1| > ⌈kp⌉: if we select γ̂ now on the basis of
Nj samples from each surviving scenario, it may not be the same as γ . Consistent with our pessimistic approach to
evaluating the decision to stop, we consider the following approximate lower bound for the bias (which is negative)
due to stopping after stage j:

B( j) =

min{⌈kp⌉,|I j+1|−⌈kp⌉}

∑
i=1

wi max
δ≥0

δΦ
(
−δ
√

Nj/τ j
)

where Φ(·) is the standard normal distribution function and τ j = max
{

Sir( j) : i,r ∈ I j+1, i 6= r
}

. We refer to Liu (2010)
for details of the derivation.

We estimate the variance of the ES estimator if we stop after stage j by

Vs( j) =
⌈kp⌉

∑
i=1

w2
i S2

π j(i)
( j)

Mπ j(i)
=

1
Cj+1

(
⌈kp⌉

∑
i=1

wiSπ j(i)( j)

)2

.

The second equality follows from Equation (3) and J = j. Our pessimistic approximation to the MSE of the estimator
if we stop after stage j is MSEs( j) = B2( j)+Vs( j).

To analyze the variance if we continue, we optimistically suppose that the set of scenarios which will survive after
one additional stage of screening is exactly γ , and that they have the smallest variances among the scenarios in I j+1.
According to this optimistic assumption, we will stop after stage j +1, our ES estimator will have zero bias, and its
variance is estimated by

Vc( j) =
1

Cj+1− (Nj+1−Nj)|I j+1|

(
⌈kp⌉

∑
i=1

wiSπS( j)(i)( j)

)2

where πS( j)(·) is a mapping of
{

1,2, . . . , |I j+1|
}

to I j+1 such that SπS( j)(1)( j) ≤ SπS( j)(2)( j) ≤ ·· · ≤ SπS( j)(|I j+1|)( j);

i.e., SπS( j)(i)( j) is the ith smallest sample standard deviation among the scenarios surviving stage j. Our optimistic

approximation to the MSE of the estimator if we continue after stage j +1 is MSEc( j) = Vc( j).
The stopping rule is: if |I j+1|= ⌈kp⌉ or MSEs( j) < MSEc( j), select γ̂ and go to Phase II, otherwise continue with

stage j + 1 of screening in Phase I. This rule determines when Phase I ends, but we also use it while choosing the
screening error level α j (§4.3) to forecast when Phase I will end. When we use the stopping rule for that purpose, we
plug the forecasted sample averages, sample variances and sets of surviving scenarios into the MSE expressions given
above.

The right panel of Figure 1 shows how the stopping rule works on the same run of our procedure shown in Figure 1.
The pessimistic approximation of MSE if we stop drops steeply at stages 13, 17, and 21, as the number of surviving
scenarios gets close to kp = 10. As mentioned previously, this run is atypical in that 11 scenarios survive from stages 21
to 32. On this run, optimism that the sole surviving non-tail scenario will be screened out is not borne out. Both
estimates, MSEc and MSEs, of MSE rise after stage 21 as the computational budget is spent without achieving anything,
but MSEc rises faster because it includes the effects of continuing for one more extra, larger stage of screening. When
it catches up to MSEs, Phase I ends and the procedure selects the 10 scenarios with the lowest sample averages in the
left panel of Figure 1. On this run, 53% of the budget was spent in Phase I.

5 EXPERIMENTAL RESULTS

We test the performance of our procedure on three examples. The first example features artificial configurations of
k = 1000 scenarios in which the payoffs have heavy-tailed Pareto distributions. We vary a parameter that controls the
difficulty of screening and selection and illustrate that our procedure attains lower MSE than the standard procedure
(§3) for all values of the parameter that we considered. The second example is of a portfolio of eight call options,
with 1000 scenarios based on historical stock prices. The third example is similar to the second, but it is a two-level
simulation, with scenarios sampled in an outer-level simulation, and our procedure governing the inner-level simulation.
Using this example, we compare our procedure with the standard procedure and with the confidence interval procedure
of Lan, Nelson, and Staum (2010).

We compare the precision of the estimators these procedures produce given a computational budget expressed in
total payoffs simulated. This comparison is not entirely fair because it excludes the overhead of screening, choosing
error levels for screening, etc. Excluding the overhead of our procedure and that of Lan, Nelson, and Staum (2010) is
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Figure 2: Root mean squared error of estimating expected shortfall at the 99% level, in artificial configurations of
varying difficulties, with computational budget C = 4 million, first-stage sample size n0 = 300, and sample size growth
factor R = 1.2.

unfavorable to the standard procedure. This issue is addressed experimentally by Lan, Nelson, and Staum (2010), who
also report comparisons in which there is a fixed budget of computing time.

5.1 Artificial Configuration Example

The artificial configuration of scenarios in this example is motivated by the “slippage configuration” used in the ranking
and selection literature because it is difficult for screening and selection procedures (Kim and Nelson 2006). In this
configuration all tail scenarios have payoffs with a common distribution, while all non-tail scenarios’ payoffs have a
different common distribution. To make screening even more difficult, the payoffs of different scenarios are independent,
so that common random numbers achieve nothing. In particular, if scenarios i and r are both in the tail γ , then Vi = Vr;
and the Vi = Vr also if neither i nor r are in the tail. If i ∈ γ while r /∈ γ , then Vr = Vi +δ . The parameter δ governs
the difficulty of screening and selection: when δ is small, it is difficult to distinguish tail from non-tail scenarios, so
it will be hard to screen out scenarios and easy to make selection mistakes. On the other hand, the bias induced by
selection mistakes will be small. By changing δ , we can compare our procedure to the standard procedure for a range
of configurations with different characteristics.

Pareto distributions are often used to model heavy-tailed loss distributions. Using a heavy-tailed distribution
challenges our procedure, which was designed with normally distributed data in mind. We use the Pareto distribution
with cumulative distribution function F(x) = 1− (λ/(λ + x))2.5 for x ≥ 0. The shape parameter is 2.5 and the scale
parameter λ is 25 for tail scenarios, while for non-tail scenarios it is either 25.5, 25.875, 26.25, 26.625, 27, 27.75, or
28.5. The resulting values of δ , the difference between tail and non-tail scenarios’ values, are 0.33, 0.58, 0.83, 1.08,
1.33, 1.83, or 2.33. There are k = 1000 scenarios and we estimate ES0.99, so there are kp = 10 tail scenarios. This
example is simple enough that we can compute ES0.99 = 16.67, which makes it easier to determine the MSE of the
simulation procedures.

Figure 2 shows the root mean squared error (RMSE) of estimating ES0.99 for the standard procedure and our
procedure. RMSE was estimated by running 1000 macro-replications of the simulation experiment, and the error bars
represent the resulting 95% confidence interval for RMSE. In these experiments, the computational budget C is 4 million
payoffs, the initial sample size n0 = 300, and the sample size growth factor R = 1.2. From Figure 2 we see that as δ
decreases, the RMSE of the standard procedure increases. The reason is that its selection bias increases: when the tail
and non-tail scenarios are similar, it is very likely that some of the 990 non-tail scenarios will have sample averages
that are less than the value of the tail scenarios and will be selected into γ̂ , the set of scenarios the procedure guesses
are in the tail. Because our procedures eliminates selection bias by restarting, it gives a much more accurate point
estimator when δ is small. When δ is big, our procedure outperforms the standard procedure because it allocates the
computational budget more efficiently. In this experiment, our procedure always yields an RMSE below 0.44, which
is small compared to the true ES0.99 = 16.67 and to the standard deviation of the tail scenarios’ payoff distribution,
which is 37.27.
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Table 1: Comparison of our procedure with the standard procedure for historical simulation of a portfolio of stock
options, with computational budget C = 4 million, first-stage sample size n0 = 300, and sample size growth factor
R = 1.2.

Method Variance Bias RMSE SE of RMSE
Standard Procedure 23.5 36.7 37.1 0.15ES0.99

Our Procedure 0.93 -0.01 0.97 0.02
Standard Procedure 5.0 35.4 35.4 0.07ES0.95

Our Procedure 2.21 ≈ 0 1.49 0.04

5.2 Historical Simulation of an Options Portfolio

Next we consider a more realistic example, in which we estimate the ES of a portfolio of eight call options on Cisco
(CSCO) and Sun Microsystems (JAVA). We estimate the ES of this portfolio’s value on June 27, 2007 given information
up to June 26, 2007: in this example, T = 1 day. We use historical simulation, getting k = 1000 scenarios from the
daily returns on CSCO and JAVA stock, based on their closing prices from July 07, 2003 to June 26, 2007. A scenario
consists of the stock prices of CSCO and JAVA on June 27, 2007, created by multiplying their prices on June 26, 2007
(respectively $27.15 and $5.01) by one plus their respective returns on a day in the historical data set. We refer to
Liu (2010) for details of the simulation model and the options in the portfolio.

Table 1 shows the performance of the standard procedure and our procedure in estimating ES0.99 and ES0.95. As
in the previous example, the computational budget C is 4 million payoffs, the initial sample size n0 = 300, and the
sample size growth factor R = 1.2. The table also provides the standard error (SE) of estimating each RMSE with 1000
macro-replications. The RMSE of our procedure is significantly smaller than the RMSE of the standard procedure,
both in statistical and practical terms. If we define the relative RMSE as the ratio of RMSE to the ES being estimated,
we find the relative RMSEs of our procedure for ES0.99 and ES0.95 are 1.9% and 5.7%, respectively, whereas the
standard procedure yields RMSE that is about the same size as ES. Given this budget, our procedure provides moderate
accuracy, while the standard procedure provides answers that are not useful and indeed misleading because they are
extremely badly biased. It is surprising to see that our procedure delivers a lower RMSE when estimating ES0.99 than
for ES0.95, because it is usually thought to be more difficult to estimate ES deeper in the tail. The primary reason for
the surprising result here is that, given this set of 1000 scenarios, it is relatively easy to distinguish the 10 scenarios
with the worst losses from the others, but it is not as easy to distinguish the 50 scenarios with the worst losses—for
example, the 10th worst loss of $31.72 is widely separated from the 11th worst loss of $28.56, but the 50th and 51st
worst losses are separated by less than $0.05, and there are 9 tail scenarios and 13 non-tail scenarios closely packed
between the 42nd worst loss of $16.03 and the 63rd worst loss of $14.41.

We also tested the sensitivity of our procedure’s performance with respect to the first-stage sample size n0 and
the sample size growth factor R, which the user must choose. For estimating ES0.99 with computational budget C = 4
million, first we fixed R = 1.2, and varied n0. As long as n0 was between 30 and 1300, RMSE was below 1.11, not far
from the best RMSE the procedure attains for any value of n0. When n0 was increased past 1300, RMSE increased:
it is inefficient to spend a third or more of the computational budget in the first stage, before any scenarios can be
screened out. These findings are similar to those of Lesnevski, Nelson, and Staum (2007), and we likewise recommend
choosing n0 to be quite small, but large enough that the first-stage sample averages are approximately normal. Usually,
n0 = 30 is large enough (Lesnevski, Nelson, and Staum 2008). Next we fixed n0 = 300 and changed the growth factor
R from 1.1 to 2.0. As in Lesnevski, Nelson, and Staum (2007), this had little effect on the procedure’s RMSE, which
stayed between 0.92 and 1.11. In conclusion, we recommend R = 1.2 and n0 = 30, unless the payoff distributions are
heavy-tailed (such as the current example), in which case n0 should be increased until the first-stage sample averages
are approximately normal.

5.3 Two-Level Simulation of an Options Portfolio

This example is the same as the example in §5.2, but scenarios are generated differently. Instead of using a fixed set of
scenarios drawn from historical data, we generate them in an outer-level simulation. The outer-level simulation samples
scenarios from a joint distribution of the two stocks’ prices whose parameters are estimated from the historical data.
Given the scenarios sampled, the rest of our simulation, i.e., the inner-level simulation, is the same as in §5.2. For a
complete description of this example, see Lan, Nelson, and Staum (2010). The purpose of considering this two-level
simulation variant of the previous example is to compare our procedure with the two-level simulation procedure of
Lan, Nelson, and Staum (2010), which we refer to as the CI procedure because it generates a confidence interval for
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Table 2: Comparison of procedures for estimating expected shortfall at the 99% level in a two-level simulation of a
portfolio of stock options, with k = 4000 scenarios.

CI Procedure Standard Procedure Our Procedure
Budget n0 Average CI Standard Standard Standard

Half-width Error
RMSE

Error
RMSE

Error
4 million 612 164 1.0 109 0.40 6.7 1.6
8 million 1217 104 1.6 69 0.30 1.4 0.11

16 million 2557 49 2.3 41 0.23 0.9 0.07

ES. We make comparisons by sampling scenarios with the CI procedure, then giving these scenarios to the standard
procedure or our procedure, which perform inner-level simulation.

In Table 2, we report the average half-width of the 90% confidence interval for ES0.99 generated by the CI procedure
and compare it to the RMSEs of the standard procedure and our procedure, using the results of 100 macro-replications.
Each procedure uses k = 4000 scenarios sampled from the bivariate normal distribution described above. The parameters
k = 4000 and n0 listed in the table were chosen by a pilot experiment described in Chapter 4 of Lan (2010) to make the
CI procedure perform well. When using our procedure, we set sample size growth factor R = 1.2 and used the same
n0 as for the CI procedure, even though it is larger than the best n0 for our procedure. A large n0 is good for the CI
procedure because it is a two-stage procedure, whereas our multi-stage procedure does well with small n0. The choice
of n0 is intended to be favorable to the CI procedure and to show that the advantage of our procedure does not depend
on picking the best values of the procedure’s parameters. The RMSE of our procedure is not exactly comparable to the
half-width of a confidence interval, but Table 2 shows our procedure’s RMSE is so much smaller than the half-width
of the CI procedure that we can conclude that our procedure is greatly preferable given a small computation budget.
For these computational budgets, the CI procedure yields a confidence interval whose width is much greater than the
ES we are trying to estimate, which is not useful; likewise, the RMSE of the standard procedure is large compared to
ES. Our procedure attains a relative RMSE of only a few percent when the budget is 8 or 16 million.
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