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ABSTRACT

In this paper we develop efficient Monte Carlo methods for large credit portfolios. We assume the default indicators
admit a Gaussian copula. Therefore, we are able to embed the default correlations into a continuous Gaussian random
field, which is capable of incorporating an infinite size portfolio and potentially highly correlated defaults. We are
particularly interested in estimating the expectations, such as the expected number of defaults given that there is at
least one default and the expected loss given at least one default. All these quantities turn out to be closely related to
the geometric structure of the random field. We will heavily employ random field techniques to construct importance
sampling based estimators and provide rigorous efficiency analysis.

1 INTRODUCTION

1.1 Modeling credit defaults using latent random field structure

Consider a credit portfolio of size n. Let Yk be the default indicator (1 for default and 0 otherwise) for the k-th obligor,
for k = 1, ...,n. We further let the vector Y = (Y1, ...,Yn) admit a Gaussian copula. Equivalently, Y has the following
representation. There exists a latent multivariate Gaussian random vector X = (X1, ...,Xn) ∼ N(µ ,Σ) and a threshold
u such that Yk = I(Xk > u) for all k = 1, ...,n. Of interest in this paper are the probability of observing at least one
default, namely,

wn(u) = P

(

n

∑
k=1

Yk > 0

)

= P

(

n
sup
k=1

Xk > u

)

,

and also associated conditional expectations, such as the expected number of defaults

Nn(u) = E

(

n

∑
k=1

Yk

∣

∣

∣

n

∑
k=1

Yk > 0

)

= E

(

n

∑
k=1

I(Xk > u)
∣

∣

∣

n
sup
k=1

Xk > u

)

.

In addition, we attach a deterministic amount of loss, lk, to each default and consider the expected total loss conditional
upon at least one default,

ln(u) = E

(

n

∑
k=1

lkYk

∣

∣

∣

n

∑
k=1

Yk > 0

)

= E

(

n

∑
k=1

lkI(Xk > u)
∣

∣

∣

n
sup
k=1

Xk > u

)

.

We are interested in designing algorithms that are applicable to large portfolios (i.e. arbitrarily large n) and to situations
in which wn(u)≈ 0. In order to accommodate this situation we embed the random vector (X1, ...,Xn) inside a Gaussian
random field, f , living in a continuous domain T . More precisely, we assume that there exists a subset {t1, ..., tn} ⊂ T
such that ( f (t1), ..., f (tn)) has the same distribution as (X1, ...,Xn). Further, we denote the mean and covariance function
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of f by

µ(t) = E f (t), C(s, t) = Cov( f (s), f (t)).

With a random field representation, studying wn(u), Nn(u), and ln(u) involves investigating the behavior of the random
field on the finite set. One of the advantages of embedding a finite multivariate Gaussian random vector inside
a continuous field is that the latter object is capable of incorporating large portfolios and also potentially highly
correlated defaults. Motivated by this situation we shall study suitable continuous analogues to wn(u) and Nn(u). The
algorithms that we shall propose have straightforward adaptations to the discrete case. The complexity properties that
we shall derive carry over uniformly in n assuming that the embedding is in place. For a thorough study of extremes of
multivariate Gaussian random variable and discrete Gaussian random field, see Asmussen and Rojas-Nandayapa (2008),
Adler, Blanchet, and Liu (2008).

Let us turn to our continuous formulation. We impose the global Hölder condition, that is there exist κ , δ , β > 0
such that

E( f (s)− f (t))2 ≤ κ|t − s|2β , (1)

for all |t1 − t2|, |s1 − s2| < δ . Typically, coefficient β is in the interval (0,1]. In addition, we assume that f (t) is almost
surely continuous (with respect to t). Note that the almost sure continuity is genuinely one additional condition and
cannot be implied from continuity conditions of µ(t) and C(s, t).

Typically, one chooses T to be a d dimensional compact subset of R
d . In fact, for most illustrative examples,

T is chosen to be [0,1]d , even though the theory developed in this paper is able to tackle much more complicated
sets. There are two advantages of embedding a portfolio default pattern into a continuous random field. First, being a
subset of R

d with non-empty interior, we can essentially embed an infinite dimension multivariate Gaussian random
vector. Therefore, a random field living on a continuous domain is capable of modeling a large size portfolio. Second,
due to the global Hölder condition and the continuity assumption of f , as s → t, f (s) and f (t) tend to be “perfectly”
correlated. Therefore, this embedding provides means to model highly correlated default patterns.

In the setting of a continuous field, we will use t ∈ T for the index and therefore write Y (t) = I( f (t) > u) as the
default indicator. The analogues of the interesting quantities are,

w(u) = P

(

sup
T

f (t) > u

)

, and N(u) = E

(

∫

T
Y (t)dt

∣

∣

∣
sup

T
f (t) > u

)

. (2)

w(u) corresponds to the probability of observing one default (wn(u)) and N(u) corresponds to the conditional average
number of defaults (Nn(u)/n). We introduce additional notations. We define Au = {t ∈ T : f (t) > u} and let mLeb(·) be
the Lebesgue measure. Then, we have

N(u) = E

(

mLeb(Au)
∣

∣

∣
sup

T
f (t) > u

)

. (3)

In addition, the expected number of default can be viewed as a special case of the “expected loss” with unit loss
associated to each default. To define the “expected loss”, we introduce a continuous version of the li’s. We define a
measure, L(·), on T with density function so that

L(A) =

∫

A
loss(t)dt.

loss(t) is the loss associated with default Y (t). Then, we define the continuous analogue of the expected loss as

l(u) = E

(

∫

loss(t)Y (t)dt
∣

∣

∣
sup

T
f (t) > u

)

= E

(

L(Au)
∣

∣

∣
sup

T
f (t) > u

)

. (4)

For technical convenience, we assume that there exists δ0 > 0 such that loss(t) ∈ (δ−1
0 ,δ0) for all t ∈ T .

In this paper, we consider the case that the default probability is small. Therefore, throughout the discussion, we
are in the asymptotic regime with u → ∞ and µ(t), C(s, t) fixed.

The extremes of Gaussian random field have been extensively studied in literature, with special focus on ap-
proximations and bounds for the suprema (Piterbarg (1996), Sun (1993), Azais and Wschebor (2008), Borell (1975),
Tsirelson, Ibragimov, and Sudakov (1976)). Also, there are closed form results on the excursion set Au such as
Adler and Taylor (2007). Numerical methods for rare event analysis are studied in Adler, Blanchet, and Liu (2008)
and more thoroughly in Adler, Blanchet, and Liu (2010).

This paper is organized as follows. In Section 2, we provide the technical conditions and useful existing results
on random fields, rare-event simulation, and importance sampling. In Section 3, we introduce the importance sampling
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algorithm, its implementation and efficiency analysis. In Section 4, we provide numerical examples on the efficiency
of this proposed algorithm.

2 PROBLEM SETTING AND PRELIMINARIES

Based on the discussion in the previous section, it suffices to study the behavior of a continuous random field. To
proceed, we specify some technical conditions of the random field in context:

1. The parameter set T is a d dimensional compact subset of R
d with a non-empty interior. In addition, there

exists a constant κ > 0, such that for any t ∈ T and ε small enough,

mLeb(B(t,ε)) ≥ κεd ,

where B(t,ε) = {s ∈ T : |s− t| < ε} and | · | denotes the L1 norm.
2. There exist functions σi : T → R, for i = 1, ...,m, such that the random field has expansion,

f (t) = µ(t)+
m

∑
i=1

σi(t)Zi, (5)

where Z1, ...,Zm are i.i.d. standard Gaussian random variables. In addition, we assume that µ(t) and σi(t)’s
are uniformly Hölder continuous in T , that is, for some β ∈ (0,1]

|µ(s)−µ(t)| ≤ κ|s− t|β , sup
i
|σi(s)−σi(t)| < κ|s− t|β ,

for all |s− t| < δ . Lastly, let σ2(t) = ∑n
i=1 σ2

i (t) and assume that there exists ε0 > 0 such that

ε0 < inf
T

σ(t) ≤ sup
T

σ(t) < ε−1
0 .

Condition 1 is considered as very mild and for technical purposes only. Condition 2 is an appealing feature from
the aspects of both practical modeling and theoretical development. From the modeling point of view, Z1, ...,Zm can
be regarded as independent factors that influence the market. Each factor Zi has different impact on each different
obligor. The magnitude of this impact on the default indicator Y (t) is characterized by σi(t). Thanks to the Hölder
continuity of σi(t), two obligors tend to share similar impact from the same market factor if their spatial indices
t ∈ T are close to each other. Such a structure has been employed by Glasserman, Kang, and Shahabuddin (2007),
Glasserman, Kang, and Shahabuddin (2008) to model credit portfolios. The functional form of σi(t) can either be
from a priori knowledge or based on statistical analysis of the real data (e.g. principle component type of analyses).
Throughout the current discussion, we assume that the σi(t)’s are known in closed forms.

The existence of expansion (5). From the theoretical point of view, under very mild conditions of the covariance
function (compactness and injectivity), Mercer’s theorem (c.f. Riesz and Sz-Nagy 1955) guarantees that the random
field has the Karhunen-Loève expansion, that is,

f (t) =
∞

∑
i=1

λiϕi(t)Zi,

where ϕi(t)’s are eigenfucntions corresponding to eigenvalues λi’s. In addition, ϕi(t)’s are standardized orthogonal
functions, such that,

∫

T
ϕi(t)ϕ j(t)dt = δi j.

At least, one can view (5) as an approximation of the Karhunen-Loève expansion. In addition, Condition 2 does not
require that σi(t) to be orthogonal and is more flexible in some sense, although it does require a finite decomposition.

2.1 Performance measure of rare-event simulation

One of the main challenges in computing w(u), N(u), and l(u) is that they all involves the event {maxt∈T f (t) > u}
which is rare for large u. The goal of rare event simulation is precisely to cope with this situation. We now review
some generic notions of efficiency in rare event estimation which we shall apply to our setting. Consider a sequence of
sets Bu, indexed by the rarity parameter u, such that w(u) = P(Bu) → 0 as u → ∞. Usually, the rarity parameter u has
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practical meaning. For instance, in the current situation, u is the high level above which the random fields will exceed
thereby triggering a default. We want to compute/estimate w(u). For a Monte Carlo estimator Zu, it is more meaningful
to consider the error of Zu relative to w(u). This is because a trivial estimator Z∗

u ≡ 0 has error |Z∗
u −w(u)|= w(u)→ 0.

Therefore, one usually employs the concept of weak efficiency or asymptotic optimality as a performance measure,
which is defined as follows.

Definition 1. An estimator Zu is said to be weakly efficient in estimating w(u) if EZu = w(u) and

lim
u→∞

logVar(Zu)

logw2(u)
= 1.

Asymptotic optimality is a popular efficiency criterion in rare event simulation (see Asmussen and Glynn (2007)).
Let Zu be an asymptotically optimal estimator for w(u). It follows by using Chebyshev’s inequality that in order to
obtain an estimate which has ε relative error with respect to w(u) with probability at least 1− δ , one only needs to
generate n = o(ε−2δ−1w−ε ′(u)) independent replications of Zu (for any ε ′ > 0) and take an average of them. In order
to consider the total complexity, one also needs to take into account of the complexity in generating one Zu. In the
current context, the computation of a single Zu can typically be done in constant time in u.

2.2 Importance sampling and computation of conditional expectations

In this paper, we use importance sampling to construct efficient estimators of rare-event probabilities. Importance
sampling is based on the following basic identity. Consider two probability measures P and Q on some state space X

with σ -algebra F . If the Radon-Nikodym derivative dP
dQ (ω) is well defined on set A ∈ F , then

P(A) =
∫

A

dP
dQ

(ω)Q(dω).

Note that if one chooses Q∗ such that for each B ∈ F ,

Q∗(B) = P(B∩A)/P(A),

then, dP
dQ∗ ≡ P(A) almost surely on the set A and therefore has zero variance. This implies that the best importance

sampling distribution (with zero variance in estimating P(A)) is the conditional distribution given the event A occurs
under measure P. Certainly, this zero variance estimator is not implementable, because the Radon-Nikodym derivative
requires computing P(A), which is the quantity of interest. Nevertheless, it provides general guidelines on how to
construct efficient importance sampling estimators – a good approximation of the conditional distribution.

We now briefly explain how importance sampling can be used to estimate conditional expectations such as N(u)
and l(u). Fix K ∈ (0,∞) and let χ (K,q) be the class of random variables X satisfying 0 ≤ X ≤ K with

E[X |Bu] = Ω[1/ log(P(Bu))
q].1 (6)

Then, by noting that

EQ (XL)

EQ (L)
= E[X |Bu] =

E[X ;Bu]

P(Bu)
, (7)

where L = dP
dQ IBu , it follows easily that an asymptotically optimal estimator can be obtained by constructing the natural

estimator for E[X |Bu]; i.e. the ratio of the corresponding averaged importance sampling estimators suggested by the
ratio in the left of (7).

In the context of Gaussian random fields, we have that Bu = {supT f (t) > u} and one is very often interested in
random variables X of the form X = Γ( f ), where Γ : C(T )→ R and C(T ) denotes the space of continuous functions on
T . Endowing C(T ) with the uniform topology, consider functions Γ that are non-negative and bounded by a positive
constant. An archetypical example, the total number of default N(u) = E(mLeb(Au)|supT f (t) > u), is known to satisfy
(6) with K = mLeb(T ). So it is with the total loss, l(u) = E(L(Au)|supT f (t) > u) with K = ε−1

0 mLeb(T ). There are many
other examples of χ (K,q) with K = mLeb(T ) which satisfy (6) for a suitable q, depending on the regularity properties
of the field. In fact, if the mean and covariance properties of f are Hölder continuous, then, it is not difficult to see
that q can be estimated. In turn, we have that an asymptotically optimal importance sampling algorithm for w(u) would

1Given h and g positive, we shall use the familiar asymptotic notation h(x) = O(g(x)) if there is c < ∞ such that h(x) ≤ cg(x) for all x large
enough; h(x) = Ω(g(x)) if h(x) ≥ cg(x) if x is sufficiently large and h(x) = o(g(x)) as x → ∞ if h(x)/g(x) → 0 as x → ∞; and h(x) = Θ(g(x)) if
h(x) = O(g(x)) and h(x) = Ω(g(x)).
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typically also yield a polynomial time algorithm for functional characteristics of the conditional field given high level
excursions. Given the page limit, we restrict our discussion to the computation of w(u). The estimators for N(u) and
l(u) arise naturally once the estimator for w(u) is in force.

3 EFFICIENT SIMULATION OF GAUSSIAN RANDOM FIELD

3.1 A change of measure on C(T )

In this section, we focus our attention on the efficient computation of the default probability

w(u) = P(sup
T

f (t) > u),

as u → ∞. As discussed in the previous section, a change of measure that yields a small variance should be a good
approximation of the conditional distribution of random field given the occurrence of the rare event. As discussed
in Adler, Blanchet, and Liu (2008), Adler, Blanchet, and Liu (2010), the event {supT f (t) > u} for large number u is
mostly caused by the fact that there exists one τ ∈ T where f (τ) is particularly large. Therefore, we will construct a
change of measure in order to mimic such a feature. In addition, given {supT f (t) > u}, not all t ∈ T are equally likely
to be large. An intuitive calculation gives that

P( f (t) > u|sup
T

f (t) > u) =
P( f (t) > u)

P(supT f (t) > u)
∝ P( f (t) > u).

We interpret the above calculation as, given {supT f (t) > u}, the probability that f (t) takes a large value is proportional
to P( f (t) > u). Based on this, we propose a family of change of measures, Qγ , indexed by parameter γ , such that the
Random-Nykodym derivative is defined as follows,

L−1
γ =

dQγ

dP
=

mLeb(Aγ)

E
(

mLeb(Aγ)
) , (8)

where Aγ = {t : f (t) > γ}. It is not hard to verify that Lγ is a properly normalized Radon-Nikodym derivative with
respect to P(·|supT f (t) > γ). In addition, notice that

E
(

mLeb(Aγ)
)

= E

(

∫

T
I( f (t) > γ)dt

)

=
∫

T
P( f (t) > γ)dt.

Therefore, the computation of dQγ
dP only involves pre-simulation evaluation of a finite dimensional integral.

In order to simulate a random field according the measure Qγ , one follows the next three steps.

1. Simulate a random variable τγ according to

Qγ(τγ ∈ ·) =
E(mLeb(Aγ ∩·))

E(mLeb(Aγ))
; (9)

equivalently, τγ has density function, pγ(·), satisfying

pγ(t) =
P( f (t) > γ)

E(mLeb(Aγ))
.

2. Conditional on τγ simulate f (τγ) from the conditional distribution of f (τγ) given that f (τγ) > γ .
3. Simulate the rest of the field { f (t) : t 6= τγ} according the original distribution given the realized f (τγ).

It is not hard to show that the field generated according to this three steps follows distribution of f under Qγ (c.f.
Adler, Blanchet, and Liu (2010)). Now, we need to choose the tuning parameter γ , which turns out to be crucial in
the variance control. Intuitively, the random variable τγ indicates the location where a high excursion might occur. A
natural and intuitive choice of γ would certainly be γ = u: it is the irregular behavior of the random field at location
τγ that triggered the rare event. However, this choice turns out to be a greedy one. If let γ = u, the estimator of w(u)
takes form

Lu =
E (mLeb(Au))

mLeb(Au)
.
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Note that we used the fact that Qu(supT f (t) > u) = 1. Unfortunately, it is not hard to construct examples (with d ≥ 2)
showing that Lu has infinite variance under Qu. An intuitive and empirical explanation to this phenomenon is that by
choosing γ = u the algorithm is too “greedy”. It puts 100% bet on τγ for exceeding the target threshold u. Technically,
it results in the denominator mLeb(Au) in the definition of Lu potentially being small. Due to this concern, we propose
to choose

γa,u = u−a/u. (10)

for some a > 0. It turns out that the choice of a is rather flexible. The introduction of this “back-up” of magnitude
a/u shows a certain amount of reservation that the random field may not be able to exceed level u at location τγa,u .
However, for a given a, it is not hard to derive from the tail probability of Gaussian distribution that the probability
Qγa,u( f (τγa,u) ≤ u) is bounded away from zero and one as u → ∞. Therefore, f (τγa,u) still has large chance exceeding u
though not always. It is helpful to view τγa,u as an index that localizes the excursion set Au though it may not belong
to Au itself.

The change of measure Qγ is also analytically appealing. The form of the Lγ only involves a deterministic integral,
∫

T P( f (t) > γ)dt, and the volume of the excursion set mLeb(Aγ). There exists a substantial literature on the geometric
properties of excursion sets. It includes rigorous results such as the Euler characteristic for constant variance twice
differentiable fields (e.g. Taylor and Adler (2003)) as well as heuristics. We will later employ the existing bounds
and asymptotic results to provide stochastic bounds on the distribution of mLeb(Aγ). On the other hand, the three
step simulation procedure provides a vivid description of the distribution of the field under Qγ . As will be shown in
later analysis, we will compute the second moment of the estimator by first conditioning on (τγa,u , f (τγa,u)). Note that,
conditional on f (τγa,u) the distribution of { f (t) : t 6= τγa,u} is another Gaussian random field with computable means
and covariance function. Therefore, the analyses of second moment of corresponding estimators are manageable. From
now on, to simplify notation, we write τγa,u as τ and Qγa,u as Q whenever it does not cause confusion.

3.2 Monte Carlo for fields with finite expansion and efficiency analysis

Direct simulation of a continuous random field is typically not a feasible task on a discrete computer. However,
with the structure in (5), one only has to simulate i.i.d. random variables Z1, ...,Zn and take a linear combinations
with σi(t)’s which are known in closed form. Similarly, simulating a random field under Q turns out to be feasible
too. First, one simulate τ according to (9). Then, simulate f (τ) = ∑n

i=1 σi(τ)Zi given f (τ) > u−a/u; and lastly, we
simulate the rest field given f (τ). The last two steps can in fact be merged to one by simulating Z1, ...,Zn given
that ∑n

i=1 σi(τ)Zi > u− a/u, which only consists of simulating one truncated univariate normal random variable and
a multivariate Gaussian random vector. Here, we want to emphasize that the simulation of a N(0,1) conditional on
its being greater than b arbitrarily large can be done efficiently using acceptance rejection method by proposing from
b+Exp(1)/b. The acceptance probability in fact can be shown to converge to one as b → ∞.

Having solved the implementation issue, we proceed to the efficiency analysis. We first focus on the estimator for
w(u). Note that, we intend to control the variance of

Lw,γa,u =
E
(

mLeb(Aγa,u)
)

mLeb(Aγa,u)
I(sup

T
f (t) > u). (11)

Then, the second moment of the estimator is

EQ
(

L2
w,γa,u

)

= E2(mLeb(Aγa,u))E
Q

(

1

m2
Leb(Aγa,u)

; sup
T

f (t) > u

)

= E2(mLeb(Aγa,u))

∫

T
EQ

(

1

m2
Leb(Aγa,u)

; sup
T

f (t) > u

∣

∣

∣

∣

∣

τ

)

pγa,u(τ)dτ

=

(

∫

P( f (t) > Aγa,u)dt

)2 ∫

T
EQ

(

1

m2
Leb(Aγa,u)

; sup
T

f (t) > u

∣

∣

∣

∣

∣

τ

)

pγa,u(τ)dτ. (12)

Before, proceeding to the core analysis, we first introduce a few useful lemmas. The first one is known as B-TIS
ineuqality (Borell (1975), Tsirelson, Ibragimov, and Sudakov (1976)).

Lemma 1 (Borell-TIS). Let f (·) be a real-valued, separable, continuous Gaussian process. Suppose that

σ2 (T ) = sup
T

Var ( f (t)) < ∞.
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Let m = E(supT f (t)). Then, for all b,

P

(

sup
T

f (t) > b

)

≤ 2

(

1−Φ
(

b−m
σ (T )

))

, (13)

where Φ(·) is the c.d.f. of the standard Gaussian distribution.

The next lemma uses the B-TIS inequality and one result by Dudley (1973) and improves the bound in the presence
of entropy bounds. The proof is given in Chapter 4.1 in Adler and Taylor (2007).

Lemma 2. Let f be a mean zero almost surely continuous Gaussian random field over T with entropy function N,
where N(ε) is the smallest number of d-balls that cover T and the intrinsic matric d is defined as follows,

d(s, t) =
√

E( f (s)− f (t))2.

If N(ε) ≤ Kε−α , then for all sufficiently large u

P

(

sup
T

f (t) > u

)

≤Cα uα+η e−u2/2σ2(T ),

for every η > 0, where Cα = C(K,α,σ2
T ) is a finite constant.

Now, we proceed to the statement of the core lemma, which provides a bound on the volume of the excursion set.

Lemma 3. Consider a random field f living on T satisfying Conditions 1 and 2. There exists constants κ∗,κ1,δ ∗ ∈ (0,∞),
such that for a given t ∈ T , any z > 0, and y > κ1u2d/β

P(mLeb(Aγa,u) < y−1; sup
T

f (t) > u| f (t) = γa,u + z/u) ≤ κ∗ exp

(

−δ ∗ a2

u2 yβ/d
)

(14)

Proof of Lemma 3. Without loss of generality, we proceed the proof by assuming that t = 0. This is simply for
notational convenience. Using the decomposition in (2), the covariance function takes the form,

C(s, t) =
n

∑
i=1

σi(s)σi(t).

To save some notation, we choose κ in Condition 2 large enough such that

|C(s1, t1)−C(s2, t2)| ≤ κ|t1 − t2|β +κ|s1 − s2|β ,

for all |t1 − t2|, |s1 − s2| < δ . Conditional on f (0) = γa,u + z/u, f (t) is equal in distribution to

E(t)+g(t),

where

E(t) = µ(t)+
C(0, t)
σ2(0)

(γa,u + z/u−µ(0)),

and g(t) is an a.s. continuous mean zero Gaussian random field with with covariance function

Γ(s, t) = C(s, t)−σ−1(0)C(0,s)C(0, t).

By simple algebra, we have

Γ(s, t) ≤ 2κgσ(t)σ(s)
(

|t|β + |s|β + |t − s|β
)

,

and

dg(s, t) =
√

E(g(s)−g(t))2 ≤ κg|s− t|β/2.
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For proof of the above statement on process g, see Lemma 6.9 in Adler, Blanchet, and Liu (2010). We prove the bound
in (14) by two cases: z ≥ a and z < a. We start with the first case that z ≥ a. For any y > κ1u2d/β , we have that for
some λ > 0 (using Condition 1 and simple algebraic manipulations),

P

(

mLeb(Aγa,u) < y−1; sup
T

f (t) > u| f (0) = γa,u + z/u

)

≤ P

(

sup
|t|≤λy−1/d

E(t)+g(t) < γa,u

)

.

We choose κ1 large enough such that for all y > κ1u2d/β

sup
|t|≤λy−1/d

∣

∣

∣

∣

µ(t)−µ(0)
C(0, t)
σ2(0)

∣

∣

∣

∣

<
z

4u
, sup

|t|≤λy−1/d

∣

∣

∣

∣

C(0, t)
σ2(0)

−1

∣

∣

∣

∣

γa,u ≤
z

4u
.

Therefore,

sup
|t|≤λy−1/d

|E(t)−E(0)| ≤ z
2u

,

where E(0) = γα,u + z/u . Then, by Lemma 2,

P

(

mLeb(Aγa,u) < y−1; sup
T

f (t) > u| f (0) = γa,u + z/u

)

≤ P

(

sup
|t|≤λy−1/d

−g(t) >
a

2u

)

≤ exp

(

−δ ∗ a2

u2 yβ/d
)

,

for δ ∗ sufficiently small. The last inequality is due to Lemma 2. For the second case that z∈ (0,a), we let t∗ = argsupT f (t)
and define a new field ξ (s, t) = f (s)− f (t) living on T ×T . Then, for some λ > 0 (again using Condition 1)

P

(

mLeb(Aγa,u) < y−1; sup
T

f (t) > u| f (0) = γa,u + z/u

)

≤ P

(

sup
|t−t∗|≤λy−1/d

f (t) < γa,u; f (t∗) > u| f (0) = γa,u + z/u

)

≤ P

(

sup
|s−t|≤λy−1/d

ξ (s, t) > a/u| f (0) = γa,u + z/u

)

.

Similarly, by choosing κ1 sufficiently large, sup|s−t|≤λy−1/d |E(s)−E(t)| < a
2u for all y > κ1u2d/β . In addition,

Var(ξ (s, t)) ≤ E(ξ 2(s, t)) = d2
g(s, t) ≤ κ2

g |s− t|β .

Then, by Lemma 2,

P

(

sup
|s−t|≤λy−1/d

ξ (s, t) > a/u| f (0) = γa,u + z/u

)

≤ exp

(

−δ ∗ a2

u2 yβ/d
)

,

for δ ∗ sufficiently small.

Using the core lemmas, we are ready to present the main theorem of this paper.

Theorem 4. Let f be a Gaussian random field satisfying Conditions 1 and 2. Then, for any given a > 0, the estimator
in (11) is asymptotically efficient in estimating w(u).

Proof of Theorem 4. Thanks to Lemma 3, for all y > κ1,

P(m−1
Leb(Aγa,u)u

−2d/β > y; sup
T

f (t) > u) ≤ exp
(

−δ ∗a2yβ/d
)

.
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By stochastic domination (Lemma 6.11 in Adler, Blanchet, and Liu (2010)), there exists c > 0 such that

E

(

1

m2
Leb(Aγa,u)

; sup
T

f (t) > u

∣

∣

∣

∣

∣

τ

)

≤ cu4d/β .

Then, according to (12), using c′ > 0 to denote a generic positive constant, we obtain

EQ
(

L2
w,γa,u

)

=

(

∫

P( f (t) > γa,u)dt

)2 ∫

T
E

(

1

m2
Leb(Aγa,u)

; sup
T

f (t) > u

∣

∣

∣

∣

∣

τ

)

pγa,u(τ)dτ

≤ cm2
Leb(T )sup

T
P2( f (t) > γa,u)u

4d/β

≤ c′m2
Leb(T )u4d/β sup

T
P2( f (t) > u)

≤ c′m2
Leb(T )u4d/β P2

(

sup
T

f (t) > u

)

.

The conclusion of weak efficiency is immediate by using B-TIS inequality to obtain that

lim
u→∞

1
u2 logP2

(

sup
T

f (t) > u

)

= − 1
2σ2(T )

.

4 NUMERICAL IMPLEMENTATION

In this section, we apply our algorithm to a few mean zero and constant variance fields.
To generate f from the Q, one needs the following steps:

1. Simulate τ . Since f has mean zero and constant variance, we simulate τ uniformly over the domain T with
respect to Lebesgue measure.

2. Simulate f (τ). Under the original law, f (τ) ∼ N(0,σ2). We simulate f (τ) given that f (τ) > γa,u = u−a/u.
3. Simulate (Z1, ...,Zm) given that ∑m

i=1 σi(τ)Zi = f (τ), which is a multivariate Gaussian random vector.
4. Compute the estimator. We need EmLeb(Aγa,u) and mLeb(Aγa,u( f )). Then, output

EmLeb(Aγa,u)

mLeb(Aγa,u( f ))
I(sup

T
f (t) > u).

For all the examples, we fix a = 0.5.

Example 5 (one dimensional case). Let

f (t) = Z1 cos(t)+Z2 sin(t)

and T = [0,3/4] where Z1 and Z2 are i.i.d. standard Gaussian r.v. The tail probability of supT f (t) is know in closed
form (Adler and Taylor (2007))

P(sup
t∈T

f (t) > u) = 1−Φ(u)+
3

8π
exp(−u2/2)

Example 6 (two dimensional case). Let

f (t1, t2) = Z1 cos(t1)+Z2 sin(t1)+Z3 cos(t2)+Z4 sin(t2),

where (t1, t2) ∈ T = [0,2π]2. Zi’s are i.i.d. standard Gaussian random variables. We compute P(supt∈T f (t) > u). This
quantity also has closed form

P(sup
t∈T

f (t) > u) =
π
2

ue−u2/4(2Φ(
u√
2
)−1)+ exp(−u2/2).
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Table 1: Simulation results for Example 5.

u True value Est. Std. Er. Std. Er./Est.
3 2.68E-03 2.72E-03 2.3E-05 0.0086
5 7.32E-07 7.33E-07 6.4E-09 0.0087
10 3.06E-23 3.08E-23 2.7E-25 0.0089
20 1.93E-88 1.95E-88 1.6E-90 0.0081

All result are based on 104 independent simulations.

Table 2: Simulation results for Example 6.

u True value Est. Std. Er. Std. Er./Est.
5 8.55E-03 8.64E-03 6.6E-05 0.0076
10 1.23E-10 1.23E-10 1.0E-12 0.0082
20 6.59E-43 6.44E-43 5.4E-45 0.0083

All result are based on 104 independent simulations.

Table 3: Simulation results for Example 7.

u Est. Std. Er. Std. Er./Est.
7 5.88E-03 1.3E-04 0.023
10 2.59E-06 5.2E-08 0.023
15 5.06E-15 7.0E-17 0.014
20 1.54E-27 1.5E-29 0.010
30 1.32E-63 6.8E-66 0.005

All result are based on 104 independent simulations.

Example 7 (there dimensional case). Let

f (t1, t2, t3) = Z1 cos(t1)+Z2 sin(t1)+Z3 cos(t2)+Z4 sin(t2)+Z5 cos(t3)+Z6 sin(t3),

and (t1, t2, t3) ∈ T = [0,2π]3. Zi’s are i.i.d. standard Gaussian. Table 3 shows the results.

The simulation results are given in Tables 1, 2, and 3.
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