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ABSTRACT

In this paper we present our ongoing effort to use importance sampling to develop unbiased, bounded estimators of
densities, distribution functions and expectations of functions of a random vector, when the characteristic function of the
(multi-dimensional) random vector is available in analytic or semi-analytic form. This is especially of interest in options
pricing as stochastic processes such as affine jump processes and Levy processes are ubiquitous in financial modeling
and typically have characteristic functions (of their value at a given time) that are easily evaluated while their density
or distribution functions have no readily computable closed form. Typically, for pricing options via Monte Carlo, a
discretized version of the underlying SDE is simulated using Euler or a related method and the resultant estimator has
a discretization bias. A noteworthy feature of our Monte Carlo approach is that, when applicable, it provides unbiased
estimators.

1 INTRODUCTION

As is well known, in the options pricing literature, stochastic differential equations (SDE) are used to model the
movement of underlying financial instruments such as stock, bond, commodities prices, interest and foreign exchange
rates, and default intensities of corporates (see, e.g., Duffie (1992), Shreve (2004) for an introduction). Typically, under
the no-arbitrage condition, the price of an option can be expressed as the expectation of its discounted payoff (as a
function of the underlying financial instruments) under the risk neutral-measure. This representation allows Monte-Carlo
simulation to be used to price such options by taking the average of sample discounted pay-offs generated via simulation.
However, often the density or the distribution function of the underlying financial instruments is not available and
there are no straightforward ways to generate samples with the correct distribution. Typically, a sample is obtained by
discretizing the underlying SDE. This may lead to a discretization bias in generated samples. Substantial literature has
come up recently on how to reduce or remove this bias. One strand of literature focusses on developing correction terms
in the discretization schemes to reduce the bias (see Glasserman (2004), Asmussen and Glynn (2007) for bias related
issues in sampling from SDEs). Another more recent strand focuses on generating exact samples from an SDE (see,
e.g., Beskos and Roberts (2005), Chen (2010)). Although, the latter has had success in a limited framework involving
single dimensional SDE’s.

There is also a significant literature that exploits the fact that although the density or the distribution functions of an
SDE evaluated at any given time may not be available, its characteristic function may have a closed or a semi-analytic form
(i.e., easily computable form). This is true for a large class of models including those involving affine-jump diffusions
and Levy processes (see, e.g., Kahl and Lord (2010), Borovkov and Novikov (2002), Carr and Madan (1999), also see
Abate and Whitt (1992a), Abate and Whitt (1992b) for related queueing literature). Then, using Fourier inversion or
related Parseval/Plancheral identity, options can be priced by numerically integrating suitably adjusted characteristic
function. In this paper, we build upon this literature by noting that often the integral involved may be multi-dimensional.
For instance, price of a call option with two separate barriers may have a representation as an expectation

E
[

(X −K)+I{Y≤b1}I{Z≥b2}
]

where X ,Y,Z are random variables whose joint characteristic function may be known, b1,b2 are constants, and IA(·) is
the indicator function of the set A. Here, and more generally in examples involving dimensionality of three or more,
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the traditional methods for evaluating integrals such as quadrature or fast Fourier transform, may be inefficient. We
propose that importance sampling based Monte-Carlo be used instead in such cases, and we develop conditions under
which the resulting estimator is bounded (in particular, the variance is finite).

Note that the general idea of using importance sampling to aid in evaluating integrals involving Fourier inversion
has wide applicability. For instance, consider a case where the density function of a random vector depends on a
parameter set α . For each α , the density function may be unavailable but the characteristic function may be known.
Then, importance sampling can be used to estimate the density function for any α . This, in turn may be useful in
maximum likelihood estimation of α from the samples of the random vector.

In Section 2 we discuss how importance sampling may be used to estimate joint probability density functions,
options prices using Parseval/Pancheral identity, and multi-dimensional distribution functions. In Section 3 we report
numerical results for Heston’s Stochastic Volatility model. We end with a brief conclusion in Section 4.

2 FOURIER INVERSION AND SIMULATION

The essential idea of using importance sampling in conjunction with Fourier inversion is straightforward. We first
discuss it for the simple case of estimating the joint probability density function of a random vector. We then note
that using Parseval/Pancheral identity, option prices may often be expressed as integrals involving Fourier transforms,
and importance sampling may be effectively used to estimate these. We end this section with an algorithm that uses
importance sampling to estimate multi-dimensional distribution functions. We also discuss few examples where these
ideas are applied.

Some notation: Consider a p dimensional random vector X = (X1, . . . ,Xp). The (joint) characteristic function of
X is defined as

φX(t) = φX(t1, t2, . . . ,tp) = E[eι(t1X1+t2X2+···+tpXp)] = E[eιtT X]

where ι =
√
−1 is the complex root of unity.

2.1 Estimating joint PDF

Let f denote the joint density function of X (assuming this exists). Then,

φX(t) =
∫

Rp
eιtT x f (x)dx.

Furthermore, under the assumption that |φX(t)| is integrable, we have by the inversion formula:

f (x) =

(

1
2π

)p ∫

Rp
φX(t)e−ιtT xdt. (1)

When p = 1, it can be seen (Lemma XV 4, Feller (1971)) that if f has integrable derivatives f ′, f ′′, . . . , f (n), then
φX (t) is o(|t|−n). In the general p ≥ 1 case, we assume that their exists δ > 1 such that

φX(t) = o

(

(
p

∏
i=1

|ti|)−δ

)

. (2)

This may be interpreted as φX(t)(∏p
i=1 |ti|)δ converges to zero as maxi ti → ∞.

Well known, Hormander Theorem and related conditions guarantee smoothness of the joint density function of X
(see, e.g., Komatsu and Takeuchi (2001), M.Bismut (1981)), from which (2) may follow.

Then, by setting the importance sampling density function as

g(t) =
cε

∏p
i=1(1+ |ti|)δ−ε

for ε ∈ [0,δ −1) and appropriate normalization constant cε , we have

f (x) =

(

1
2π

)p ∫

Rp

φX(t)e−ιtT x

g(t)
g(t)dt. (3)
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This then provides a straightforward method for estimating the joint density function: Generate i.i.d. samples
(T1,T2 . . . ,TN) from the density g. The sample average

(

1
2π

)p 1
N

N

∑
i=1

φX(Ti)e−ιTT
i x

g(Ti)

is an unbiased estimator of f (x) for each x. Since each sample φX(T)e−ιTT x

g(T) is bounded by supt
∏p

i=1(1+|ti|)δ−ε φX(t)
cε

, which
in turn, being a supremum of a continuous function that can be made arbitrarily small outside a compact set (by
assumption (2)), is finite. The resultant estimator has all moments finite and the variance converges to zero as N → ∞.
In practice, one may ignore the imaginary component from the generated samples because its mean equals zero. In
fact, this may be an effective control variate.

2.2 Options pricing using Parseval/Pancheral’s Formula

If X is an R
p valued random variable with density function fX and characteristic function φX then by Parseval/Pancherel

identity, under technical conditions we have

E[H(X)] =
∫

Rp
H(x) fX(x)dx1dx2 · · ·dxp =

(

1
2π

)p ∫

Rp
h(t)φX(−t)dt1dt2 · · ·dtp (4)

where h(t) =
∫

Rp eιtT xH(x)dx1dx2 · · ·dxp is the Fourier transform of H(x) (see (Feller 1971), (Rudin 1986)). This is
useful as an option price often takes the form

∫

Rp H(x) fX(x)dx1 · · ·dxp where H(x) denotes the discounted payoff as
a function of asset value x and fX denotes the pdf of these asset values under the risk neutral measure. As mentioned
earlier, often we may not have explicit knowledge about the density function fX but instead the characteristic function
φX may be readily available in an analytic or semi-analytic form. In such a case, the option price can be evaluated
using the right most integral in (4), provided the Fourier transform h(t) for the function H(x) is defined and well
behaved. See, e.g., Borovkov and Novikov (2002), Carr and Madan (1999), Kahl and Lord (2010) for further details
on when the latter condition holds and relaxations based on damping technique as well as numerous applications of
this representation. The following example illustrates one scenario where Fourier transform h(t) for a popular cost
function H(x) is known.

Example 1. Consider the example of pricing a European call option on a single asset. While methods such as quadrature
or Fast Fourier Transform for evaluating integrals may be preferred over Monte Carlo in the single dimension setting,
this example is useful to simply illustrate the proposed method. The option price equals E(eX −K)+ where X denotes
the logarithm of the asset price at maturity. Let fX denote its density function.

As in Borovkov and Novikov (2002), write:

(ex −K)+ = (ex − eb)+ = ex
(

1− e−(x−b)
)+

= e(1+a)xe−ax
(

1− e−(x−b)
)+

= e(1+a)xG(x),

where b = lnK and G(x) = e−ax
(

1− e−(x−b)
)+

. It is easily seen that fourier transform of G(x) is given by

Ĝ(t) =
∫ ∞

−∞
eιtxG(x)dx =

eb(ιt−a)

(a− ιt)(a+1− ιt)
.

Also, under the assumption E[e(1+a)X ] < ∞, we have

∫ ∞

−∞
eιtxe(1+a)x fX (x)dx = φX (t − ι − ιa)

so that

E[(eX −K)+] =
∫ ∞

−∞
e(1+a)xG(x) fX (x)dx =

1
2π

∫ ∞

−∞
φX (−t − ι − ιa)Ĝ(t)dt (5)

Note that |Ĝ(t)| = O(|t|−2), so that when X has a Gaussian distribution, we have φX (t)Ĝ(t) = O(|t|−δ ) for any δ > 0.
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Next we consider the case of estimating the RHS in (4). The idea is same as the previous case. We write this
integral as

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞

[

h(t)ϕX(−t)
g(t)

g(t)
]

dt1dt2 · · ·dtp = Eg

[

h(T)ϕX(−T)

g(T)

]

Where g is a density function on R
p, and T is a random vector with this density. This density may be chosen so that

the random variable h(T)ϕX(−T)
g(T) is bounded a.s. Again, we assume that,

h(t)ϕX(−t) = O

(

(
p

∏
i=1

|ti|)−δ

)

(6)

for some δ > 1.
Then by selecting

g(t) =
cε

∏p
i=1(1+ |ti|)δ−ε

for an appropriate constant cε for ε ∈ [0,δ −1), it is easy to see that h(T)ϕX(−T)
g(T) is bounded a.s., so that the simulation

results in an estimator with finite variance that decreases to zero as the number of generated samples increases to
infinity.

2.3 Estimating Joint Distribution Function

Let F(·) be the distribution function of X. That is,

F(x1,x2, . . . ,xp) := FX(x1,x2, . . . ,xp) := P[X1 ≤ x1,X2 ≤ x2, . . . ,Xp ≤ xp]

We will drop the subscripts from F when there is no possible confusion about the random variables involved. Recall
that the joint characteristic function of X is defined as

φX(t) = φX(t1, t2, . . . ,tp) = E[eι(t1X1+t2X2+···+tpXp)] = E[eιtT X].

For 1 ≤ i1 < i2 < · · · < ik ≤ p, denote the joint df of (Xi1 ,Xi2 , . . . ,Xik) by

FXi1 ,Xi2 ,...,Xik
(xi1 ,xi2 , . . . ,xik) := P[Xi1 ≤ xi1 ,Xi2 ≤ xi2 , . . . ,Xik ≤ xik ].

Likewise, denote the joint characteristic function by

φXi1 ,Xi2 ,...,Xik
(ti1 , ti2 , . . . ,tik) := E[eι(ti1 Xi1 +ti2 Xi2+···+tik Xik) ]

Note that

FXi1 ,Xi2 ,...,Xik
(xi1 ,xi2 , . . . ,xik) = lim

x j→∞ , j 6∈{i1,i2,...,ik}
FX(x1,x2, . . . ,xp)

and

φXi1 ,Xi2 ,...,Xik
(ti1 , ti2 , . . . ,tik) = φX(0, .., ti1 ,0, ..,0, ti2 ,0, . . . ,0, tik ,0, ..,0)

Define,

u0(x) = u0(x1,x2, . . . ,xp) := 1

and for 1 ≤ k ≤ p

uk(x) = uk(x1,x2, . . . ,xp) := ∑
1≤i1<i2<···<ik≤p

FXi1 ,Xi2 ,...,Xik
(xi1 ,xi2 , . . . ,xik)

The following relation is well known (see, e.g., (Gurland 2001), (Shephard 1991a), (Shephard 1991b)):

p

∑
k=0

(−1)k2p−kup−k(x) =

(−1
π

)p ∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
∆t1 ∆t2 · · ·∆tp

[

φX(t)e−ιt′x

ιt1ιt2 · · · ιtp

]

dt1dt2 · · ·dtp (7)
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where

∆th(t) = h(t)+h(−t).

Note that by applying ∂ p

∂x1∂x2···∂xp
to both sides of equation (7) we get the inversion formula for density as:

f (x1,x2, . . . ,xp) =

(

1
2π

)p ∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
φX(t)e−ιt′xdt1dt2 · · ·dtp, (8)

which holds whenever |φX (t)| is integrable.

2.3.1 Monte Carlo estimation

We now discuss one way to get an unbiased estimator F̂N(x1,x2, . . . ,xp) of a multivariate df F(x1,x2, . . . ,xp) at a given
point (x1,x2, . . . ,xp). We exploit the multivariate inversion formula (7). Importance sampling is used to estimate the
various integrals that appear in the proposed algorithm. Its implementation is described later. In the proposed algorithm,
to estimate the df of dimension p we need to estimate all the lower dimensional marginal dfs. we do this iteratively in
p steps. We spell out the first few steps to add clarity to the algorithm:

Step 1: Note from (7) (with p set to 1) that

2FXi(xi)−1 =

(−1
π

)

∫ ∞

0
∆t

[

φXi(t)e
−ιtxi

ιt

]

dt.

By using importance sampling to estimate the integral on the RHS, unbiased estimates of FXi(xi) for i = 1,2, . . . , p are
obtained.

Step 2: Again, from (7) (with p set to 2):

4FXi,Xj(xi,x j)−2[FXi(xi)+FXj(x j)]+1 =

(−1
π

)2 ∫ ∞

0

∫ ∞

0
∆t1∆t2

[

φXi,Xj(t1, t2)e
−ι(t1xi+t2x j)

ιt1ιt2

]

dt1dt2.

Using importance sampling to get a samples of integral in the RHS and combining this with the estimates of FXi(xi)
in Step 1, we get unbiased estimates of FXi,Xj(xi,x j) for 1 ≤ i < j ≤ p.

Step k (k = 3, . . . , p) : From (7), we have

2kFXi1 ,...,Xik
(xi1 , . . . ,xik)+

k

∑
j=1

(−1) j2k− juk− j(xi1 , . . . ,xik)

=

(−1
π

)k ∫

R+k
∆t1 · · ·∆tk





φXi1 ,...,Xik
(t1, · · · , tk)e−ι ∑k

j=1 t jxi j

ιt1 · · · ιtk



dt1 · · ·dtk.

Using the earlier generated estimates of uk− j(xi1 , . . . ,xik) for 1 ≤ j ≤ k−1, and sampling to estimate the integral on
the RHS, we get an unbiased estimator of FXi1 ,...,Xik

(xi1 , . . . ,xik) for 1 ≤ i1 < i2 < · · · < ik ≤ p.

Note that at each step in the above algorithm, we need to estimate the integral of the form

∫

R+k
∆t1 · · ·∆tk

[

φX(t)e−ιt′x

t1t2 · · ·tk

]

dt1 · · ·dtk =
∫

R+k

[

ψ(x, t)
t1t2 · · ·tk

]

dt1 · · ·dtk, (9)

where the bold vectors above are now of dimension k and

ψ(x, t) = ∑
εi∈{1,−1}

(ε1 · · ·εk)φX(ε1t1, . . . ,εktk)e
−ι(ε1t1x1+···+εktkxk).

2805



Dey and Juneja

Alternatively,

ψ(x, t) = 2kE

(

(
k

∏
i=1

Bi)φX(B1t1, . . . ,Bktk)e
−ι(B1t1x1+···+Bktkxk)

)

,

where each Bi is an independent Bernoulli random variable taking values −1 or 1 with equal probability.
Thus, to estimate (9) via importance sampling we re-express it as

∫

R+k

[

ψX(t)
(t1 · · ·tk)g(t)

]

g(t)dt1 · · ·dtk = Eg

[

ψX(T)

(T1T2 · · ·Tk)g(T)

]

.
Assuming (2) as before, if we set

g(t) =
dε

∏k
i=1(1+ ti)δ+1−ε

for appropriate constant dε , 0 ≤ ε < δ , then the unbiased sample for (9) equals

2k(∏k
i=1 Bi)φX(B1T1, . . . ,BkTk)e−ι(B1T1x1+···+BkTkxk)

(T1T2 · · ·Tk)g(T)

where (T1,T2, . . . ,Tk) are generated using g and the Bi’s are independently generated as discussed earlier. It can be
easily seen that under mild conditions, this output is bounded and hence the simulation estimator involving average
of such samples has finite variance that converges to zero as the generated samples increase to infinity. Also, one can
generate one set of (Bi : i ≤ p) and (Ti : i ≤ p) and use them to estimate each term of the form (9) to get an unbiased
sample for F(x1,x2, . . . ,xp).

Example 2 below illustrates a case where finding the options price can be reduced to evaluating a multi-dimensional
distribution function using above Fourier inversion ideas.

Example 2. Suppose we want to price a derivative security whose pay-off is given by

V (X1,X2,X3) = (X1 −K1)
+I{X2≤K2}I{X3≥K3}.

Under fundamental theorem of asset pricing this reduces to evaluating the expectation (under the risk neutral
measure):

E[V (X1,X2,X3)] = E[(X1 −K1)
+I{X2≤K2}I{X3≥K3

}]
= E[X1I{X2≤K2}I{X3≥K3

}]−K1P[X1 ≥ K1,X2 ≤ K2,X3 ≥ K3]

= EX1P∗[X1 ≥ K1,X2 ≤ K2,X3 ≥ K3]−K1P[X1 ≥ K1,X2 ≤ K2,X3 ≥ K3]

where P∗ is a measure defined by P∗(A) = EX1I(A)
EX1

for all measurable A. In many settings in finance, the density or
the distribution function of (X1,X2,X3) is not readily available, however, their joint characteristic function is known.
One popular example corresponds to the case where (X1,X2,X3) are a solution at a particular time to an affine process
SDE. Specifically, a p-dimensional Ito process X(t) = (X1(t), ...,Xp(t)) satisfying SDE

dX(t) = µ(X(t))dt +σ(X(t))dW(t),

is called affine if the Ft-conditional characteristic function of X(T ) is exponential affine in X(t), for all t ≤ T .
That is there exists functions A : (0,∞) → C and B : (0,∞) → C

p such that

E[eιuT X(T )|Ft ] = eA(T−t,u)+B(T−t,u)T X(t)

for all u ∈ R
p and t ≤ T .

Assuming that A and B are sufficiently smooth standard argument using Feynman-Kac formula implies that A and
B satisfies two coupled ordinary differential equations (referred to as generalized Ricatti equations), subject to two
boundary conditions A(0,u) = 0 , B(0,u) = ιu for all u ∈ R

p(for details see Duffie (1992)). These two equations can
be solved for A and B in closed form (e.g., Heston’s model) or can be approximated easily using standard numerical
techniques like Runge-Kutta method. Furthermore, the process X(t) remains affine under the probability measure P∗.
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So the option price involves estimating multidimensional distribution function where the characteristic function is easily
computed.

3 Numerical example

In this section we apply our method in a simple setting of Heston’s stochastic volatility model. This has the advantage
that the results are available from literature for comparison.

Suppose that under risk neutral meausre the stock price and its volatility process follow:

dS(t) = µS(t)dt +
√

V (t)S(t)dW (t) (10)

dV (t) = κ(θ −V (t))dt +ω
√

V (t)dZ(t) (11)

dZ(t)dW (t) = ρdt (12)

The parameters values as well as their interpretations are specified in Table (1). This is not an affine process, but
we can convert it to one by substituting X(t) = lnS(t). In what follows we assume that µ = 0 and write:

dW (t) = dW1(t) and dZ(t) = ρdW1(t)+
√

1−ρ2dW2(t)

The system of SDEs under these transformations is:

dX(t) = −1
2

V (t)dt +
√

V (t)dW1(t) (13)

dV (t) = κ(θ −V (t))dt +ωρ
√

V (t)dW1(t)+ω
√

1−ρ2
√

V (t)dW2(t) (14)

The resulting coupled Ricatti equation can be solved in closed form for an expression of the characteristic function
ϕ(u) of X(T ) (see, e.g., Kahl and Lord (2010)). We get

ϕ(u) = eC(T,u)+D(T,u)V0+ιu lnF
,

where

C(T,u) =
κθ
ω2

[

(κ −ρωιu+d(u))T −2ln
c(u)ed(u)T −1

c(u)−1

]

,

D(T,u) =
κ −ρωιu+d(u)

ω2 × ed(u)T −1

c(u)ed(u)T −1
,

with

c(u) =
ρωιu−κ −d(u)

ρωιu−κ +d(u)
and d(u) =

√

(ρωιu−κ)2 +ω2(u2 + ιu).

See Kahl and Jackel (2005), for technical issues concerning the continuity of the complex logarithm embedded in
the expression of D. They also implement numerical integration algorithm of Gauss and Lobatto to evaluate the price
of a European call option. Along the lines of Example (2), using Fourier inversion, it is well known that this price is
given by

C =
1
2
(S0 −K)+

1
π

[

S0

∫ ∞

0
f1(u)du−K

∫ ∞

0
f2(u)du

]

, (15)

where

f1(u) := ℜ
(

e−ιu lnKϕ(u− ι)
ιuS0

)

and f2(u) := ℜ
(

e−ιu lnKϕ(u)

ιu

)

.

We perform our experiment in the same set up as Kahl and Jackel (2005). Specifically, we use their method to
evaluate the characteristic function, and consider the same parameter values in our numerical experiment (as shown in
Table 1). For these parameters using Gauss Lobatto algorithm for numerical integration Kahl and Jackel (2005) report
the price of the call option to equal 0.0495212.

We use importance sampling to estimate the two integrals appearing in (15). Our importance sampling density is :
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Table 1: Model specifications.

Symbol for Value
S0 Intial stock price 1.0
V0 intial volatility 0.16
K Strike price 2.0
T Maturity 10.0
ω volatility of volatility 2.0
κ Mean reversion rate 1.0
θ Long term mean volatility 0.16
ρ Correlation -0.8

g(t) =
ε

(1+ t)ε+1

for ε = 2,3,4. We can estimate the two integrals separately, and can in principle use different importance sampling
density to estimate them. But empirically we observe considerable variance reduction by using the same IS density and
same samples to estimate the two integrals (suggesting positive correlation in the two outputs). For instance, when we
estimated the two integrals using independent samples, N = 100,000, with same density (ε = 3), our price point estimate
equalled 0.0467 with 95% confidence interval (0.0420,0.0514) (confidence width= 0.0094). When this experiment
was done using common random numbers for the two integrals, our point estimate equalled 0.0496 with 95% and
confidence interval (0.0480,0.0511) (confidence width= 0.0031). So over nine times variance reduction through using
common random numbers. The results in Tables 2, 3 and 4 are using common random numbers. We note a reasonable
rate of convergence to the true value. In this example ε = 2 appears to have lower variance that appears to increase
with increasing ε .

Table 2: ε = 2

N price 95% confidence interval
1000 0.0523 (0.0469,0.0578)

10000 0.0496 (0.0479,0.0514)
100000 0.0494 (0.0485,0.0508)

Table 3: ε = 3

N price 95% confidence interval
1000 0.0488 (0.0338,0.0637)

10000 0.0521 (0.0472,0.0569)
100000 0.0496 (0.0480,0.0511)

4 Conclusions

In this paper we reported some observations from our ongoing research on using importance sampling to estimate
multi-dimensional probability density functions, distribution functions and related measures that can be obtained by
inverting Fourier transforms, whenever the Fourier transform, or equivalently, the characteristic function are available in a
closed or easily computable form. This may be a useful approach as in many applications, particularly in financial options
pricing, Fourier transforms of underlying functions or random variables are readily available while their distributions
may not have a closed form representation. The proposed methodology may then become a viable alternative especially
when multiple dimensions are involved.
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