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ABSTRACT

We developed an importance sampling method to estimate Conditional Value-at-Risk for portfolios in
which inter-dependent asset losses are modeled via a Gaussian copula model. Our method constructs
an importance sampling distribution by shifting the latent variables of the Gaussian copula and thus
can handle arbitrary marginal asset distributions. It admits an intuitive geometric explanation and
is easy to implement. We also present numerical experiments that confirm its superior performance
compared to the naive approach.

1 INTRODUCTION

Estimating the risk of a portfolio through Monte Carlo simulation is a fundamental task in risk
management. Different measures of risk call for different simulation techniques. Among the very
many risk measures that have been proposed in the literature and applied in practice, Value-at-Risk
(VaR) is arguably the most popular one. VaR was developed by JP Morgan in 1990s and since then has
been widely adopted by the banking industry. The Basel II Accord has made it a mandatory risk measure
for determining regulatory capital requirements. Recently, Artzner, Delbaen, Eber, and Heath (1999)
argued that a risk measure is necessarily “coherent” to encourage diversification. This concept of
coherence later was extended by Follmer and Schied (2002) to a larger set of convex risk measures.
It turns out that VaR is not coherent and a coherent alternative is Conditional Value-at-Risk (CVaR).
In this paper, we present an importance sampling procedure for CVaR portfolio risk estimation.

Literature on efficient sampling mechanisms for CVaR estimation has been scarce. In their
work, Manistre and Hancock (2005) developed an importance sampling method to estimate CVaR
for a single normal variable. For a sum of Bernoulli variables, Merino and Nyfeler (2004) showed a
method to exponentially tilt the Bernoulli masses to generate importance samples for CVaR estimation.
A relevant, but different, line of work is tail probability estimation, which concerns devising efficient
simulation procedures to evaluate the extreme probability of exceeding a given threshold. One
important application of such procedures is credit risk estimation. Glasserman and Li (2005), and
Glasserman, Kang, and Shahabuddin (2008) have developed importance sampling methods to evaluate
tail probabilities for the widely used CreditMetrics model.

We assume portfolio loss is driven by a Gaussian copula model. The random potential loss of
each asset in the portfolio may follow an arbitrary marginal distribution. The dependency among
assets are captured by correlation between a set of latent Gaussian variables. More specifically, we
consider the following portfolio

L = aT X = a1X1 +a2X2 + ...+anXn,

where a = [a1,a2, ...,an]
T ∈ Rn is the amount of capital invested in assets i = 1,2, ...,n, and X =

[X1,X2, ...,Xn]
T ∈ Rn is a random vector that represents the potential losses of the assets. Our goal is
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to evaluate the risk of total loss L of this portfolio, where risk is measured by CVaRβ (L). Recall that
the CVaR value of a random variable L is the expectation value of L given that it is greater than its
β -quantile. More specifically, let VaRβ denote the β -quantile of L, i.e.,

VaRβ = min{l : Pr(L ≤ l) ≥ β},

then CVaRβ (L) can be defined as

CVaRβ (L) = E[L | L ≥ VaRβ ].

A naive approach to estimate CVaRβ (L) is as follows: 1) draw a set of i.i.d. sampling points X j

from X , 2) compute L j = aX j for each j, 3) use L j to calculate V̂aRβ , an estimated value of VaRβ ,

and 4) choose only those L j’s that are greater than V̂aRβ , and average across them. The final result
is the conditional sample average and is an estimate of CVaRβ (L).

Clearly, a major shortcoming of this approach is that, roughly speaking, only 1−β percent of
sample points L j’s will eventually be selected to compute the conditional sample average. This
usually leads to a large estimation variance because of insufficient sample size. This shortcoming
becomes more severe as β approaches one, as less portion of the total sample points will be utilized
for estimation.

To reduce estimation variance, we would like to sample from a shifted L to get more importance
sample points that are greater than the quantile value VaRβ . However, since we can not directly
sample L, let alone from a shifted L, we need to find an approach to draw importance samples Y j

from X , such that aTY j would behave as if they were sampled from a shifted L. This is achieved by
properly shifting random vector X .

In the rest of paper, we first present our importance sampling approach in section 2; then we test
our approach in section 3; finally in section 4, we discuss potential extensions to our method.

2 IMPORTANCE SAMPLING SCHEME

We use a Gaussian copula to capture the dependency structure among random losses X1, ...,Xn. In such
a model, random vector X = [X1, ...,Xn]

T is represented by a component-wise nonlinear transformation
of a Gaussian vector Z = [Z1, ...,Zn]

T as,

Xi = F−1
i (Φ(Zi)), i = 1, ...,n, (1)

where Zi ∼ N(0,1) is a standard normal random variable, Φ(·) is the univariate standard normal
cdf, Fi(·) is the marginal cdf of Xi, and F−1

i (·) is the inverse of Fi(·). Since Zi is standard normal,
Φ(Zi) is uniformly distributed on interval [0,1], and thus the cdf of Xi is the same as Fi(·). To
capture the dependency among Xi’s, Zi’s are correlated with correlation matrix ΣZ , i.e., Z follows
distribution N(0,ΣZ). Without loss of generality, we assume ΣZ is positive definite, i.e., ΣZ has full
rank. Otherwise, we can always reduce the dimension of Z to ensure ΣZ has full rank. In this paper,
we assume ΣZ is given. Practically speaking, it should be estimated from data. The NORTA procedure
is well-known for that purpose (Cario and Nelson. 1997).

We engineer an importance sampling scheme for X by shifting the Gaussian vector Z. Let
Y = [Y1, ...,Yn]

T be an random vector generated by applying the same non-linear transformation that
generates X to a shifted Z, i.e.,

Yi = F−1
i (Φ(Zi +∆Zi)), i = 1, ...,n, (2)

where ∆Zi is the amount of shift imposed on Zi, we want to draw an importance sample from Y to
construct an estimator of CVaRβ (L) with reduced variance.

Note that since Z1, ...,Zn are correlated, shifting a single Zi will influence other Zii’s through the
correlation matrix ΣZ . We apply a linear transformation on Z to decouple this cross-influence effect.
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Let

ΣZ = UT DU

be the singular value decomposition of the correlation matrix ΣZ . Construct a random vector V =
[V1, ...,Vn]

T as

V = D−1/2UZ, (3)

then V1, ...,Vn are n independent standard normal random variables. Since ΣZ is positive definite, we
know that UT = U−1 is an orthogonal matrix and D−1/2U has full rank. Therefore, the inverse map
from V to Z can be written as

Z = D1/2UTV. (4)

Any shift ∆V on V can be easily transformed to an corresponding shift ∆Z = D1/2UT ∆V on Z through
(4).

Let V 1, ...,V J be an i.i.d. sample of V generated by independently drawn J points from N(0, In)
(i.e., the standard n-dimensional multivariate normal distribution with n independent and standard
normal components). Applying linear transformation (4) on each point V j, we get a sample Z1, ...,ZJ

of Z. Further applying nonlinear transformation (1) to each point Z j, we get a sample X1, ...,XJ of
X . Given such a sample of X , we calculate the empirical loss L j for each point X j as

L j = aT X j. (5)

Sort L1, ...,LJ in an ascending order. Let L(1), ...,L(J) denote the sorted sequence with L(1) ≤ ...≤ L(J),
and K denote the largest integer such that (J−K)/J ≥ 1−β , i.e.,

K = max{ j | (J− j)/J ≥ 1−β , j = 1, ...,J}, (6)

then we can estimate the β -VaR value of L as

V̂aRβ (L) = L(K). (7)

Consider operation aT X j in (5), it projects a sample point X j in the support space Rn of random
vector X (thus called X-space) to a direction pointed by vector a. Without loss of generality, assume a
is an unit vector, i.e., aT a = 1, then under such a projection, sample point X (K) is projected to anther
point L(K)a lying in a ray that passes the origin and points to direction a. Let

HX = {W ∈ Rn | aTW = L(K)}, (8)

be the hyper-plane in the X-space that has normal direction a and cuts through point L(K)a , then HX
separates all sample points X1, ...,XJ in the X-space into two groups: one contains those points with
aT X j ≥ L(K); another contains the rest. Denote these two groups as CX and C̄X respectively.

Note that since each V j determines a single image X j through a chain of maps (4) and (1), partition
{CX , C̄X} in the X-space naturally induces a partition of sample points V 1, ...,V J in the support space
of random vector V (thus called V -space). Denote such an induced partition in the V -space as {CV , C̄V}
with CV being defined as

CV = {V j | X j ∈ CX , j = 1, ...,J},
i.e., CV contains all V j’s whose images X j’s belong to CX .

In the V -space, we want to find a hyper-plane to separate two groups of points CV and C̄V . This
is a classic binary classification problem. Very many different methods exist for such a problem. In
the next section, we will numerically test different methods. No matter what classification method
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we adopt, the output is always a hyper-plane in the V -space that can be represented by

HV = {W ∈ Rn | kTW = b},

where k is an unit normal vector (i.e., kT k=1) of the hyper-plane and |b| is the distance from the origin
to the hyper-plane. Note that CV and C̄V typically can not be completely separated by a hyper-plane
in the V -space. What we are looking for is a hyper-plane that separates CV and C̄V with minimum
classification error.

Recall that V follows a standard n-dimensional normal distribution N(0, In). We shift the center
of such a distribution, which actually is the origin, to the projection point of the origin on hyper-plane
HV , which can be represented by vector bk. In other words, we shift V by

∆V = bk,

and consequently shift Z by

∆Z = bD1/2UT k. (9)

Intuitively, we shift distribution function N(0, In) in the V -space along a direction k corresponding to
(approximately) the direction pointed by a in the X-space. And the amount of shift b along direction
k in the V -space is such a value that the induced amount of shift along direction a in the X-space is
L(K) (approximately), the estimated β -VaR value of L.

After shifting ∆Z, Z +∆Z follows a multivariate normal distribution N(bD1/2UT k,ΣZ). Applying
transformation (2) on Z +∆Z, we get a random vector Y as defined in (2). Let gY (t), t ∈ Rn denote
the pdf of Y , and gX(t), t ∈ Rn denote the pdf of X , generated by un-shifted Z. We need to calculate
the likelihood ratio gX(t)/gY (t) in order to carry out our importance sampling procedure. To that end,
let φZ(t), t ∈ Rn denote the joint pdf of Z, i.e.,

φZ(·) = N(0,ΣZ),

then gX(t) = gX(t1, ..., tn) can be written in terms of φZ(·) as

gX(t1, ..., tn) = φZ(Φ−1(F1(t1)), ...,Φ−1(Fn(tn)))|A|, (10)

where A is the Jacobian matrix of transformation

Zi = Φ−1(Fi(Xi)), i = 1, ...,n,

and |A| is the determinant of A. The above transformation is the inverse map of (1), and thus is a
component-wise transformation as well. This means that A is a diagonal matrix and we can explicitly
write the i-th diagonal entry of A as

Aii =
∂Φ−1(Fi(ti))

∂ ti
=

fi(ti)
φ(Φ−1(Fi(ti)))

,

where fi(·) = F ′
i (·) is the marginal pdf of Xi, and φ(·) = Φ′(·) is the pdf of the standard normal random

variable. Plug this back into equation (10), we write gX(·) in terms of φZ(·) as

gX(t1, t2, ..., tn) = φZ(Φ−1(F1(t1)), ...,Φ−1(Fn(tn)))
n

∏
i=1

fi(ti)
φ(Φ−1(Fi(ti)))

.

Similarly, let

φZ+∆Z(·) = N(bD1/2UT k,ΣZ),
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be the joint pdf of Z +∆Z, then gY (·) can be written as

gY (t1, t2, ..., tn) = φZ+∆Z(Φ−1(F1(t1)), ...,Φ−1(Fn(tn)))
n

∏
i=1

fi(ti)
φ(Φ−1(Fi(ti)))

.

Therefore, the likelihood function w(t) can be written as

w(t) =
gX(t)
gY (t)

=
φZ(Φ−1(F1(t1)), ...,Φ−1(Fn(tn)))

φZ+∆Z(Φ−1(F1(t1)), ...,Φ−1(Fn(tn)))
.

This likelihood function w(·) will be evaluated at importance sampling points drawn from gY (·).
We can either recycle existing sample points Z1, ...,ZJ (used to estimate VaRβ (L) as shown in (7))
to generate such points, or create a completely new set of sample points. The latter approach is
straight-forward : we first draw points from N (bD1/2UT k,ΣZ), the pdf of Z + ∆Z, and then apply
transformation (2) to get a set of sample points of Y . To recycle Z1, ...,ZJ, we first shift each point Z j

by ∆Z = bD1/2UT k as shown in (9), then apply transformation (2) on Z j + bD1/2UT k to get points
Y 1, ...,Y J . From now on, we assume we’ll take the recycling approach to generate Y 1, ...,Y J for the
simplicity of presentation.

Given sample points Y 1, ...,Y J , the likelihood ratio w j = w(Y j) of each point Y j is simply

w j =
φZ(Φ−1(F1(Y

j
1 )), ...,Φ−1(Fn(Y

j
n )))

φZ+∆Z(Φ−1(F1(Y
j

1 )), ...,Φ−1(Fn(Y
j

n )))

=
φZ(Z j +bD1/2UT k)

φZ+∆Z(Z j +bD1/2UT k)
. (11)

Based on Y 1, ...,Y J , we compute the “exaggerated” empirical loss L̃ j for each j as

L̃ j = aTY j, j = 1, ...,J.

We then sort L̃1, ..., L̃J in an ascending order and denote the sorted sequence as L̃(1), ...., L̃(J) with
L̃(1) ≤ ... ≤ L̃(J). Let w( j) be the corresponding likelihood ratio of the j-th smallest element L̃( j) in
the sorted sequence, we then find the largest integer S between 1 and J such that the sum of w( j) from
S to J is greater than J(1−β ), i.e.,

S = max{s |
J

∑
j=s

w( j) ≥ J(1−β ), s = 1, ...,J}. (12)

Finally, β -CVaR value of the portfolio loss L is estimated as

ĈVaRβ (L) =

(
J

∑
j=S

w( j)aTY ( j)

)/( J

∑
j=S

w( j)

)
. (13)

Equations (12) and (13) warrant some further explanations. Compare equations (12) and (6), we
can see that w j/J can be interpreted as the “real probability” to generate Y j if it were drawn from
gX(·), the pdf of X . Since we actually generate Y j from gY (·), each sample Y j needs to be scaled by
w j to get the “real probability” as if they were generated from fX(·).

We summarize our method as follows

1. Draw i.i.d. sample points V 1, ...,V J from N(0, In), get Z1, ...,ZJ through transformation (4),
and get X1, ...,XJ through transformation (1).

2. Calculate L1, ...,LJ as in (5), and estimate VaRβ (L) as in (7).
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3. Divide sample points X1, ...,XJ into two groups CX and C̄X in the X-space, and find the
corresponding partition CV and C̄V in the V -space.

4. Find a hyper-plane that separates CV and C̄V in the V -space and output parameters k and b.
5. compute ∆Z as in (9).
6. generate Y j by applying transformation (2) to Z j +∆Z.
7. compute w j using (11), and evaluate CVaRβ (L) as shown in (13).

3 COMPUTATIONAL EXPERIMENTS

In this section, we study the computational performance of our importance sampling algorithm on a
set of numerical experiments implemented in MATLAB. An instance of a numerical experiment is
fully specified in terms of:

1. a set of n marginal densities of X1,X2, ...,Xn;
2. a n×n correlation matrix ΣZ ;
3. a vector of n weights a1,a2, ...,an;
4. the number of sample points J.

The goal in all experiments below is to estimate CVaR at the 95-percentile of the random variable

L =
n
∑

i=1
aiXi. We use J = 1000 in all experiments. A run reported in each of the tables below is a

set of 100 experiments that we conduct in order to estimate the variance of the CVaR estimator. In
all the following results (tables), the percentage of variance reduction in CVaR estimate is computed
relative to the variance in CVaR estimate obtained from plain simulation using the same number of
samples.

3.1 An illustrative example in two dimensions

We first provide an illustration of our algorithm on a simple two-dimensional instance with the
following input data.

Table 1: A two-dimensional example.

Variable Marginal density Weight (a)
X1 normal(10, 5) 5
X2 exponential (0.9) 25

The correlation matrix, ΣZ is taken to be:

ΣZ =

[
1 0.5428

0.5428 1

]

We tried two variants of the linear classifier in our algorithm, namely linear classification using
Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). We used the MATLAB func-
tion call classify with default settings for the LDA classifier, and LIBSVM (Chang and Lin 2001)
with default settings for the SVM classifier. Figure 1 shows the LDA classifier in the Z-space, and
Figure 2 shows the same LDA classifier the V -space. Similarly, Figure 3 shows the SVM classifier in
the Z-space, and Figure 4 shows the same SVM classifier in the V -space. Note that the SVM classifier
pushes the linear decision boundary to the farthest possible separation of the two sample-specific
classes, while the LDA classifier is less extreme with respect to the position of the linear boundary
(note the number of red points on the blue side of the linear boundary in Figure 1, or Figure 2). Table
2 shows the results for the above example for a run across 100 experiments. Both methods lead to
variance reduction and the LDA-based method performs better than the SVM-based method for this
simple example.
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Figure 1: Importance Sampling Shift in the Z-Space using LDA classifier.
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Figure 2: Importance Sampling Shift in the V-Space using LDA classifier.

3.2 The special case where all marginal densities are normal

We next consider the special case where all the marginal densities are normal distributions. In other

words, we seek to estimate CVaRβ (L), where L =
n
∑

i=1
aiXi and each Xi has a marginal density that is nor-

mal, say, Xi ∼N(µi,σi), each with mean µi and standard deviation σi. The correlation matrix is ρX . The
analytical expression for CVaR in this case (for β ≥ 0.5) is given as (Rockafellar and Uryasev 2000),

CVaRβ (L) = aT µ +

√
aT Sa

√
2π(1−β )exp

[
erf−1(2β −1)

]2 (14)

In Equation(14), S = (σσT ) • ρX is the covariance matrix corresponding to the multivariate
Gaussian random vector X (and the operator • refers to element-by-element multiplication) and erf−1

refers to the inverse of error function erf(z) = 2√
π
∫ z

0 e−t2
dt. This is an interesting case because it

allows us to benchmark the CVaR estimate produced by our algorithm against the analytical CVaR.
We tested the algorithm for n = 50, where all fifty marginal densities were fixed to be normal densities
with arbitrarily chosen means and standard deviations. For simplicity, we chose the weighting vector
a to be a vector of ones, i.e. ai = 1, for all i. We report the performance of the algorithm when run
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Figure 3: Importance Sampling Shift in the Z-Space using SVM classifier.
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Figure 4: Importance Sampling Shift in the V-Space using SVM classifier.

against a set of 5 randomly chosen correlation matrices in Table 3 (parameters of the 50 marginal
densities and the five correlation matrices not shown due to space considerations).

The percentage of CVaR estimation error in Table 4 is computed relative to the corresponding
true value of CVaR computed using Equation (14). It can be seen that the LDA-based variant of our
algorithm gives better performance in terms of variance reduction in all five instances. The CVaR
estimation error is also the least for the LDA-based method.

3.3 A mixture of normal and exponential densities

We conclude the experimentation with the more general case that involves a combination of normal
and exponential densities. We test on a reasonably large sized set of instances with n = 100, where 50
variables have normal marginal densities and the remaining 50 variables have exponential marginal
densities. As in the previous subsection, the parameters for specifying the above 100 marginal densities
were arbitrarily chosen, and the weighting vector was fixed at unity. We report the performance of
our algorithm when run against a set of 5 randomly chosen correlation matrices in Table 5 (again,
parameters of the 100 marginal densities and the five correlation matrices not shown). In Table 5, the
column labeled “CVaR∗” is a higher-fidelity CVaR estimate that is obtained using plain simulation
with 8000 samples, and repeating across 100 such experiments. All experiments were conducted on
a Lenovo ThinkPad T60p, with an Intel CPU, T2600 at 2.16 GHz, and 2 GB RAM. Our MATLAB
implementation could not simulate more than 8000 samples on the 100-dimensional space due to
memory limitations.
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Table 2: Results for the two-dimensional example.

Method CVaR Estimate Variance Variance Reduction
Plain 173.91 20.70 -

SVM-based 175.67 13.47 34.93%
LDA-based 175.01 6.56 68.28%

Table 3: Results for the case of 50 normal variables.

Run CVaR (Plain) Var (Plain) CVaR (SVM) Var (SVM) CVaR (LDA) Var (LDA) True CVaR
1 1895.89 333.27 1897.46 210.47 1897.60 88.57 1898.07
2 1963.26 550.29 1965.51 234.93 1963.94 133.71 1964.83
3 1781.84 208.31 1782.77 94.78 1782.68 57.42 1782.37
4 1834.89 284.22 1839.64 172.72 1838.94 71.06 1838.74
5 1818.11 282.90 1823.12 103.20 1822.23 73.45 1822.44

Table 4: CVaR Estimation error (%) and Variance Reduction (%) for the case of 50 normal variables.

Run CVaR (Plain) Var (Plain) CVaR (SVM) Var (SVM) CVaR (LDA) Var (LDA)
1 -0.11% - -0.03% 36.85% -0.02% 73.42%
2 -0.08% - 0.03% 57.31% -0.05% 75.70%
3 -0.03% - 0.02% 54.50% 0.02% 72.43%
4 -0.21% - 0.05% 39.23% 0.01% 75.00%
5 -0.24% - 0.04% 63.52% -0.01% 74.03%

The percentage of CVaR estimation error in Table 6 is computed relative to CVaR∗. It can be seen
that for the more general case the SVM-based method gives an overall better performance in terms
of both variance reduction and quality of the mean CVaR estimate. The CVaR estimation error is the
least for the SVM-based method. The extent of variance reduction obtained from the SVM-based
method is comparable to that obtained from the LDA-based method, and both variants lead to greater
than 50% reduction in the variance of CVaR estimate. The LDA based method overestimates the
CVaR by around 1-1.25%, compared against the higher-fidelity plain simulation estimate.

We conclude our preliminary numerical investigation with the observation that the proposed
importance-sampling algorithm appears to be effective in terms of variance reduction in estimating
CVaR for weighted sums of correlated random variables. Both variants of the algorithm, namely the
LDA-based and the SVM-based methods, are easy to implement with relatively minor computational
overhead. The performance of the SVM-based method seems to be more competitive in the more
general case that involves non-normal marginal densities. We speculate that there might be an optimal
shift, i.e. an optimal positioning of the linear decision boundary that is somewhere in between the
LDA-based and the SVM-based decision boundaries, and one may need to tune this for any given
application.

4 CONCLUSIONS

We have developed an importance sampling procedure to estimate CVaR with a general Gaussian
copula model. Our method has an intuitive geometric explanation. It is fairly easy to implement
and involves minimal computational effort. Numerical tests have confirmed its superior performance
compared to the naive approach. This work may be extended further in two directions: first, investigate
our algorithm from a theoretical perspective and characterize its asymptotic performance; second,
devise an method to find the “optimal” shift for arbitrary marginal densities and Gaussian copula
correlation matrix.
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Table 5: Results for the more general case of 100 mixed variables. CVaR∗ is an estimate of CVaR with 8000 samples
in each of the 100 experiments

Run CVaR (Plain) Var (Plain) CVaR (SVM) Var (SVM) CVaR (LDA) Var (LDA) CVaR∗

1 2072.24 471.51 2075.91 196.46 2102.31 161.23 2076.30
2 2074.90 352.96 2075.14 174.51 2099.95 178.73 2077.31
3 2023.31 297.24 2026.58 141.55 2048.96 146.88 2028.91
4 2090.90 423.76 2094.42 177.08 2121.14 167.35 2096.10
5 2120.59 506.81 2123.92 214.03 2151.42 193.10 2124.37

Table 6: CVaR Estimation error (%) and Variance Reduction (%) for the case of 100 mixed variables.

Run CVaR (Plain) Var (Plain) CVaR (SVM) Var (SVM) CVaR (LDA) Var (LDA)
1 -0.20% - -0.02% 58.33% 1.25% 65.80%
2 -0.12% - -0.10% 50.56% 1.09% 49.36%
3 -0.28% - -0.11% 52.38% 0.99% 50.59%
4 -0.25% - -0.08% 58.21% 1.19% 60.51%
5 -0.18% - -0.02% 57.77% 1.27% 61.90%
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