
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

SIMULATION ON DEMAND FOR PRICING MANY SECURITIES

Ming Liu
Barry L. Nelson
Jeremy Staum

Department of Industrial Engineering and Management Sciences
McCormick School of Engineering

Northwestern University
2145 Sheridan Road

Evanston, IL 60208-3119, U.S.A.

ABSTRACT

We develop a sequential experiment design procedure to construct multiple metamodels based on a
single stochastic simulation model. We apply the procedure to approximate many securities’ prices
as functions of a financial scenario. We propose a cross-validation method that adds design points
and simulation effort at the design points to target all metamodels’ relative prediction errors. To
improve the expected quality of the metamodels given randomness of the scenario that is an input to
the simulation model, we also propose a way to choose design points so that the scenario is likely to
fall inside their convex hull.

1 INTRODUCTION

“Simulation on demand” is a computing paradigm that delivers real-time answers as accurate as those
that would be generated by a time-consuming run of a simulation model. This is achieved by investing
computational effort in advance, before decision-makers ask about a specific scenario. Simulation
metamodeling is one method that supports simulation on demand. A metamodel is an approximation
to the function y of interest, whose value y(XXX) in scenario XXX is estimated by running the simulation
model for scenario XXX . Building a metamodel requires a simulation experiment in which the simulation
model is run for several scenarios, but after this computational investment has been made, it can be
very fast to evaluate the metamodel in any scenario. This article is devoted to experiment design in
building multiple metamodels based on the same simulation model.

We consider a financial example: a firm deals in many securities whose prices are functions of the
financial scenario. A single simulation model is used to determine the securities’ prices. Simulation
on demand provides an approximate picture of the way the prices change as the markets move.
Our procedure is related to one due to Frye (1998), involving a grid-based interpolation technique,
which requires a grid design for the simulation experiment. Because of the impracticality of a
high-dimensional grid design, Frye used principal component analysis to reduce the dimension of
the simulation model. One of our contributions is to extend Frye’s work by showing that the latest
metamodeling techniques make it computationally feasible to construct highly accurate metamodels
of each security’s price, not merely one moderately accurate metamodel of the portfolio’s value. In
particular, by using an experiment design that is practical in higher dimension, we avoid the loss
of accuracy entailed by dimension reduction. This requires a metamodeling technique other than
grid-based interpolation. We use stochastic kriging (Ankenman, Nelson, and Staum 2010), but our
procedure works with many metamodeling techniques.

Our main contribution is a sequential experiment design procedure that adds design points and
simulation effort at the design points to reduce all metamodels’ prediction errors to an acceptable level
relative to the true values. It is appropriate to focus on relative (not absolute) error in applications

2782978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Liu, Nelson and Staum

involving multiple metamodels which have very different magnitudes, including our financial example,
in which some options have much larger prices than others. The key ingredient in our procedure is cross-
validation, which is widely used for validating prediction schemes (Geisser 1993). Kleijnen (2008)
discusses cross-validation in stochastic simulation metamodeling. The novel aspect of our procedure
for stochastic simulation is that it continues until the prediction errors are likely to be small, instead of
continuing until the simulation output is consistent with the metamodeling technique’s assumptions.

In some applications, the metamodels are functions of a scenario that can be regarded as random:
in our financial example, the scenario that will occur tomorrow is random. In such applications,
it is meaningful to consider the expected performance of the metamodels at a randomly selected
scenario. Another contribution of this article is an initial experiment design that aims to make
the scenario fall inside the convex hull of design points with high probability. This improves the
metamodels’ performance because many metamodeling techniques are much better at interpolation
than at extrapolation.

2 MOTIVATING EXAMPLE

We consider a portfolio of 75 European-style options. The underlying vector stochastic process models
six equity indices: S&P500, Nikkei225, Stoxx50, FTSE100, Hang Seng, and KOSPI Composite. To
keep the example simple, we use a very basic model and approach to model calibration. The equity
indices, denoted by j = 1,2, . . . ,6, follow geometric Brownian motion where the non-annualized
daily volatilities σ j and correlation matrix ΣXXX are estimated from 1000 historical daily returns. A
scenario XXX is a vector whose components are called risk factors, and it determines the values of the
equity indices. The risk factors are six standard normal random variables with correlation matrix
ΣXXX . If tomorrow’s scenario is XXX , then for each j = 1,2, . . . ,6, tomorrow’s value of the jth index is
S j(1) = S j(0)exp

(

σ jXj
)

, where S j(0) is today’s value of the jth index. Here we have set the drift to
zero, because it is negligible over one day. The portfolio contains five classes of options: put options
on the average return of all six indices, call options on the average return of the S&P500, Nikkei225,
and Stoxx50, call options on the average return of the FTSE100, Hang Seng, and KOSPI Composite,
call options on the minimum return of the S&P500, Nikkei225, and Stoxx50, and call options on the
minimum return of the FTSE100, Hang Seng, and KOSPI Composite. Within each class, there are
15 options with one of five maturities and one of three strike prices. The maturities are 3, 4, 5, 6, and
7 years. The three strike prices are chosen to make the option in the money, (roughly) at the money,
or out of the money. Given that tomorrow’s scenario is XXX , the value of the jth index after t days is

S j(t) = S j(1)exp

((

µ j−
σ2

j

2

)

(t−1)+σ j
√

t−1B j

)

, (1)

where BBB is a vector of six standard normal random variables with correlation matrix ΣXXX , and each
risk-neutral drift µ j equals the non-annualized daily yield of a government bond denominated in the
relevant currency minus the dividend yield of the index. A sample path, simulated conditional on XXX ,
includes the values of all six equity indices after 3, 4, 5, 6, and 7 years. The simulation model for
option pricing computes discounted payoffs for all 75 options on a single sample path.

3 SIMULATION PROCEDURE

Our procedure chooses scenarios, called design points, in which to run simulations. We denote
a design point by xxx to differentiate it from a random scenario XXX . Our procedure also determines
the number of sample paths to simulate at each design point. A sample path is a simulation of the
underlying stochastic process conditional on the scenario given by the design point, as in Equation (1).
The sample average Ȳh(xxx) of the discounted payoffs of security h on every sample path simulated at
design point xxx serves as an estimate of the price of security h at this design point. The procedure
produces one metamodel Ŷh for the price of each security h = 1,2, . . . ,r. The goal of the procedure’s
first phase, initial simulation, is to get accurate estimates of all security prices at all design points.
This is not enough to ensure that the metamodels will give accurate estimates of all security prices

2783

Liu, Nelson and Staum

at scenarios that are not design points. The goal of the second phase, metamodel validation, is to
improve the accuracy of the metamodels away from the design points. This phase adds design points
and sample paths until the metamodels pass a cross-validation test of their ability to estimate security
prices at scenarios that are not used at design points. An outline of the procedure is:

Phase I. Initial Simulation
1. Generate k design points xxx1,xxx2, . . . ,xxxk.
2. For i = 1,2, . . . ,k, simulate ni sample paths at design point xxxi, where ni is chosen to target

the relative accuracy in estimating the value of each security at xxxi.
Phase II. Metamodel Validation

1. Create metamodels by stochastic kriging.
2. Perform cross-validation on the metamodels. If they all pass the cross-validation test, the

procedure terminates.
3. If they do not all pass, simulate more sample paths at existing design points or generate

additional design points and simulate sample paths at them. Then return to Step 1 of
Phase II.

3.1 Initial Simulation Phase

The initial simulation phase consists of two parts: a method for choosing k design points and a
two-stage simulation procedure. Information from the first stage, which simulates n0 sample paths
at each design point, is used to choose the total sample size ni at each design point xxxi, i = 1,2, . . . ,k.
The second stage of simulation generates the sample paths required to reach those total sample sizes.

3.1.1 Design Points

In choosing design points, we have two goals. One goal is for tomorrow’s scenario to fall inside the
convex hull of the design points with high probability. The reason for this is that many metamodeling
techniques, including stochastic kriging, are much better at interpolation than at extrapolation. The
other goal is, as usual in simulation metamodeling, to fill the space of scenarios evenly with design
points.

To address the probability that tomorrow’s scenario XXX falls inside the convex hull of the design
points, we need a joint distribution FXXX for the risk factors X1,X2, . . . ,Xd . Our procedure requires that
we be able to evaluate a function f such that, if UUU is uniformly distributed on (0,1)d , then f (UUU) has
distribution FXXX . We choose design points xxx1,xxx2, . . . ,xxxk in X by choosing design points uuu1,uuu2, . . . ,uuuk
in U and transforming them to get xxxi = f (uuui) for i = 1,2, . . . ,k. One way to get f : U →X is
from a simulation algorithm: even if f is not known explicitly, a typical simulation algorithm takes
independent uniform random variables as inputs and generates a random vector with distribution
FXXX . However, sometimes the analyst may have only marginal distributions FX1,FX2, . . . ,FXd for the
risk factors and their correlation matrix ΣXXX . A further assumption about dependence among the risk
factors is required to get a joint distribution FXXX . An assumption often made in financial engineering
models (although it may give an unrealistic picture of extreme events), is that XXX has a Gaussian
copula (McNeil, Frey, and Embrechts 2005, § 5.1). The same assumption is used in simulation input
modeling in the normal-to-anything (NORTA) transformation (Cario and Nelson 1997). Then the
transformation XXX = f (UUU) is accomplished as follows, where Φ is the standard normal cumulative
distribution function:

1. For each i = 1,2, . . . ,k, set Wi = Φ−1(Ui) to get a standard normal vector WWW .

2. Set ZZZ = Σ−1/2
ZZZ WWW to get a vector ZZZ with standard normal marginal distributions and correlation

matrix ΣZZZ , where Σ−1/2
ZZZ satisfies Σ−1/2

ZZZ

(

Σ−1/2
ZZZ

)⊤
= ΣZZZ .

3. For each i = 1,2, . . . ,k, set Ũi = Φ(Zi) to get a vector ŨUU whose components are dependent
and have marginal distributions that are uniform on (0,1).

4. For each i = 1,2, . . . ,k, set Xi = F−1
Xi

(Ũi) to get a vector XXX .

2784

Liu, Nelson and Staum

Cario and Nelson (Cario and Nelson 1997, Cario and Nelson 1998) show how to choose ΣZZZ so that
the correlation matrix of XXX is ΣXXX .

Our experiment design contains two kinds of points: corner points and points sampled via quasi-
Monte Carlo. Let p be a target probability for tomorrow’s scenario to fall into the convex hull of
the design points. Each of the 2d corner points is the image under f of a vertex of the hypercube
Up = {uuu : 0.5(1− p1/d) ≤ u j ≤ 0.5(1 + p1/d) ∀ j = 1,2, . . .d}, which has volume p. Including 2d

corner points is feasible when the dimension d is moderate. The target probability p must be less
than one if it is impossible to map the vertices of the unit hypercube [0,1]d to usable scenarios in
X : e.g., in the example of Section 2, if U1 = 1, then the first risk factor X1 and the value S1 of the
S&P500 index are infinite. The probability that tomorrow’s scenario falls inside the convex hull of
the design points is not guaranteed to be p, but in many cases, choosing a large target probability p
makes tomorrow’s scenario fall inside the convex hull of the design points with high probability. The
remaining k−2d design points are generated from a Sobol’ sequence scaled to fit inside Up: if uuu′ is
a point in a Sobol’ sequence in [0,1)d , the corresponding design point is f (0.5(1− p1/d)+ p1/duuu′).
Figure 1, whose panels are in sequence left to right and then top to bottom, shows the process of
creating k = 50 design points for a version of the example of Section 2 in which there are only two
risk factors, corresponding to the S&P500 and Nikkei225 indices. The panels for ZZZ and XXX are the
same because the risk factors in this example are normally distributed, so the step of generating ŨUU is
redundant.

Figure 1: Construction of Phase I design points in a two-dimensional example: ▽ indicates corner points, and ◦ indicates
points generated by quasi-Monte Carlo.

3.1.2 Sample Sizes in a Two-Stage Simulation Procedure

In the first stage of Phase I, we simulate n0 sample paths at each design point and compute the sample
average Ȳh(xxxi) and sample variance s2

h(xxxi) of the discounted payoffs for each design point i = 1,2, . . . ,k
and each security h = 1,2, . . . ,r. Then we choose a total sample size ni to attain at each design point
after a second stage of sampling, and simulate ni−n0 additional sample paths at design point xxxi for
i = 1,2, . . . ,k. We choose the sample size ni to target a relative precision for the simulation output.
Let yh(xxxi) be the true price of security h at the design point xxxi. Based on an assumption that the
discounted payoffs are normally distributed with unknown variance, a fixed sample size of n yields a
half-width of the (1−α) confidence interval for yh(xxxi) of lh(xxxi,n;α) = tn−1,1−α/2sh(xxxi)/

√
n, where

2785

Liu, Nelson and Staum

tn−1,1−α/2 is the 1−α/2 quantile of the t distribution with n− 1 degrees of freedom. The relative
precision of the average of ni sample paths is lh(xxxi,ni;α)/ |yh(xxxi)|. We target a relative precision of
γ between 0 and 1. After the first stage, we choose the sample size

ni = max

{

n0,

⌈

max
h=1,2,...,r

(

(1+ γ)tn0−1,1−α/2sh(xxxi)

γȲh(xxxi)

)2
⌉}

(2)

because it makes

lh(xxxi,ni;α)

|Ȳh(xxxi)|
≤ γ

1+ γ
(3)

for every security h = 1,2, . . . ,r. The relative precision lh(xxxi,ni;α)/ |yh(xxxi)| ≤ γ with approximately
1−α level confidence if Equation (3) holds (Law 2007, p. 502). This is merely an approximation
because the discounted payoffs are not normally distributed, and the sample size ni is random, not fixed.
In particular, it depends on the first-stage sample average Ȳh(xxxi), which spoils the usual arguments
for the validity of two-stage fixed-width confidence interval procedures such as Stein’s (Stein 1945).
However, if the sample size is large and the true price is not too close to zero, we expect to attain the
desired relative precision with high confidence if α is small.

3.2 Metamodel Validation Phase

After the initial simulation, we construct and validate metamodels. If they fail a test based on leave-
one-out cross-validation, we add more design points or generate more sample paths at existing design
points until the updated metamodels pass the test. The essential idea of leave-one-out cross-validation,
when applied to a metamodel of a deterministic simulation model, is to look at the difference between
the true value yh(xxxi), observed by running the simulation at the design point xxxi, and the leave-one-out

prediction Ŷ
(−i)
h (xxxi) of a metamodel constructed using all the design points except xxxi. When the

simulation is stochastic, the true value yh(xxxi) can not be observed. Our validation method considers

the leave-one-out prediction Ŷ
(−i)
h (xxxi), the simulation output Ȳh(xxxi) which serves as an estimate of

the true value yh(xxxi), and the confidence interval half-width lh(xxxi,ni;α) as a measure of uncertainty
in Ȳh(xxxi).

We use cross-validation for a subset I⊆{1,2, . . . ,k} of design points and a subset H⊆{1,2, . . . ,r}
of securities. The design points in I are those that are not on the convex hull of the set of design points.
This ensures that for all i ∈ I, Ŷ

(−i)
h (xxxi) is an interpolation, not an extrapolation. The subset H could

contain all r securities, but if r is too large, cross-validation will take a very long time. One may choose
a smaller subset H by including only one representative of each class of securities. For example, a class
may consist of securities which differ from each other only in maturity and strike price. We suggest
choosing the representative of a class to be the security which is most computationally expensive to
price with good relative accuracy: for example, after Phase I, one may choose representatives with
the highest value of maxi=1,2,...,k sh(xxxi)/Ȳh(xxxi).

Proposition 1 provides some justification for our method, which aims to control the relative leave-
one-out prediction error |Ŷ(−i)

h (xxxi)− yh(xxxi)|/|yh(xxxi)| at each design point. As in Section 3.1.2, non-
normality of the simulation output and randomness of the sample sizes mean that the method is merely
approximate: thus, in interpreting theproposition, weshould remember thatPr{|Ȳh(xxxi)− yh(xxxi)| ≤ lh(xxxi,ni;α)}
may not be exactly 1−α , the confidence sought in the construction of Equation (2). For reasons
supplied by Proposition 1, our test of validity is based on

Ehi =
lh(xxxi,ni;α)

|Ȳh(xxxi)|− lh(xxxi,ni;α)
+

∣

∣

∣
Ŷ

(−i)
h (xxxi)− Ȳh(xxxi)

∣

∣

∣

|Ȳh(xxxi)|− lh(xxxi,ni;α)
, (4)

2786

Liu, Nelson and Staum

where the first term measures the relative precision of simulation output and the second term measures
the relative discrepancy between metamodel prediction and simulation output. These measurements
are relative to |Ȳh(xxxi)|− lh(xxxi,ni;α), a lower confidence limit for yh(xxxi).

Proposition 1. For any h = 1,2, . . . ,r and i = 1,2, . . . ,k, |Ȳh(xxxi)− yh(xxxi)| ≤ lh(xxxi,ni;α) implies
∣

∣

∣
Ŷ

(−i)
h (xxxi)− yh(xxxi)

∣

∣

∣
/ |yh(xxxi)| ≤ Ehi.

Proof. If Ȳh(xxxi)− lh(xxxi,ni;α)≤ yh(xxxi)≤ Ȳh(xxxi)+ lh(xxxi,ni;α), then

|yh(xxxi)| ≥min{|Ȳh(xxxi)− lh(xxxi,ni;α)| , |Ȳh(xxxi)+ lh(xxxi,ni;α)|}= |Ȳh(xxxi)|− lh(xxxi,ni;α),

which is positive because Equation (2) implies that lh(xxxi,ni;α) < |Ȳh(xxxi)|. Therefore
∣

∣

∣
Ŷ

(−i)
h (xxxi)− yh(xxxi)

∣

∣

∣

|yh(xxxi)|
≤
|Ȳh(xxxi)− yh(xxxi)|+

∣

∣

∣
Ŷ

(−i)
h (xxxi)− Ȳh(xxxi)

∣

∣

∣

|yh(xxxi)|

≤
lh(xxxi,ni;α)+

∣

∣

∣
Ŷ

(−i)
h (xxxi)− Ȳh(xxxi)

∣

∣

∣

|Ȳh(xxxi)|− lh(xxxi,ni;α)
= Ehi.

The proposition suggests an iterative procedure that adds simulation effort until Ehi ≤ β for all
h ∈ H and i ∈ I, where β is a target error. A key question is whether to add more design points or
more sample paths at existing design points. This is a difficult question and here we provide a very
simple response to it. The difference |Ŷ(−i)

h (xxxi)− Ȳh(xxxi)| can be large because the simulation output
is far from the true value (at xxxi or at other design points) or because of a large difference between
the true value yh(xxxi) and the leave-one-out prediction at xxxi that would arise if the true values were
known at the other design points. In the former case, we want to add more sample paths; in the latter,
we want to add more design points. The problem is that we do not know the true values, so we do
not know the cause. However, if the sample size at xxxi is already large enough to make the half-width
of the confidence interval for yh(xxxi) very small, then it is unlikely that the cause is that Ȳh(xxxi) is far
from yh(xxxi), so it seems attractive to add a new design point. We add a new design point if the first
term lh(xxxi,ni;α)/(|Ȳh(xxxi)|− lh(xxxi,ni;α)) of Ehi is less than λβ , where λ ∈ (0,1) is a parameter of
the simulation procedure whose purpose is to control the effect of Monte Carlo variability during
cross-validation. In our experiments, we found that λ = 1/4 worked well. An outline of Phase II of
our procedure is:

1. For i = 1,2, . . . ,k, initialize the sample size Ni← ni.
2. For i = 1,2, . . . ,k and h∈H, compute the sample average Ȳh(xxxi) and sample standard deviation

sh(xxxi) of the Ni discounted payoffs of security h on each sample path at xxxi.
3. For all i ∈ I and h ∈H, compute Ehi as in Equation (4) but with sample size Ni.
4. Set (h∗, i∗)← argmaxh∈H,i∈I Ehi. If Eh∗i∗ ≤ β , terminate.
5. If lh∗(xxxi∗,Ni∗;α)/(Ȳh∗(xxxi∗)−|lh∗(xxxi∗,Ni∗;α)|)≥ λβ , then:
(a) Simulate Ni∗ additional sample paths at xxxi∗ and set Ni∗ ← 2Ni∗ .
(b) Update Ȳh(xxxi∗) and sh(xxxi∗) for all h ∈H.
(c) Return to Step 3.

6. Otherwise,
(a) Add design point xxxk+1 midway between xxxi∗ and the nearest design point, and set I←

I∪{k +1}.
(b) Perform two-stage simulation at xxxk+1 as described in Section 3.1, initialize Nk+1← nk+1,

and compute Ȳh(xxxk+1) and sh(xxxk+1) for all h ∈H.
(c) Set k← k +1 and return to Step 3.

2787

Liu, Nelson and Staum

4 NUMERICAL EXPERIMENT RESULTS

We tested our procedure on the example of Section 2. There are 26 = 64 corner points coming from
a hypercube Up of volume p = 0.99 and k = 74 total design points in Phase I. The first-stage sample
size n0 = 5000. The confidence level 1−α = 0.9 and the target levels β and γ for relative error are
both 0.05.

Our figure of merit is root average relative mean squared error (RARMSE): for security h,

RARMSE(h) =
√

∫

X
E[(Ŷh(xxx)/yh(xxx)−1)2]dFXXX(xxx). To analyze the performance of our procedure,

we sample XXX1,XXX2, . . .XXXK independently from the distribution of tomorrow’s scenario, and use this
sample to approximate the integral. In these K = 1000 scenarios, we compare the metamodels’
predictions to very accurate estimates of the true security prices obtained from another simulation
experiment. We approximate the expectation by running m = 30 macro-replications of our procedure
and estimate RARMSE(h) by

√

√

√

√

1
mK

K

∑
i=1

m

∑
j=1

(

Ŷ
j
h(XXXi)

yh(XXXi)
−1

)2

,

where Ŷ
j
h is the metamodel of the price of security h in the jth macro-replication.

Figure 2 contains histograms of the RARMSE of the 75 metamodels produced by our procedure.
One histogram is obtained when the set H of securities used in cross-validation contains all 75
securities, and the other when H contains only five securities. In the latter case, the representative
in H of each of the five classes of options described in Section 2 is the option that has the longest
maturity and is deepest out of the money, which therefore has the highest ratio of payoff variance to
price. The figure shows that using only five securities in cross-validation increases RARMSE only
slightly; the metamodels are still quite accurate, with the biggest RARMSE around 0.72%.

Figure 2: Histogram of estimated root average relative mean squared error of metamodels.

The advantage of using a small set H for cross-validation is reduced computational cost. To study
this, we simulated sample paths with a time step of two days. This is not necessary when the equity
indices follow geometric Brownian motion, but some other models do require simulation with small
time steps. Implemented in MATLAB 7.6 and run on a computer with a 2.4GHz CPU and 3.4GB

2788

Liu, Nelson and Staum

memory under 32-bit Windows XP, the procedure took 4.2 hours when including all 75 securities in
cross-validation, and 2.2 hours when including only five securities. In practice, portfolios may consist
of hundreds of securities, in which case more computing power is required to run our procedure in
one night. Our procedure is easy to parallelize: simulation of different sample paths and building
metamodels for different securities can be allocated to separate processors.

ACKNOWLEDGMENTS

This article is based upon work supported by the National Science Foundation under Grant No. CMMI-
0900354. The authors are grateful for discussions with Michael Sotiropoulos.

REFERENCES

Ankenman, B., B. L. Nelson, and J. Staum. 2010. Stochastic kriging for simulation metamodeling.
Operations Research, forthcoming.

Cario, M. C., and B. L. Nelson. 1997. Modeling and generating random vectors with arbitrary marginal
distributions and correlation matrix. Technical report, Northwestern University.

Cario, M. C., and B. L. Nelson. 1998. Numerical methods for fitting and simulating autoregressive-
to-anything processes. INFORMS Journal on Computing 10:72–81.

Frye, J. 1998, November. Monte Carlo by day. Risk 11:66–71.
Geisser, S. 1993. Predictive inference: An introduction. New York: Chapman and Hall.
Kleijnen, J. P. C. 2008. Design and analysis of simulation experiments. New York: Springer-Verlag.
Law, A. M. 2007. Simulation modeling and analysis. Fourth ed., 500–503. Boston: McGraw-Hill.
McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative risk management: Concepts, techniques,

tools. Princeton, New Jersey: Princeton University Press.
Stein, C. 1945. A two-sample test for a linear hypothesis whose power is independent of the variance.

Annals of Mathematical Statistics 16:243–258.

AUTHOR BIOGRAPHIES

MING LIU is a Ph. D. student in the Department of Industrial Engineering and Management Sciences at
NorthwesternUniversity. Hise-mail andwebaddressesare 〈mingliu2010@u.northwestern.edu〉
and 〈users.iems.northwestern.edu/∼mingl〉.

BARRY L. NELSON is the Charles Deering McCormick Professor and Chair of the Department of
Industrial Engineering and Management Sciences at Northwestern University. His research centers
on the design and analysis of computer simulation experiments on models of stochastic systems. His
e-mail and web addresses are 〈nelsonb@northwestern.edu〉 and
〈www.iems.northwestern.edu/∼nelsonb/〉.

JEREMY STAUM is Associate Professor of Industrial Engineering and Management Sciences
and holds the Pentair-Nugent Chair at Northwestern University. He coordinated the Risk Analy-
sis track of the 2007 Winter Simulation Conference and serves as department editor for financial
engineering at IIE Transactions and as an associate editor at Operations Research. His website is
〈users.iems.northwestern.edu/∼staum〉.

2789

