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ABSTRACT

We develop methods to construct asymptotically valid confidence intervals for quantiles and value-at-risk when applying
importance sampling (IS). We first employ IS to estimate the cumulative distribution function (CDF), which we then
invert to obtain a point estimate of the quantile. To construct confidence intervals, we show that the IS quantile estimator
satisfies a Bahadur-Ghosh representation, which implies a central limit theorem (CLT) for the quantile estimator and
can be used to obtain consistent estimators of the variance constant in the CLT.

1 INTRODUCTION

Consider a random variable X having CDF F . For 0 < p < 1, the p-quantile of X is defined to be ξp = F−1(p)≡ inf{x :
F(x) ≥ p}. Quantiles are widely used as risk measures in practice. In finance, a quantile is known as a value-at-risk
(VaR), and VaRs are often employed to assess the potential loss of a portfolio of risky assets. For example, there is a
1% chance of the loss of the portfolio over a given period of time (e.g., two weeks) exceeding the 0.99-VaR ξ0.99. In
project planning, one may want to determine a date by which there is a 95% chance that the project completes. This
date is then the 0.95-quantile of the project-completion time.

This paper considers estimating ξp via simulation. Suppose we generate independent and identically distributed
(i.i.d.) samples X1,X2, . . . ,Xn from F . The fact that ξp = F−1(p) suggests estimating the p-quantile by ξ̂p,n = F−1

n (p),
where Fn is the empirical distribution function, which assigns mass 1/n to each sample Xi. When the simulation process
is based on generating i.i.d. samples from F , we call the method crude Monte Carlo.

We can indicate the error in the point estimate of a quantile by constructing a confidence interval. This is typically
accomplished by first showing that the quantile estimator satisfies a central limit theorem (CLT) and then replacing the
variance constant in the CLT with a consistent estimator to obtain a confidence interval. Section 2.3.3 of Serfling (1980)
establishes a CLT for the quantile estimator when applying crude Monte Carlo.

However, applying crude Monte Carlo to estimate a quantile may result in a large confidence interval, especially
when the quantile is extreme (i.e., p is close to 0 or 1). Different variance-reduction techniques may be used to
address this issue. In particular, importance sampling (IS) (Glynn and Iglehart 1989), when properly applied, can
reduce variance by orders of magnitude in rare-event simulations; see Heidelberger (1995). For rare-event problems,
effective application of IS often requires changing the probabilistic dynamics of the system to increase the occurrence
of the rare events of interest, such as extreme portfolio losses in a VaR example, and then recovering an unbiased
estimator by multiplying by a correction factor known as the likelihood ratio.

Previous work on applying IS to estimate a quantile does not provide a direct method to construct confidence intervals.
Glynn (1996) establishes CLTs for quantile estimators obtained by inverting various CDF estimators when applying IS,
and Glasserman, Heidelberger, and Shahabuddin (2000) prove a CLT for a quantile estimator from a combination of
IS and stratification. However, neither of these papers provides a consistent estimator of the variance constant κ2

p in the
CLT for the IS quantile estimator. It turns out that κp = ψp/ f (ξp), where ψ2

p is the variance constant in the CLT satisfied
by the IS estimator of the CDF evaluated at ξp and f (ξp) is the density function (when it exists) of the original CDF F
evaluated at the (unknown) quantile. In the case of crude Monte Carlo, Bloch and Gastwirth (1968), Bofinger (1975),
and Babu (1986) provide consistent estimators of f (ξp), but their proofs of consistency do not generalize when applying
IS.
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In this article, we provide consistent estimators of ψp and φp when applying IS, allowing the construction
of asymptotically valid confidence intervals for ξp. We accomplish this by first showing that the IS quantile
estimator satisfies Ghosh’s (1971) weaker form of a Bahadur (1966) representation, which we call a Bahadur-
Ghosh representation. The Bahadur-Ghosh representation not only leads to a consistent estimator of f (ξp) but
also implies a CLT for the IS quantile estimator under weaker conditions than those used in Glynn (1996) and
Glasserman, Heidelberger, and Shahabuddin (2000). (We recently discovered that, independent of our work, the work
of Sun and Hong 2010 establishes, under a stronger set of conditions, a stronger form of a Bahadur representation for
the IS quantile estimator, which they use to prove a CLT. However, the particular representation they derive does not
permit estimating f (ξp).)

The rest of the article has the following organization. Section 2 reviews methods for estimating quantiles and the
Bahadur-Ghosh representation for crude Monte Carlo. Section 3 establishes the Bahadur-Ghosh representation for IS
quantile estimators and presents our methods to construct confidence intervals. Section 4 contains an empirical study of
the finite-sample behavior of the confidence intervals for two stochastic models. We provide some concluding remarks
in Section 5. All the proofs of our results can be found in Chu and Nakayama (2010).

2 QUANTILE ESTIMATION AND BAHADUR-GHOSH REPRESENTATION FOR CRUDE MONTE CARLO

For crude Monte Carlo, estimating quantiles typically entails first generating i.i.d. samples X1,X2, . . . ,Xn from distribution
F . Then, the empirical CDF Fn is defined as

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x), (1)

where I(A) is the indicator function of a set A, which assumes value 1 on A and 0 on its complement. Inverting Fn

results in the p-quantile estimator ξ̂p,n = F−1
n (p). An equivalent way of computing ξ̂p,n is to first sort the n samples

in ascending order as X(1) ≤ X(2) ≤ ·· · ≤ X(n), and then set ξ̂p,n = X(⌈np⌉), where ⌈·⌉ is the round-up function.

Consider the following heuristic argument. When the sample size n is large, we have Fn ≈ F , so ξ̂p,n ≈ ξp. Thus,
since p = F(ξp), a Taylor approximation shows

p ≈ F(ξ̂p,n) ≈ F(ξp)+ f (ξp)(ξ̂p,n −ξp) ≈ Fn(ξp)+ f (ξp)(ξ̂p,n −ξp)

because Fn(ξp) ≈ F(ξp). Hence, ξ̂p,n ≈ ξp − (Fn(ξp)− p)/ f (ξp).
Making the above heuristic argument rigorous, Bahadur (1966) proves the following holds under the assumption

that f (ξp) > 0 and the second derivative of F is bounded in a neighborhood of ξp:

ξ̂p,n = ξp −
Fn(ξp)− p

f (ξp)
+Rn, (2)

where almost surely (a.s.),

Rn = O(n−3/4(logn)1/2(log logn)1/4) as n → ∞. (3)

By “Yn = O(g(n)) a.s.” we mean that there exists a set Ω0 such that P(Ω0) = 1 and for each ω ∈ Ω0, there exists a
constant B(ω) such that |Yn(ω)| ≤ B(ω)g(n), for n sufficiently large. Equations (2) and (3) are known as a Bahadur
representation. To understand the implications of this result, let N(a,b2) denote a normal random variable with mean
a and variance b2, and let ⇒ denote convergence in distribution (Billingsley 1995, Section 25). It is well known (e.g.,
Serfling 1980, Section 2.3.3) that

√
n(ξ̂p,n − ξp) ⇒ N(0, p(1− p)/ f 2(ξp)) as n → ∞, and

√
n(p−Fn(ξp))/ f (ξp) has

the same weak limit since Fn(ξp) is the sample average of i.i.d. indicator functions I(Xi ≤ ξp), each with mean p. But
the Bahadur representation goes further, showing the difference of the two quantities vanishes a.s., and it provides the
rate at which this occurs. Thus, the Bahadur representation also sheds light onto why a quantile estimator, which is
not a sample average, satisfies a CLT.

Ghosh (1971) establishes a weaker form of the Bahadur representation in (2) and (3). Requiring only that f (ξp) > 0,
he shows that ξ̂pn,n = F−1

n (pn) with pn = p+O(n−1/2) satisfies

ξ̂pn,n = ξp −
Fn(ξp)− pn

f (ξp)
+R′

n (4)

with
√

nR′
n ⇒ 0 as n → ∞. (5)
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We call (4) and (5) a Bahadur-Ghosh representation, which suffices for most applications, including ours. It is
easy to see that the Bahadur-Ghosh representation also implies that ξ̂p,n satisfies a CLT (see Theorem 10.3 of
David and Nagaraja 2003).

3 QUANTILE ESTIMATION USING IMPORTANCE SAMPLING

Because crude Monte Carlo is sometimes inefficient for estimating quantiles, particularly extreme quantiles, we now
consider using IS to estimate ξp, as in Glynn (1996). Let F∗ be another CDF such that F is absolutely continuous with
respect to F∗ (p. 422 of Billingsley 1995). Define E∗ to be expectation under CDF F∗. Also, let L(t) = F(dt)/F∗(dt)
be the likelihood ratio at t. Then we can write

F(x) =
∫

I(t ≤ x)F(dt) =
∫

I(t ≤ x)L(t)F∗(dt) = E∗ [I(X ≤ x)L(X)] .

This then motivates estimating the CDF F via IS as follows. Generate i.i.d. samples X1, . . . ,Xn from CDF F∗ and the
IS estimator of F is then

F̃n(x) =
1
n

n

∑
i=1

I(Xi ≤ x)L(Xi). (6)

(We will sometimes denote L(X) and L(Xi) by L and Li, respectively, in the following.) Inverting F̃n results in the IS
quantile estimator. The following theorem shows that the IS quantile estimator satisfies a Bahadur-Ghosh representation.

Theorem 1. Suppose f (ξp) > 0, and suppose there exists ε > 0 and δ > 0 such that E∗[I(X < ξp +δ )L2+ε ] < ∞. Then
ξ̃pn,n = F̃−1

n (pn) with pn = p+O(n−1/2) satisfies

ξ̃pn,n = ξp −
F̃n(ξp)− pn

f (ξp)
+ R̃n (7)

with
√

nR̃n ⇒ 0 as n → ∞. (8)

As we noted in Section 1, Sun and Hong (2010) establish that the IS quantile estimator satisfies an a.s. Bahadur
representation as in (2) and (3) under stronger assumptions. They further assume that the density f is positive and
continuously differentiable in a neighborhood of ξp and that the likelihood ratio L(x) is bounded in a neighborhood of
ξp. Moreover, they do not examine the case of perturbed pn, which is essential in our approach for estimating 1/ f (ξp),
an important component in constructing a confidence interval for ξp.

It is straightforward to show that Theorem 1 implies ξ̃p,n = F̃−1
n (p) is a consistent estimator of ξp. Moreover, ξ̃p,n

satisfies the following CLT.

Theorem 2. If the conditions in Theorem 1 hold, then

√
n

κp
(ξ̃p,n −ξp) ⇒ N (0,1) (9)

as n → ∞, where κp = ψpφp with φp = 1/ f (ξp) and

ψ2
p = E∗

[

I(X ≤ ξp)L
2]− p2. (10)

We allow for F∗ ≡ F , in which case IS reduces to crude Monte Carlo, so Theorems 1 and 2 generalize previous
results for crude Monte Carlo. Thus, the variance constant κ2

p in (9) has the same basic form of κp = ψpφp for both IS

and crude Monte Carlo. The value of ψp differs for the two methods (and equals
√

p(1− p) for crude Monte Carlo),
but φp does not change. As a consequence, when estimating a quantile, choosing a change of measure for IS focuses
on trying to reduce ψp.

If we have consistent estimates of ψp and φp, then the CLT in Theorem 2 provides a way to construct a confidence
interval for ξp when applying IS. It can be shown that ψ2

p in (10) is the variance constant in the CLT for F̃n(ξp), and
a natural estimator for ψ2

p is

ψ̃2
p,n =

(

1
n

n

∑
i=1

I(Xi ≤ ξ̃p,n)L
2
i

)

− p2. (11)
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To derive an estimator for φp, we first note that d
d p F−1(p) = 1/ f (ξp) = φp by the chain rule of differentiation, and we

will estimate φp using finite-difference estimators (e.g., Section 7.1 of Glasserman 2004). Let c 6= 0 be any constant,
and define

φ̃p,n,1(c) =
F̃−1

n (p+ cn−1/2)− F̃−1
n (p)

cn−1/2
, (12)

φ̃p,n,2(c) =
F̃−1

n (p+ cn−1/2)− F̃−1
n (p− cn−1/2)

2cn−1/2
. (13)

Thus, for c > 0 (resp., c < 0), φ̃p,n,1(c) is a forward (resp., backward) finite-difference estimator, and φ̃p,n,2(c) is a
central finite-difference estimator. In addition, we can define other estimators of φp through weighted combinations of
the previous finite-difference estimators. Let c1, . . . ,cr and w1, . . . ,wr be any nonzero constants (some possibly negative)
with ∑r

j=1 w j = 1. Then we define combined estimators of φp as

φ̄p,n,i(c1, . . . ,cr) =
r

∑
j=1

w j φ̃p,n,i(c j), for i = 1,2. (14)

The following theorem shows that ψ̃p,n and all our estimators of φp are consistent. We can thus consistently estimate
κp = ψpφp in (9) by taking the product of the consistent estimators of ψp and φp. In addition, the CLT in (9) still
holds when κp is replaced by its consistent estimator.

Theorem 3. Assume the conditions of Theorem 1 hold. Then for any nonzero constants c and c1, . . . ,cr,

φ̃p,n,i(c) ⇒ φp, (15)

φ̄p,n,i(c1, . . . ,cr) ⇒ φp, (16)

as n → ∞, for i = 1,2. Moreover, ψ̃p,n ⇒ ψp as n → ∞, and

√
n

κ̃p,n
(ξ̃p,n −ξp) ⇒ N(0,1) (17)

as n → ∞, with κ̃p,n = ψ̃p,nφ̃p,n,i(c) or κ̃p,n = ψ̃p,nφ̄p,n,i(c1, . . . ,cr) for i = 1,2.

Hong (2009), Liu and Hong (2009) and Fu, Hong, and Hu (2009) develop consistent estimators for derivatives of
quantiles with respect to certain model parameters, but their methods do not apply for estimating φp (nor when using
IS). Bloch and Gastwirth (1968) and Bofinger (1975) provide estimators of φp analogous to φ̃p,n,i(c), i = 1,2, in (12)
and (13) for crude Monte Carlo. Babu (1986) considers combining estimators of φp as in (14) for crude Monte Carlo.
However, the consistency proofs of the last three papers mentioned do not generalize to IS as they rely on expressing
each sample Xi as Xi = F−1(Ui) with Ui ∼ unif[0,1]. Thus, in Chu and Nakayama (2010) we establish (15) and (16)
via a different approach based on the Bahadur-Ghosh representation in (7) and (8).

The right tail of F̃n in (6) may not behave as a proper CDF since it is possible that limx→∞ F̃n(x) = a with a < 1
or a > 1. To address this issue, Glynn (1996) also proposes another IS estimator of the CDF:

F̃ ′
n(x) = 1− 1

n

n

∑
i=1

I(Xi > x)L(Xi), (18)

which can be more effective when estimating the p-quantile when p ≈ 1. The following two theorems, in which
primed variables replace non-primed ones from before, show that quantile estimators based on inverting F̃ ′

n satisfy a
Bahadur-Ghosh representation and a CLT.

Theorem 4. Suppose f (ξp) > 0, and suppose there exists ε > 0 and δ > 0 such that E∗[I(X > ξp −δ )L2+ε ] < ∞. Then
ξ̃ ′

pn,n = F̃ ′−1
n (pn) with pn − p = O(n−1/2) satisfies the Bahadur-Ghosh representation in (7) and (8).

Theorem 5. Under the conditions of Theorem 4, ξ̃ ′
p,n = F̃ ′−1

n (p) satisfies the CLTs in (9) and (17), where

ψ ′2
p = E∗

[

I(X > ξp)L
2]− (1− p)2, (19)

ψ̃ ′2
p,n =

(

1
n

n

∑
i=1

I(Xi > ξ̃ ′
p,n)L

2
i

)

− (1− p)2. (20)
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Glynn (1996) and Glasserman, Heidelberger, and Shahabuddin (2000) establish CLTs analogous to (9), but they
do not consider the CLT in (17) with estimated variance. Their proofs are based on the Berry-Esséen theorem (p. 33 of
Serfling 1980), thus requiring the likelihood ratio to have a finite third moment, which is stronger than our assumptions
in Theorems 2 and 5. Sun and Hong (2010) also prove the CLT in (9) (but not (17)) under the stronger conditions
mentioned earlier after Theorem 1.

We now explain how to construct a 100(1−α)% confidence interval for ξp. First generate i.i.d. pairs (Xi,Li),
i = 1, . . . ,n, using F∗. Then sort X1,X2, . . . ,Xn in ascending order as X(1) ≤ X(2) ≤ ·· · ≤ X(n), where X(i) denotes the ith

smallest value, and let L(i) = L(X(i)). The algorithm now depends on whether we use the IS CDF estimator F̃n in (6)
or F̃ ′

n in (18). Glynn (1996) provides the following algorithms to invert these IS CDF estimators. If we work with F̃n,

then F̃−1
n (q) = X(iq) for 0 < q < 1, where iq is the smallest integer for which ∑

iq
i=1 L(i) ≥ qn. The p-quantile estimator

is ξ̃p,n = F̃−1
n (p). We then compute κ̃p,n in (17) in this case by taking the product of φ̄p,n,i(c1, . . . ,cr) in (14) (for i = 1

or 2) and ψ̃p,n from (11). (Note that (12) and (13) are special cases of (14) with r = 1, so we only consider (14).)
Alternatively, if we instead use F̃ ′

n as the IS CDF estimator, then F̃ ′−1
n (q) = X(i′q), where i′q is the greatest integer such

that ∑n
i=i′q

L(i) ≥ n(1−q). In this case the p-quantile estimator is ξ̃p,n = F̃ ′−1
n (p), and we compute κ̃p,n by taking the

product of φ̄p,n,i(c1, . . . ,cr) in (14) and ψ̃ ′
p,n from (20), where (14) (and (12) and (13)) now uses F̃ ′−1

n . Finally, in either

case an asymptotically valid 100(1−α)% confidence interval for ξp is (ξ̃p,n ± z1−α/2κ̃p,n/
√

n), where zβ = Φ−1(β )
and Φ is the CDF of a N(0,1) random variable.

4 EMPIRICAL STUDY

In the previous sections, we established the asymptotic validity of confidence intervals for ξp as the sample size n → ∞.
However, in practice, the parameter n has to be finite, so we ran experiments to study how the sample size n and the
“smoothing parameter” c used in the finite-difference estimators in (12) and (13) affect the coverage of the resulting
intervals.

We ran our experiments on two stochastic models: a normal distribution and a stochastic activity network, as
specified in the subsequent sections. For both models we consider estimating the p-quantile for p ≈ 1, so we work
with the CDF estimator F̃ ′

n in (18) to obtain a quantile estimator and confidence intervals.

4.1 Normal Distribution

The first set of experiments involves estimating the p-quantile ξp of a standard normal random variable X , so F is
the standard normal CDF Φ. We might think of X as representing the loss in value of a portfolio over the next two
weeks, so ξp is the 100p% VaR. We obtain the IS distribution F∗ by exponentially tilting F with tilting parameter θ ,
defined by F∗(dx) = eθx−ζ (θ)F(dx), where ζ (θ) = ln(E[eθX ]) = θ 2/2 is the cumulant generating function of Φ. It is
straightforward to show that F∗ is also normal with unit variance and mean ζ ′(θ) = θ , the derivative of ζ (θ). The

likelihood ratio is L(x) = F(dx)/F∗(dx) = exp(−θx+ θ 2

2 ). To choose a value for θ , consider the following approximation
applied by Glynn (1996): P(X > x) ≈ exp(−xθx +ζ (θx)) for x ≫ 0, where θx is the root of the equation ζ ′(θx) = x,
so θx = x. Since we are interested in x satisfying P(X > x) = 1− p (i.e., the p-quantile), we arrive at the equation
−θ 2 +θ 2/2 = ln(1− p). Solving for θ gives θ =

√

−2ln(1− p) = ζ ′(θ) as the mean of F∗.

4.2 Stochastic Activity Network

The second model we consider is a stochastic activity network (SAN); SANs are often employed to model the project com-
pletion time in project planning. In this experiment, we use a simple SAN previously studied by Hsu and Nelson (1990).
The SAN consists of 5 activities, whose durations A1, . . . ,A5 are i.i.d. exponential random variables with mean 1. There
are 3 paths in the SAN, and let D1 = {1,2}, D2 = {1,3,5}, and D3 = {4,5}, where D j is the set of activities on path
j. The length of the jth path is denoted by Tj = ∑i∈D j

Ai. Let m j be the number of activities on the jth path, which is
also the mean of Tj. Set X = max{T1,T2,T3} as the length of the longest path, and we want to estimate the p-quantile
of X . As noted by Hsu and Nelson (1990), the CDF of X is given by, for x ≥ 0,

F(x) = 1+(3−3x− x2/2)e−x +(−3−3x+ x2/2)e−2x − e−3x,

whose density f (x) is positive for all x ≥ 0.
We now describe how we use IS to estimate ξp. Our change of measure for IS is a modification of an approach

developed in Juneja, Karandikar, and Shahabuddin (2007). The basic idea is to use a mixture of three distributions,
each defined by exponentially tilting one path length Tj and not changing the distributions of the durations of activities
not on that path. Specifically, define fi to be the density function of Ai, so fi(t) = e−t for t ≥ 0 for each i = 1, . . . ,5.
Define f θ

i to be the exponentially tilted version of fi under tilting parameter θ , so f θ
i (t) = eθ t−χi(θ) fi(t), where

2755



Chu and Nakayama

χi(θ) = lnE[eθAi ] = − ln(1−θ) is the cumulant generating function of Ai, which exists for θ < 1. It is simple to show
that f θ

i is the density of an exponential with rate 1−θ . For each j = 1,2,3, define a probability measure Pj such that

each Ai has density f
θ j
i when i ∈ D j and density fi when i /∈ D j, where θ j denotes Pj’s tilting parameter, which we

specify later. The Ai, i = 1, . . . ,5, are mutually independent under each measure Pj. Now define the IS measure P∗ to
be the mixture of the Pj using positive weights α j (specified later) satisfying ∑3

j=1 α j = 1; i.e., P∗(B) = ∑3
j=1 α jPj(B)

for any event B. The likelihood ratio is then

L =

[

3

∑
j=1

α j exp(θ jTj −ζ j(θ j))

]−1

, (21)

where ζ j(θ) = ∑i∈D j
χi(θ) = −m j ln(1−θ) is the cumulant generating function of Tj.

To compute the tilting parameter θ j used with measure Pj, we apply an idea outlined by Glynn (1996). The
approach is based on large-deviations theory, which suggests that under certain conditions,

P(Tj > x) ≈ exp(−xθx +ζ j(θx)) (22)

for x ≫ E[Tj] = m j, where θx is the root of the equation ζ ′
j(θx) = x and prime denotes derivative, so ζ ′

j(θ) = m j/(1−θ).
Since we are interested in the p-quantile, we equate the right side of (22) to 1− p. This yields−ζ ′

j(θ)θ +ζ j(θ) = ln(1− p),
and we take θ j to be its root. Also, we get ζ ′(θ j) = m j/(1−θ j) as a (crude) approximation for the p-quantile of Tj

when p is close to 1.
We now modify a heuristic in Juneja, Karandikar, and Shahabuddin (2007) to obtain the mixture weights α j used

to define P∗. We want the variance in (19) to be small, and the idea is to select the α j to minimize an upper bound for
an approximation to the second moment b ≡ E∗[I(X > ξp)L2] from (19). Since ζ ′

j(θ j) is roughly equal to the p-quantile

of Tj and since X = max j Tj, we first approximate ξp via ξ̄p ≡ max j ζ ′
j(θ j). This then leads to approximating b by

E∗[I(X > ξ̄p)L2], which we now want to bound from above. Let Kj = exp(−θ jξ̄p +ζ j(θ j)), so (21) implies L ≤ Kj/α j

for θ j > 0 when Tj > ξ̄p. Hence, since {X > ξ̄p} = ∪3
j=1{Tj > ξ̄p}, we get

E∗[I(X > ξ̄p)L
2] ≤

(

max
j=1,2,3

Kj

α j

)2

. (23)

We then choose α j to minimize our upper bound in (23), subject to ∑3
j=1 α j = 1, which results in α j = Kj/∑3

s=1 Ks.

4.3 Choosing the Smoothing Parameter c

Recall the estimators of φp in (12) and (13), where specifying different values of c results in different estimators
of φp and hence different confidence intervals. We now discuss some recommendations to select c for the central
finite-difference estimator in (13). We consider two criteria for choosing c. One is to minimize the coverage error of
the resulting confidence interval for ξp; the other minimizes the mean-square error (MSE) of the estimator of φp. In
the case of crude Monte Carlo, Hall and Sheather (1988) and Bofinger (1975) have carried out asymptotic analyses
regarding these two issues, which, when applied in our context, suggest selecting c as large as possible when n is large;
see Chu and Nakayama (2010) for further details.

When combining different values of c as in (14), we can use a recommendation on p. 384 of Glasserman (2004)
developed for reducing the bias of finite-difference estimators of a derivative of a mean. The suggestion is to combine
r = 2 values c1 and c2 in (14) with c2 = 2c1, w1 = 4/3 and w2 = −1/3.

4.4 Discussion of Empirical Results

In all our experiments we let the sample size n = 100× 4 j for 0 ≤ j ≤ 4. Also, we varied the smoothing parameter
between c = 0.025 and c = 1, using different values in different experiments. Two boundary conditions arise from (13)
and (12) that govern the allowable values of (c,n) pairs. First we need 0 ≤ p+cn−1/2 ≤ 1 to ensure F̃ ′−1

n is evaluated
at a value corresponding to a probability. Also, we require |n× c/

√
n| ≥ 1 so that F̃ ′−1

n (p + cn−1/2) and F̃ ′−1
n (p) in

(12) return different order statistics. In all cases we constructed confidence intervals having nominal level 1−α = 0.9,
and we estimated coverages and average half-widths using m = 104 independent replications.

Figures 1–3 plot coverage as a function of n for different values of c when using the central finite-difference
estimator of φp from (13). Figure 1 presents the results when applying crude Monte Carlo to the normal distribution
(left) and the SAN (right), both for p = 0.95. Figure 2 shows the results when applying IS to the normal distribution for
p = 0.95 (left) and p = 0.99 (right). Figure 3 is for applying IS to the SAN model for p = 0.95 (left) and p = 0.99 (right).
The figures show the coverage levels are converging to the nominal level as n grows for each fixed c, demonstrating the
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asymptotic validity of our confidence intervals. When n is large, larger values of c seem to result in better coverage.
This agrees with the recommendations in Section 4.3 to choose large c when applying crude Monte Carlo, so the same
suggestion also may be appropriate when applying IS. When n is small, larger c also leads to larger coverage but not
necessarily closer to the nominal level of 0.9. Thus, the recommendations for choosing large c require large sample
sizes n.
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Figure 1: Coverage for CMC for the normal (left) and for the SAN (right) for p = 0.95.
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Figure 2: Coverage for IS for the normal when p = 0.95 (left) and p = 0.99 (right).
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Figure 3: Coverage for IS for the SAN when p = 0.95 (left) and p = 0.99 (right).

Tables 1–6 provide additional results from our experiments for c = 0.1 and c = 0.2. Tables 1 and 4 are for the
normal model and the SAN, respectively, when applying crude Monte Carlo. Tables 2 and 3 are for the normal model
with IS for p = 0.95 and 0.99, respectively, and Tables 5 and 6 contain results for the SAN when applying IS for
p = 0.95 and 0.99, respectively. In each table the first column gives the sample size n. The next three columns give the
results for the central, forward and backward finite-difference estimators of φp from (13) and (12), abbreviated as CFD,
FFD and BFD, respectively, for c = 0.1. Columns 5–7 present the same for c = 0.2. Each sample size n corresponds
to two rows: the first gives the coverage and the second provides the average half-width of the confidence intervals.
Overall, BFD seems to produce the worst coverage levels of the three estimators. Also, CFD slightly outperforms FFD
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for most cases, which complements analysis in Section 7.1 of (Glasserman 2004) showing that central finite-difference
estimators of the derivative of a mean have asymptotically smaller MSE than forward estimators. In addition, the
confidence intervals for IS have smaller half-widths than those for crude Monte Carlo, indicating IS reduces variance.

Table 1: Coverages (and average half-width) for CMC with c = 0.1 and c = 0.2 for the Normal when p = 0.95

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 0.733 0.659 0.623 0.801 0.778 0.690 0.903 0.629 0.894
(0.324) (0.345) (0.303) (0.331) (0.378) (0.285) (0.348) (0.331) (0.164)

400 0.804 0.749 0.725 0.848 0.828 0.786 0.900 0.642 0.898
(0.169) (0.174) (0.164) (0.171) (0.184) (0.159) (0.174) (0.171) (0.082)

1600 0.849 0.822 0.807 0.894 0.865 0.843 0.899 0.833 0.899
(0.087) (0.088) (0.086) (0.087) (0.091) (0.084) (0.087) (0.092) (0.041)

6400 0.873 0.854 0.847 0.895 0.878 0.866 0.900 0.882 0.903
(0.043) (0.044) (0.043) (0.043) (0.044) (0.043) (0.044) (0.047) (0.021)

Table 2: Coverages (and average half-width) for IS with c = 0.1 and c = 0.2 for the Normal when p = 0.95

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 0.842 0.820 0.742 0.890 0.911 0.774 0.881 0.887 0.253
(0.119) (0.120) (0.129) (0.125) (0.145) (0.104) (0.119) (0.185) (0.661)

400 0.870 0.855 0.819 0.889 0.899 0.839 0.894 0.889 0.393
(0.061) (0.062) (0.064) (0.061) (0.067) (0.057) (0.061) (0.074) (0.636)

1600 0.881 0.874 0.854 0.894 0.898 0.866 0.901 0.896 0.525
(0.031) (0.031) (0.032) (0.031) (0.031) (0.030) (0.031) (0.034) (0.477)

6400 0.892 0.887 0.876 0.895 0.899 0.883 0.902 0.902 0.614
(0.016) (0.016) (0.016) (0.016) (0.016) (0.015) (0.016) (0.017) (0.337)

Table 3: Coverages (and average half-width) for IS with c = 0.1 and c = 0.2 for the Normal when p = 0.99

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 1.000 1.000 0.727 0.999 1.000 0.644 0.874 0.867 0.085
(0.487) (0.898) (0.076) (0.256) (0.449) (0.062) (0.104) (0.174) (0.833)

400 0.920 0.961 0.813 1.000 1.000 0.763 0.895 0.880 0.184
(0.059) (0.072) (0.045) (0.285) (0.530) (0.039) (0.054) (0.065) (0.762)

1600 0.903 0.930 0.857 0.925 0.969 0.828 0.901 0.898 0.302
(0.028) (0.031) (0.025) (0.030) (0.036) (0.023) (0.027) (0.030) (0.669)

6400 0.901 0.917 0.881 0.909 0.938 0.865 0.904 0.907 0.415
(0.014) (0.014) (0.013) (0.014) (0.015) (0.012) (0.014) (0.015) (0.526)

We also constructed confidence intervals using the exact value of φp rather than estimating it to evaluate the effects
of having to estimate φp on coverage levels. The columns in the tables labeled “φp” contain these results. For smaller
sample sizes, using the exact φp generally seems to produce better coverages than when estimating it, demonstrating
the degradation in the quality of the intervals from estimating φp.

We also applied batching as an alternative approach to construct confidence intervals. This method divides all the
data into b ≥ 2 batches of size n/b and computes a quantile estimate from each batch. It then produces an overall point
estimate and confidence interval from the sample average and sample variance of the b i.i.d. quantile estimates from the
batches using a critical point from a t-distribution with b−1 degrees of freedom; e.g., see p. 491 of Glasserman (2004).
The columns labeled “Batching” show coverage levels for b = 10 batches. For large n, batching produces slightly
wider intervals on average. In terms of coverage, it is not clear which of batching and finite-difference estimation of
φp is better when applying IS. However, for crude Monte Carlo, coverage with batching is clearly inferior when n
is small. This is because accurate quantile estimation with crude Monte Carlo typically requires large sample sizes
(Avramidis and Wilson 1998), and batching effectively reduces the sample size by a factor of b. Thus, the quantile
estimate from each batch is usually inaccurate with crude Monte Carlo, leading to poor coverage.
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Table 4: Coverages (and average half-width) for CMC with c = 0.1 and c = 0.2 for the SAN when p = 0.95

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 0.726 0.662 0.608 0.802 0.791 0.681 0.910 0.561 0.894
(0.881) (0.966) (0.796) (0.905) (1.069) (0.742) (0.952) (0.912) (0.278)

400 0.802 0.751 0.722 0.844 0.831 0.722 0.898 0.660 0.896
(0.464) (0.482) (0.447) (0.468) (0.510) (0.427) (0.476) (0.455) (0.140)

1600 0.852 0.815 0.806 0.874 0.863 0.806 0.897 0.837 0.900
(0.236) (0.241) (0.231) (0.237) (0.248) (0.227) (0.238) (0.249) (0.070)

6400 0.878 0.857 0.854 0.891 0.886 0.854 0.906 0.888 0.901
(0.118) (0.120) (0.117) (0.119) (0.122) (0.116) (0.119) (0.128) (0.035)

Table 5: Coverages (and average half-width) for IS with c = 0.1 and c = 0.2 for the SAN when p = 0.95

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 1.000 1.000 0.726 0.890 0.911 0.774 0.871 0.846 0.798
(0.403) (0.440) (0.366) (0.125) (0.145) (0.104) (0.400) (0.532) (0.710)

400 0.922 0.964 0.794 0.889 0.899 0.839 0.891 0.879 0.835
(0.207) (0.217) (0.196) (0.061) (0.067) (0.057) (0.207) (0.234) (0.356)

1600 0.900 0.931 0.845 0.894 0.898 0.866 0.896 0.894 0.864
(0.104) (0.106) (0.102) (0.031) (0.031) (0.030) (0.104) (0.114) (0.178)

6400 0.899 0.815 0.871 0.895 0.899 0.883 0.898 0.902 0.883
(0.052) (0.053) (0.051) (0.016) (0.016) (0.015) (0.052) (0.057) (0.089)

We also constructed confidence intervals for the mean µ = E[X ] = E∗[XL] as another benchmark for comparison.
When applying IS, we used the same change of measure as when estimating the quantiles. For IS on the SAN, coverage
levels for the mean are close to the nominal level. However, coverages are poor for the normal with IS, and we now
explore this issue. Estimating µ with IS entails averaging i.i.d. copies of XL, where X ∼ F∗ and L = L(X) is the
likelihood ratio. The mean of F∗ is θ =

√

−2ln(1− p), so θ = 2.4477 when p = 0.95 and θ = 3.0349 when p = 0.99,
both of which are quite far from the original mean µ = 0. (The variance of F∗ remains at 1.) For large sample sizes n,
Edgeworth expansions show that the coverage level when estimating a mean is largely affected by skewness for one-sided
confidence intervals and by skewness and kurtosis for two-sided intervals; see pp. 50 and 72–73 of Hall (1992). We
calculate the skewness of XL under F∗ to be E∗[(XL)3]/(E∗[(XL)2])3/2 = exp(3θ 2/2)(−8θ 3 −6θ)/(1+θ 2)3/2, which
works out to −5.7×104 when p = 0.95 and −7.4×106 when p = 0.99, indicating the distributions are quite asymmetric
with much heavier left tails. The kurtosis of XL is E∗[(XL)4]/(E∗[(XL)2])2 = exp(4θ 2)(3 + 54θ 2 + 81θ 4)/(1 + θ 2)2,
which is 1.7×1012 when p = 0.95 and 7.1×1017 when p = 0.99. The huge values for skewness and kurtosis seem
to explain the poor coverage when estimating the mean of the normal using IS. Further experiments with even larger
sample sizes (not shown) indicate that coverages are converging to the nominal level at a very slow rate.

Table 6: Coverages (and average half-width) for IS with c = 0.1 and c = 0.2 for the SAN when p = 0.99

c = 0.1 c = 0.2
n CFD FFD BFD CFD FFD BFD φp Batching Mean

100 1.000 1.000 0.704 1.000 1.000 0.614 0.873 0.811 0.889
(5.005) (9.703) (0.307) (2.549) (4.851) (0.246) (0.445) (0.659) (0.965)

400 0.922 0.962 0.800 1.000 1.000 0.741 0.897 0.876 0.896
(0.253) (0.317) (0.189) (3.246) (6.330) (0.162) (0.232) (0.270) (0.486)

1600 0.902 0.933 0.847 0.927 0.974 0.815 0.899 0.892 0.900
(0.119) (0.134) (0.105) (0.128) (0.161) (0.096) (0.117) (0.129) (0.243)

6400 0.893 0.910 0.899 0.933 0.850 0.866 0.893 0.894 0.899
(0.059) (0.063) (0.060) (0.067) (0.053) (0.055) (0.059) (0.064) (0.122)
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Finally, Table 7 presents results from applying the combined estimator of φp from (14). We combined r = 2 values
of c, using the strategy described at the end of Section 4.3. However, in terms of coverage, combining demonstrates
no clear improvement, and perhaps even a slight degradation for small n.

Table 7: Coverages (and average half-width) with CFD (c = 0.1) and combined (r = 2, c1 = 0.1, c2 = 0.2, w1 = 4/3 and w2 =−1/3)
for the SAN when p = 0.95

n CFD Combined

100 0.831 0.798
(0.403) (0.397)

400 0.855 0.835
(0.207) (0.206)

1600 0.872 0.864
(0.104) (0.104)

6400 0.888 0.883
(0.052) (0.052)

5 CONCLUDING REMARKS

In this paper we developed asymptotically valid confidence intervals for quantiles when applying IS. To do this we
provided a consistent estimator of the asymptotic variance κ2

p appearing in the CLT that the quantile estimator satisfies.
It turns out that κp = ψpφp, and we gave consistent estimators of ψp and φp = 1/ f (ξp). Our estimators of φp are
finite-difference estimators, and their consistency can be shown by exploiting a Bahadur-Ghosh representation for the
IS quantile estimator, which we also establish.

In Chu and Nakayama (2010) we extend these results to a general framework for variance-reduction techniques
(VRTs), allowing the construction of asymptotically valid confidence intervals when applying any VRT within our
framework. Our framework specifies conditions on the VRT estimator of the CDF, and we show the framework
encompasses antithetic variates, control variates, and a combination of IS and stratification.
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