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ABSTRACT

We consider a continuous-time, inhomogeneous Markov chain M taking values in {0,1}n. Processes of this type arise
in finance as models of correlated default timing in a portfolio of firms, in reliability as models of failure timing in
a system of interdependent components, and in many other areas. We develop a logarithmically efficient importance
sampling scheme for estimating the tail of the distribution of the total transition count of M at a fixed time horizon.

1 INTRODUCTION

An indicator Markov chain is a continuous-time Markov chain that takes values in S = {0,1}n, starts at 0n = (0, . . . ,0)
and for which each of the n components has two states, 0 and 1, with 1 an absorbing state. A transition indicates the
arrival of an event. While there are no simultaneous component transitions, the transitions of different components
may be correlated. Thus, an indicator Markov chain arises naturally as a stochastic model of the timing of different
events. In finance, for example, an indicator Markov chain can serve as a model of default timing in a portfolio of
firms. Here, the value of the chain describes the state of the firms in the pool. In reliability, it can serve as a model of
failure timing in a component system. Here, the value of the chain represents the state of the components.

An indicator Markov chain can also be defined as an indicator point process with an intensity that is a deterministic
function of time and the value of the point process at that time. When defined in this manner, an indicator Markov
chain appears to have a restrictive structure. However, its scope is broader. Consider an indicator point process
N = (N1, . . . ,Nn) ∈ S with intensity λ = (λ 1, . . . ,λ n). The process λ may be a function of auxiliary stochastic
processes that represent randomly varying risk factors. In particular, N may not be Markov. By Proposition 3.1 in
(Giesecke et al. 2009), there exists an indicator Markov chain M = (M1, . . . ,Mn) such that P(NT = B) = P(MT = B)
for fixed T and all B ∈ S. A component Mi has the transition rate function

pi
n (t,B) = E

(

λ i
t 1(Ni

t = 0) |Nt = B
)

, B ∈ S. (1)

The existence of M reduces the problem of computing E( f (NT )) for an indicator point process N with general
stochastic intensity to the simpler problem of computing the Markov chain expectation E( f (MT )). Thus, we are led
to consider indicator Markov chains also in settings that are much more complex a priori.

Let 1n be an n-vector of ones. Given an indicator Markov chain M, consider the process C = 1n ·M ∈ {0,1, . . . ,n}
counting the transitions of M. We are often interested in the probability distribution of CT for some fixed horizon T .
In portfolio credit risk, where M serves as a (mimicking) default timing model, CT represents the number of defaults
in the portfolio at T , and the distribution of CT measures the default risk in the portfolio. Of particular interest is the
tail of that distribution, which describes the risk of extreme default scenarios. In reliability, when M models failures
in a component system, the distribution of CT describes the dependability of the system, and we are again interested
in the tail of the distribution, i.e., the risk of system failure.

In practice, the dimension n is often large. In portfolio credit risk, n represents the number of names in the pool,
and can reach several thousand. We consider estimating the distribution of CT by Monte Carlo simulation of M rather
than through alternative numerical methods that would be plagued by the high dimensionality of the state space S.
The main difficulty in computing the tail of the distribution of CT using plain Monte Carlo is that the number of trials
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required to estimate the probability of interest to a given relative precision scales in rough proportion to one over the
probability. As a consequence, plain Monte Carlo is highly inefficient for estimating tail probabilities. This paper
develops an importance sampling scheme for efficiently estimating the tail of the distribution of CT . More precisely,
our goal is to efficiently estimate the probabilities of the events

ξn = {CT ≥ µn}, µ ∈ (0,1), (2)

when P(ξn) → 0 as n → ∞, i.e., when (ξn) is a rare-event sequence.
Our technical assumptions are as follows. We fix a complete probability space (Ω,F ,P) with right-continuous

and complete information filtration (Ft). We let M = (M1, . . . ,Mn) ∈ S be a continuous-time Markov chain with the
following properties: Mi

0 = 0 almost surely and 1 is an absorbing state for Mi, for each i = 1, . . . ,n. Further, there are
no simultaneous transitions of any of the Mi. Hence, M is completely specified by a vector

(

p1
n, . . . , pn

n

)

: R+×S → Rn
+

of transition functions satisfying pi
n ( · ,B) = 0 if Bi = 1. For simplicity, we also assume that pi

n ( · ,B) > 0 if Bi = 0.

2 RARE EVENT REGIME

A sequence of events (ξn) is called a rare-event sequence indexed by n if P(ξn) = P(CT ≥ µn) → 0 as n → ∞. As our
goal is to take the sequence (ξn) out of the rare event regime, we wish to better understand the asymptotic behavior
of the variable CT with respect to n. To accomplish this task we relate C to two auxiliary counting processes which
will be used to stochastically bound the random variable CT and facilitate the analysis of its asymptotic behavior. As
described in Section §3, we adopt a measure change which transforms C into a Poisson process stopped at the nth
event time. For this reason we consider the Poisson process as our main instrument in studying the asymptotics of CT .
For extensions of this approach see the discussion following Theorem 1 of section §4.

More precisely, we say that a random variable X (stochastically) dominates C at time T whenever P(CT ≥ x) ≤
P(X ≥ x) for all x. If the inequality is reversed we say X yields to C at time T . It follows that if X dominates C at
time T and P(X ≥ µn) → 0 as n → ∞ we deduce that P(ξn) → 0 which implies that (ξn) is a rare-event sequence.
Conversely, if X yields to C at time T and P(X ≥ µn) 9 0 as n → ∞ we deduce that (ξn) is not in the rare event
regime. In §2.1 we utilize a Poisson random variable to state our rare event regime condition. In §2.2 we analyse its
asymptotics which will be used in proving our main result in Section §4.

2.1 Rare Event Conditions

Consider a Poisson process K with rate θn and event times (Um). Define the random variable Kn = KUn∧T . Note that
both CT and Kn take values in the set {0,1, . . . ,n}. Then, since {KT ≥ µn} = {U⌈µn⌉ ≤ T} we have

P(KT ≥ µn) = P

(

U⌈µn⌉ −θ−1
n ⌈µn⌉

θ−1
n ⌈µn⌉1/2

≤ T −θ−1
n ⌈µn⌉

θ−1
n ⌈µn⌉1/2

)

= P

(

U⌈µn⌉ −θ−1
n ⌈µn⌉

θ−1
n ⌈µn⌉1/2

≤−ψn (υ)

)

(3)

where we define the sequence υn = T θn
⌈µn⌉ and the function ψ as

ψn (υ) = (1−υn)⌈µn⌉1/2. (4)

Since the random variables (Um −Um−1) are i.i.d. exponential of mean θ−1
n and variance θ−2

n we apply the CLT to

gn(z) = P

(

U⌈µn⌉ −θ−1
n ⌈µn⌉

θ−1
n ⌈µn⌉1/2

≤−z

)

(5)

to conclude that limn→∞ gn (z) = Φ(−z) where Φ(·) is the standard Normal distribution function. Observe that if
ψn (υ) → ∞ then there exists n sufficiently large so that 0 ≤ gn (ψn (υ)) ≤ gn (z) → Φ(−z) for any finite z. Since
Φ(−∞) = 0 we deduce the following rare event condition.

Condition 1. Let µ ∈ (0,1) and K be a Poisson process with rate T−1⌈µn⌉υn such that Kn = KUn∧T dominates C at
time T . Then ξn = {CT ≥ ⌈µn⌉} is a rare-event sequence and P(ξn) → 0 as n → ∞ if

liminf
n→∞

ψn (υ) = ∞ (6)
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Conversely, if Kn yields to C at time T and

liminf
n→∞

ψn (υ) < ∞ (7)

then P(CT ≥ ⌈µn⌉) 9 0 and (ξn) is not a rare-event sequence.

A simpler condition for the rare event regime and one that we will eventually use is as follows.

Condition 2. Let µ ∈ (0,1) and K be a Poisson process with rate T−1⌈µn⌉υn such that Kn = KUn∧T dominates C at
time T . Then ξn = {CT ≥ ⌈µn⌉} is a rare-event sequence and P(ξn) → 0 as n → ∞ if

limsup
n→∞

υn < 1 (8)

Notice that Condition 2 is more restrictive than Condition 1 but is simpler and, as reflected in the next section,
yields a simpler analysis of the asymptotics of the dominating Poisson process which we have defined.

2.2 Poisson Asymptotics

Here we consider K to be a Poisson process with rate T−1kυk and as before define the random variable Kn = KUn∧T .
The distribution of Kn is given by

P(Kn = ℓ) = exp(−kυk)
(kυn)

ℓ

ℓ!
ℓ < n (9)

P(Kn = ℓ) = exp(−kυk)
∞

∑
m=n

(kυk)
m

m!
ℓ = n (10)

P(Kn = ℓ) = 0 ℓ > n. (11)

It follows that for k ≤ n

P(Kn ≥ k) = exp(−kυk)
(kυn)

k

k!
rk (12)

where rk ≥ 1 is defined as

rk = lim
ℓ→∞

rkℓ = lim
ℓ→∞

ℓ

∑
m=0

(kυk)
m k!

(k +m)!
= lim

ℓ→∞

ℓ

∑
m=0

υm
k

kmk!
(k +m)!

. (13)

The partial sums satisfy rkℓ−rk(ℓ−1) ≤ υℓ
k , thus if limsupk→∞ υk = b < 1, the sequence rkℓ is uniformly Cauchy convergent

and thus uniformly convergent. This implies we can exchange the limit and the sum, yielding

limsup
k→∞

rk = lim
ℓ→∞

(

limsup
k→∞

rkℓ

)

≤ 1
1−b

. (14)

Similarly, liminfk→∞ υk = a ≤ b < 1 implies liminfk→∞ rk ≥ 1/(1−a). We now use Sterling’s approximation logk! =
k logk− k + log

√
2πk +O(k−1) to deduce that for k ≤ n

1
k

logP(Kn ≥ k) = −υk + log(kυk)− k−1 logk!+ k−1 logrk (15)

= 1−υk + logυk + k−1 logrk −O(k−1 logk) (16)

Letting ϕk (υ) = −1+υk − logυk we have for 0 ≤ a = liminfk→∞ υk ≤ limsupk→∞ υk = b < 1 and k ≤ n

1
k

logP(Kn ≥ k) = −ϕk (υ)−O(k−1 logk) . (17)

Known as the rate function, ϕ dictates the rate of exponential decay of P(Kn ≥ k) for n ≥ k → ∞. Note that ϕ is strictly
decreasing on [0,1] with ϕn (0) = ∞ and ϕn (1) = 0 and is strictly positive on [0,1).

Since our asymptotic analysis holds only for limsupn υn < 1 we use Condition 2 as the relevant rare event regime
setting. To this end, letting K be a Poisson process with rate T−1⌈µn⌉υn with limsupn→∞ υn < 1, we have that
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n 7→ {KUn∧T ≥ µn} is a rare-event sequence. Furthermore, if K dominates C at time T we have

1
⌈µn⌉ logP(CT ≥ µn) ≤ 1

⌈µn⌉ logP(KUn∧T ≥ µn) = −ϕn (υ)−O(n−1 logn) (18)

where

ϕn (υ) = −1+υn − logυn. (19)

Similarly, if K yields to C at time T then the inequality in (18) is reversed.

3 IMPORTANCE SAMPLING

We wish to efficiently estimate the probabilities yn = P(ξn) = P(CT ≥ µn) when (ξn) is rare. We could obtain samples
of the estimator 1(ξn) of yn by simulating M under the reference probability measure P. Averaging the samples gives an
estimate ŷn which by the LLN converges to yn almost surely as the number of samples tends to infinity. However, the
variance σ2

n of the plain Monte Carlo (MC) estimator 1(ξn) is yn (1− yn) and consequently, the relative error is given
by ςn = σn/yn = 1/

√
yn. This relative error tends to infinity as n → ∞ in the rare event regime. We use importance

sampling (IS) to circumvent this difficulty.
Importance sampling entails an absolutely continuous change of probability measure from P to Q and the subsequent

simulation of M under Q. The key identity is

EP [ f (MT )] = EQ [ZT f (MT )] (20)

where f is a P-integrable function on S and ZT is the Radon-Nikodym derivative of P with respect to Q defined on
FT . We consider the indicator function f (B) = 1(1n ·B ≥ µn) and the IS estimator of yn is

Yn = ZT 1(ξn). (21)

This estimator satisfies EQ [Yn] = P(ξn). We chose an importance measure Q so that the relative error of Yn under Q

is much smaller than that of the plain MC estimator 1(ξn) under P.

3.1 Measure Change

We propose a family of importance measures (Q)θn
parametrized by θn ≥ 1 under which M is still an indicator Markov

chain and C = 1n ·M is a Poisson process with rate θn stopped at the nth event time. In this setting, the IS estimator is
easily generated. Note that the P-dynamics of C are more complicated: the intensity of C is pn(·,M) where

pn (t,B) =
n

∑
i=1

pi
n (t,B) . (22)

Under the conditions stated in Section §1, a vector of rate functions
(

q1
n, . . . ,q

n
n

)

specifies M under the new measure
Q. We define these new rate functions as follows, using the convention 0/0 = 0:

qi
n(t,B) =

pi
n(t,B)

pn(t,B)
θn. (23)

Since qi
n(t,B) = 0 ⇒ pi

n(t,B) = 0, the measure P is absolutely continuous with respect to Q. Furthermore, under Q

the counting process C with event times (Sn) has intensity on [0,T ] given by

qn (t,Mt) =
n

∑
i=1

qi
n (t,Mt) = θn1(Ct < n) = θn1(Sn > t). (24)

In follows that under Q, C is a Poisson process with rate θn stopped at Sn. There are alternative definitions of the
qi

n(t,B) that accomplish such a transformation. But, the attractive nature of the measure change corresponding to
(23) is that the Q-distribution of M mimics the “shape” of its P-distribution which is desirable for a good IS scheme
(Glynn and Asmussen 2007).
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The next step is to pick a parameter θn. From Theorem VI.3 in (Bremaud 1981), the density ZT takes the form

ZT =
n

∏
i=1

exp

(

∫ T

0
log

(

pi
n (s−,Ms−)

qi
n (s−,Ms−)

)

dMi
s −
∫ T

0
(pi

n (s,Ms)−qi
n (s,Ms))(1−Mi

s)ds

)

. (25)

With the parametrization (23), we get

ZT = ZT (θn) = exp((Sn ∧T )θn −CT log(T θn)+DT ) (26)

where DT , the P-log-likelihood of the event times {Sm : m ≤CT} is

DT =

∫ T

0
log(T pn (s−,Ms−)) dCs −

∫ T

0
pn(s,Ms)ds. (27)

To minimize the relative error produced by the IS estimator Yn = ZT (θn)1(ξn), we consider its second moment:

EQ

[

Y 2
n

]

= EP [ZT (θn) ; ξn] ≤ exp(θnT −⌈µn⌉ log(T θn))EP [exp(DT ) ; ξn] (28)

for all θn ≥ 1. Minimizing the second moment is difficult, but minimizing the bound (28) over θn ≥ 1 is easy. Since
the P-expectation on the right side of (28) does not depend on θn, for ⌈µn⌉ ≥ T the minimizer θ ∗

n is given by

θ ∗
n = T−1⌈µn⌉ . (29)

To better understand the measure change corresponding to (29) note that C− ∫ ·0 θn1(Sn > s)ds is a Q-martingale on
[0,T ] which implies that

EQ [CT ] = EQ

[

∫ T

0
θ ∗

n 1(Sn > s)ds

]

=
⌈µn⌉

T
EQ [T ∧Sn] ≈ ⌈µn⌉ (30)

for large n. The Q-rates of M are shifted such that ξn is no longer a rare event with respect to n. Indeed, since under
Q, the event time S⌈µn⌉ of C is the sum of ⌈µn⌉ independent exponential random variables with parameter T−1⌈µn⌉,
similarly to (3), we obtain

Q(ξn) = Q(CT ≥ µn) = Q
(

S⌈µn⌉ ≤ T
)

→ 1
2

(31)

as n → ∞. For large n, roughly half of the samples of CT generated under Q will be larger than ⌈µn⌉.

3.2 IS Algorithm

To obtain estimates of P(ξn) using IS we simulate M under the importance measure Qθ∗
n

and compute samples of the
estimator Yn = ZT (θ ∗

n )1(ξn) where θ ∗
n = T−1⌈µn⌉. The implementation is particularly simple since the waiting times

(Sm −Sm−1) between transitions of M are i.i.d. exponential with parameter T−1⌈µn⌉ and

Q(Im = i |FS−m ) =
qi

n

(

Sm,MSm−1

)

qn
(

Sm,MSm−1

) = P(Im = i |FS−m ), i = 1,2, . . . ,n (32)

where Im ∈ {1, . . . ,n} is the component of M in which a transition occurs at time Sm. We generate a sufficient number
of IS trials, performing the following steps on each:

• Generate event times (Sm) up to time T of a Poisson process with rate T−1⌈µn⌉.

• For each Sm draw the component Im of M at which the transition took place from the distribution (32).

• Using the values (Sm, Im) compute a sample ZT (⌈µn⌉/T )1(ξn) of Yn using ZT ( ·) defined in (26).

The samples are then averaged to obtain the IS estimate, which then gives an estimate of P(ξn) by (20).
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4 LOGARITHMIC EFFICIENCY

A standard measure of the performance of an IS estimator is logarithmic efficiency. This property states that the relative
error of the estimator Yn grows slower than the rate at which P(ξn) → 0. Letting

ρn =
logEQ

[

Y 2
n

]

logEQ [Yn]
, (33)

an estimator Yn is said to be logarithmically efficient if and only if

liminf
n→∞

ρn = 2, (34)

see (Glynn and Asmussen 2007). We next prove that our IS estimator is logarithmically efficient. We do not require
specific information about the rates of the indicator chain M at hand, and prove (34) under the rare event condition
and a condition which relates C to a dominating and a yielding Poisson processes. In particular, we require that the
rate functions (19) of the dominating and yielding Poisson processes have the same asymptotics. The interpretation of
such a condition is that the oscillations in pn (·, ·) must not grow linearly in n as n → ∞.

Theorem 1. Define the sequences (αn) and (βn) by

αn = inf
B

T pn (s,B)

⌈µn⌉ and βn = sup
B

T pn (s,B)

⌈µn⌉ (35)

where B = {(s,B) : s ∈ [0,T ] and B ∈ {0,1}n\{1n}}. If

limsup
n→∞

βn < 1 (36)

liminf
n→∞

ϕn (β )

ϕn (α)
= 1, (37)

then the estimator Yn = ZT (⌈µn⌉/T ) 1(ξn), where ZT ( ·) is given by (26), is logarithmically efficient.

Proof. It is easy to show that ρn ≤ 2 for all n by simple calculation. Thus, it is sufficient to show that liminfn→∞ ρn ≥ 2.
First, a thinning argument as in Proposition 2.1 of (Giesecke and Kim 2008) shows that the random variable KUn∧T ,
where K is a Poisson process with rate T−1⌈µn⌉βn, (stochastically) dominates CT . Following Condition 2, (36) implies
we are in the rare event regime. So, from (18) we deduce that for large enough n and 0 < δn = O(n−1 logn) ↓ 0

0 >
logEQ [Yn]

ϕn (α)⌈µn⌉ ≥ logP(KUn∧T ≥ µn)

ϕn (α)⌈µn⌉ = −1+δn (38)

where ϕn is the Poisson rate function defined in (19).
Then, starting from Yn = ZT (⌈µn⌉/T ) 1(ξn) and using (26) and (35) yields the following bound:

Yn = 1(ξn)exp
(

(Sn ∧T )T−1⌈µn⌉−CT log⌈µn⌉+DT
)

≤ 1(ξn)exp
(

(Sn ∧T )T−1⌈µn⌉−CT log⌈µn⌉+CT log(⌈µn⌉βn)− (Sn ∧T )T−1⌈µn⌉αn
)

≤ 1(ξn)exp
(

(Sn ∧T )T−1⌈µn⌉(1−αn)+CT logβn
)

.

Again, by (36) we have that for n large enough this satisfies

Yn ≤ 1(CT ≥ ⌈µn⌉)exp(−⌈µn⌉(−1+αn − logβn))

= 1(ξn)exp(−⌈µn⌉ϕn (β ))exp((βn −αn)⌈µn⌉) . (39)

Note that since ϕn (·) is strictly decreasing on [0,1], we have the following two relationships:

0 ≥ ϕn (β )−ϕn (α) = βn −αn − log
βn

αn
(40)

0 ≤ ϕn (α)−ϕn (β ) = αn −βn + log
βn

αn
≤ log

βn

αn
. (41)
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Then βn −αn ≤ log(βn/αn) and using (39) we obtain

logEQ

[

Y 2
n

]

ϕn (α)⌈µn⌉ ≤ −2
ϕn (β )

ϕn (α)
+

2(βn −αn)

ϕn (α)
+

logQ(ξn)

ϕn (α)⌈µn⌉

≤ −2
ϕn (β )

ϕn (α)
+

2
ϕn (α)

log
βn

αn
+

logQ(ξn)

2ϕn (α)⌈µn⌉ . (42)

Taking the ratio of (42) and (38) yields

logEQ

[

Y 2
n

]

logEQ [Yn ]
≥ 2ϕn (β )

ϕn (α)(1−δn)
− 2

ϕn (α)(1−δn)
log

βn

αn
− logQ(ξn)

2ϕn (α)(1−δn)⌈µn⌉ (43)

where we observe by (41) and condition (37) that

0 ≥ 1
ϕn (α)(1−δn)

log
βn

αn
≥ ϕn (α)−ϕn (β )

ϕn (α)−δn
≥ 1− ϕn (β )

ϕn (α)
↓ 0.

Finally, taking the infimum and again applying (37) along with the fact that Q(ξn) → 1/2 yields

liminf
n→∞

logEQ

[

Y 2
n

]

logEQ [Yn ]
≥ 2 (44)

as required. Therefore, Yn is logarithmically efficient.

Theorem 1 could be extended to incorporate milder conditions on the oscillations of the transition rate function
pn of C by replacing the dominating and yielding Poisson processes with pure birth processes stopped at the nth event
time. This would allow us to consider oscillations not over the entire state space S but over the states B for which
1n ·B is constant. Here, we would define αm

n and β m
n in (35) to be the infimum and supremum taken over the set

Bm = {(s,B) : s ∈ [0,T ] and B ∈ {0,1}n, 1n ·B = m}. This extension would then take into account that pn also depends
on the number of components of M which are in state 0.

5 NUMERICAL RESULTS

We demonstrate the effectiveness of the IS scheme on a model of correlated default timing in a portfolio of n firms
proposed by (Giesecke et al. 2009, Section 6). Here, the indicator chain M of interest mimics an indicator point process
N = (N1, . . . ,Nn) with a stochastic intensity λ = (λ 1, . . . ,λ n) that follows a jump-diffusion process:

λ i
t = Xi

t + ∑
j 6=i

β i jN j
t (45)

where β i j ≥ 0 and the risk factors Xi follow mutually independent Feller diffusions

dXi
t = κi(ci −Xi

t )dt +σi

√

Xi
t dW i

t , Xi
0 > 0. (46)

Here, κi is a parameter controlling the speed of mean-reversion of Xi, ci is the level of mean reversion, and σi

controls the diffusive volatility of Xi. The process (W 1, . . . ,W n) is a standard Brownian motion. The parameter β i j

determines the impact on firm i of firm j’s default. The corresponding jump terms generate correlation between the
firm intensities. The matrix (β i j) governs the default dependence structure. The transition rates pi

n(t,B) of the indicator
chain M mimicking N in the sense that P(MT = B) = P(NT = B) for all B ∈ S are computed according to formula (1).
Giesecke et al. (2009) show that, for γi = (κ2

i +2σ2
i )1/2,

pi
n(t,Mt) =

4Xi
0 γ2

i exp(γi t)

(γi −κi +(γi +κi)exp(γi t))2 +
2κici(exp(γi t)−1)

γi −κi +(γi +κi)exp(γi t)
+ ∑

j 6=i

β i jM j
t (47)

We consider a portfolio of n = 100 firms. The model parameters are drawn randomly, but such that the portfolio
represents a pool of high-quality firms. With the exception of the matrix (βi j), the parameters are sampled as in
(Giesecke et al. 2009). The matrix (βi j) is scaled down by a factor of 10 to ensure that the indicator chain M is in the
rare event regime. Consequently, following Condition 2 of Section §2, we ensure that pn ( · ,B) < T−1⌈µn⌉, assuming
that n = 100 is large enough for the asymptotic regime to be in effect.
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⌈µn⌉ IS Estimate ± 95% CI IS Scheme Variance Plain MC Variance Variance Ratio

1 9.480484E-01 ± 5.89732E-02 9.053097E-00 6.494702E-02 7.174011E-03
2 7.522197E-01 ± 1.46434E-02 5.023614E-01 1.916260E-01 3.814504E-01
3 4.906572E-01 ± 8.91635E-03 1.862536E-01 2.499024E-01 1.341732E-00
4 2.660202E-01 ± 5.64038E-03 8.281410E-02 1.962571E-01 2.369851E-00
5 1.196635E-01 ± 3.07897E-03 2.467735E-02 1.080868E-01 4.379999E-00
6 4.823202E-02 ± 1.39821E-03 5.089037E-03 4.594010E-02 9.027268E-00
7 1.679726E-02 ± 5.32909E-04 7.392553E-04 1.622778E-02 2.195152E+01
8 4.851613E-03 ± 1.70985E-04 7.610350E-05 4.923527E-03 6.469515E+01
9 1.321480E-03 ± 4.91585E-05 6.290501E-06 1.300307E-03 2.067096E+02

10 3.043514E-04 ± 1.23209E-05 3.951607E-07 3.099045E-04 7.842493E+02
11 6.616864E-05 ± 2.79334E-06 2.031115E-08 8.199344E-05 4.036868E+03
12 1.267209E-05 ± 5.61857E-07 8.217485E-10 1.799971E-05 2.190416E+04
13 2.199999E-06 ± 1.02546E-07 2.737301E-11 3.999992E-06 1.461291E+05
14 3.484863E-07 ± 1.70216E-08 7.542041E-13 (∗)
15 5.439357E-08 ± 2.71767E-09 1.922568E-14 (∗)
16 7.538963E-09 ± 3.89113E-10 3.941290E-16 (∗)
17 1.013618E-09 ± 5.27912E-11 7.254569E-18 (∗)
18 1.165917E-10 ± 6.47477E-12 1.091282E-19 (∗)
19 1.293590E-11 ± 7.43057E-13 1.437251E-21 (∗)
20 1.499824E-12 ± 8.51218E-14 1.886121E-23 (∗)

Table 1: IS estimates of probabilities P(CT ≥ µn) for various values of µn. For comparison the variance of the IS
and plain MC estimators are supplied along with the variance ratios showing the variance reduction obtained by the
IS scheme. (∗) indicates that no events were observed for the given µ value.

We compare the plain Monte Carlo (MC) estimator of P(CT ≥ k) with the corresponding IS estimator. The MC
estimator 1(ξn) is obtained by simulating M using the rates

(

p1
n, . . . pn

n

)

up to time T ∧ S⌈µn⌉. Event times (Sm) of
C are generated using the acceptance/rejection Algorithm 4.1 of Giesecke et al. (2009). In the plain MC setting we
only need to simulate up to time T ∧ S⌈µn⌉, and the samples lead to estimates of P(CT ≥ µn) for any value of µ
simultaneously. In the IS scheme we need to generate the full path up to time T and we cannot use the same samples
for different µ values. For each value of µ ∈ {0.01,0.02, . . . ,0.2}, we use 10K trials to compute the IS estimator. The
plain Monte Carlo simulation is based on 500K trials. The generation of the 500K trials takes roughly the same time as
the generation of the 20×10K IS trials. All source code was implemented with R package and numerical experiments
conducted on an 64bit Intel R© CoreTM 2 Quad CPU at 2.40GHz. The plain MC simulation and all IS simulations took
roughly 14 hours in total to complete.

Table 1 shows the estimates of the tail probabilities P(CT ≥ µn). The 95% confidence intervals on the IS estimates
are included. The table also shows the variance reduction achieved by the IS scheme relative to plain Monte Carlo. This
is measured by the ratio of the sample variance of the IS estimator and the sample variance of the plain MC estimator.
The results show that the IS scheme starts exhibiting variance reduction as early as the center of the distribution of CT

near ⌈µn⌉ = 3. The variance ratio grows rapidly as we estimate values into the tail.
Figure 1 shows the estimates of the tail probabilities P(CT ≥ µn) obtained by plain MC and the IS scheme on a

log-plot. We plot the 95% confidence intervals which, for demonstration purposes, have been magnified by a factor of
5. We do not display lower error bars for the estimates at which the lower confidence interval is below zero. Each
estimate is indicated with the specified symbol and the upper and lower error bars are interpolated to demonstrate the
way in which the estimate confidence changes for each scheme as µ increases. Plain MC loses accuracy early on as
the 95% confidence intervals diverge away from the estimated probability. The IS estimates are accurate well into the
tail with each estimate having relatively the same degree of precision.
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Figure 1: IS and plain MC estimates of the probabilities P(CT ≥ µn). The estimated values for each µn are shown by
the corresponding symbol and 95% confidence intervals are indicated with dashed lines above and below the estimated
values. The confidence intervals have been magnified by a factor of 5.

ACKNOWLEDGMENTS

We kindly thank David Sigmund for some pointers to literature as well as useful suggestions on section §5 of the
manuscript.

AUTHOR BIOGRAPHIES

KAY GIESECKE is an assistant professor in the Department of Management Science and Engineering at Stanford
University. He has previously held a position in the School of Operations Research and Information Engineering
at Cornell University. His research is in financial engineering, particularly credit risk modeling. His email is
giesecke@stanford.edu and his web page is www.stanford.edu/giesecke.

ALEXANDER D. SHKOLNIK is a Ph.D. candidate in the Institute for Computational and Mathematical Engineering
at Stanford. He graduated with B.S. degrees in Applied Mathematics, Physics and Computer Science from Carnegie
Mellon University. His research interests include applied probability, rare event simulation algorithms and credit risk
modelling.

2750


