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ABSTRACT

In this paper, we investigate efficient Monte Carlo estimators to American option sensitivities on single asset. Using
two features of the exercising boundary of the optimal stopping problem, the “continuous-fit” and “smooth-pasting”
conditions, we derive unbiased pathwise estimators for first and second-order derivatives. Our method can be easily
embedded into some popular algorithms for pricing one-dimensional American options. Numerical examples on vanilla
puts illustrate accuracy and efficiency of the method.

1 INTRODUCTION

Options are financial assets which entitle the holder the right to buy/sell a specific underlying at a contracted price
and time in the future. The vast majority of options are either European or American. An American option may be
exercised at any time before its expiry date while a European-style option can only be exercised at the expiry date.
Most of the exchange-traded options are American.

The evaluation of American-style options poses a challenge to the community of computational finance. Finding
the option price entails solving an optimal stopping problem. This embedded optimization problem makes the
pricing task a difficult problem for simulation. Several treads of research lines are suggested in the literature to
tackle the problem. Fu and Hu (1995), Andersen (2000), Garcia (2003), and so on, parameterize exercise regions
or stopping rules and reduce the optimal stopping problem to a much more tractable finite-dimensional optimization
problem. Broadie and Glasserman (1997) and Broadie and Glasserman (2004) propose random tree and stochastic
mesh methods to obtain valid confidence intervals for the American option prices. Tsitsiklis and Roy (1999) and
Longstaff and Schwartz (2001) use regression to estimate continuation values from the simulated paths and then to
price American options. Haugh and Kogan (2004), Rogers (2002) and Andersen and Broadie (2004) establish dual
formulation of the pricing problem through which a useful approximation on upper bounds on price is obtainable. A
more comprehensive review on the related literature can be found in Glasserman (2004).

This paper investigates how to develop efficient Monte Carlo estimators to the price sensitivities of American
options. Price sensitivities, or “Greeks” in the jargon of option markets, reflect the derivatives of option prices with
respect to the changes of parameters which affect the value of an option. They play a vital role in risk management of
options. For instance, the risk in a short position in an option can be offset significantly by a delta-hedging strategy,
holding delta units of underlying assets (see, e.g. Hull (2009)). Here the delta is simply the partial derivative of the
option price with respect to the current price of the underlying asset. Implementation of this strategy requires inputs
of the related price sensitivities. Whereas the option prices themselves can often be observed in the market, their
sensitivities cannot. Therefore, accurate calculation of sensitivities is arguably even more important than calculation of
prices.

Despite intensive attempts to estimating American options prices, the simulation methods on their sensitivity
estimation are underdeveloped. We use a pathwise derivative method in this paper to derive estimators for the
first and second order sensitivities. The pathwise derivative method differentiates each simulated outcome with the
respect to the parameter of interest to produce unbiased sensitivity estimates. There is a large literature on this
method in the discrete-event simulation literature, where it is usually referred as to infinitesimal perturbation analysis.
Broadie and Glasserman (1996) apply it to the field of option pricing and develop unbiased estimators for European-style
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options mainly. In this sense, our work can be viewed as a continuation of their paper in the direction of American
options.

Like the difficulty we encounter in the pricing problem, the embedded optimal stopping problem also complicates
the sensitivity analysis of American options. Perturbation in a parameter has a two-folded impact on the option price:
on one hand it will change the dynamic of the underlying asset and then affect the payoff to the holder directly; on the
other hand it will also lead to changes in the holder’s exercising rule and in turn translate into a change in the option
value. Two nice properties of optimal exercise boundaries, the continuous-fit and smooth-pasting conditions (see, e.g.
Shiryayev (2000)), turn out to be very helpful in obtaining unbiased estimators. They imply that the latter impact is
negligible when the perturbation is small. In light of this key observation, we manage to achieve the desired estimators
for price sensitivities. For the sake of presentation simplicity, we focus on vanilla American puts in this paper, where
the underlying asset price is driven by the Black-Scholes model. This setting simplifies the mathematical treatments
significantly. However, we should stress that our method does not confine itself within a one-dimensional environment.
A more general discussion on how to employ both of the pathwise derivative method and the likelihood ratio method,
another generator of unbiased sensitivity estimators, are left to a working paper of the authors (Chen and Liu 2010).

Our estimators are unbiased as long as the optimal exercising rules are known. Most of the algorithms mentioned
before yield very accurate approximation to the rules. Therefore the estimators developed in this paper generate quite
accurate outcomes. In addition, we can easily embed the estimators into any of these algorithms to produce sensitivities
as a by-product of the price estimation without considerably extra computational efforts.

In the literature, two papers are closely related with the main theme of this paper. Piterbarg (2004a) and
Piterbarg (2004b) present sensitivity estimators for American-style swaptions, which are options based on interest rate
swaps. However, the approach in these two papers is very informal and not rigorous. The author exploits many
approximating heuristics to develop estimators. The current paper establishes a theoretically rigorous platform to derive
sensitivity estimators for American-style derivatives. With the help of the continuous-fit and smooth-pasting properties,
the essence of our method does not depend much on the derivative and underlying asset’s structure. We can easily
generalize it to consider the optimal stopping problem in a more broader setting.

The remainder of the paper is organized as follows. Section 2 introduces the formulation of the American option
pricing problem and its Monte Carlo recipe. We present the main results of this paper — unbiased estimators of the
first and second order price sensitivities — in Section 3. The aforementioned two conditions on the optimal exercise
boundaries are established in this section as well. The numerical experiments conducted in Section 4 show accuracy
and efficiency of our estimators. All of the technical issues arising in the body text are deferred to the Appendix.

2 AMERICAN OPTIONS AND SIMULATION

Let St be the price of an underlying asset at time t. It follows a geometric Brownian motion:

dSt

St
= rdt +σdWt , S0 = s (1)

in the risk neutral probability measure, where r is the risk-free interest rate, σ is the volatility of asset price and W
is a standard Brownian motion. Consider a vanilla American put option contract maturing at time T > 0. The option
holder is allowed to exercise it anytime up to T . When she exercise at time τ , she can sell the underlying asset at a
pre-specified price K. Thus, the option payoff is given by the function (K−Sτ)

+. Assume that the holder has no access
to the future information and all of her decisions are made based on the information available currently. Mathematically,
pricing the American option can be formulated as to find a solution to the following optimal stopping problem

sup
τ∈T

E[e−rτ · (K −Sτ)
+|S0 = s], (2)

where T is a class of stopping time valued in [0,T ] with respect to the filtration F = {Ft ,0 ≤ t ≤ T}, which is generated
by {St ,0 ≤ t ≤ T}.

Consider Monte Carlo schemes to obtain the solution to (2) numerically. In simulation, a discrete version of the
problem is more relevant because any computer in principle can only generate finite random numbers in any given
period. Hence, from now on we restrict ourselves to discretely monitored options which can be exercised only at a
fixed set of dates: 0 = t0 < t1 < ... < tN = T , where ti − ti−1 = ∆t. Denote TN to be the set of all stopping time which
are valued in {t0, · · · , tN}. The problem (2) then becomes finding an optimal stopping time to maximize

Q0(s) := sup
τ∈TN

E[e−rτ · (K −Sτ)
+|S0 = s].

As N tends to infinity, the discretely-monitored option value will converge to the original option value.
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The theoretical foundation for a variety of simulation methods on American option pricing is the following dynamic-
programming characterization of the option value. Let Qi(Sti) be the option value at ti given Sti , assuming that the
option has not been exercised previously. Then, Qi should satisfy the following recursion:

QN(ST ) = (K −ST )+ and Qi(Sti) = max{(K −Sti)
+,E[e−r(ti+1−ti)Qi+1(Sti+1)|Sti ]}, for 0 ≤ i ≤ N −1. (3)

Once all Q′
is are known, we can specify an optimal stopping rule by letting:

τ∗ = min{i ∈ {0,1, . . . ,N} : (K −Sti)
+ ≥ E[e−r(ti+1−ti)Qi+1(Sti+1)|Sti ]}. (4)

For the convenience of later reference, introduce a new notation Ci(s) := E[e−r(ti+1−ti)Qi+1(Sti+1)|Sti = s]. It reflects the
value of holding the American option rather than exercising it at time ti. In this sense we call it by the continuation
value of the option. Then, Eq. (4) tells us that we should stop to exercise the option the first time the option payoff
exceeds its continuation value. As illustrated in Figure 1, the option holder has a strong incentive to exercise the option
if the underlying asset price goes deeply low. In other words, there exists critical values B∗

i for all 0 ≤ i ≤ N such that

(K −Sti)
+ ≥ E[Qi+1(Sti+1)|Sti ]}⇔ Sti ≤ B∗

i .

Therefore, the optimal stopping time given by (4) has the form τ∗ = min{i ∈ {0,1, . . . ,N} : Sti ≤ B∗
i }.

Figure 1: Exercise boundary for American put with payoff (K −Sτ)
+. The holder exercises the option at t5, the first

time the underlying asset crosses the boundary.

One property of the optimal boundary turns out to be very useful later: at B∗
i , the function Qi satisfies Qi(B∗

i ) =
Ci(B∗

i ) = K −B∗
i . This condition is usually referred as to the continuous-fit condition in the literature of the optimal

stopping problem (see, e.g. Shiryayev (2000)). It indicates that the holder will be indifferent between the choice of
exercising the option and the choice of continuing to hold it when the underlying price Sti = B∗

i .
To solve Q0 through the recursions (3), one key step is to evaluate the conditional expectation Ci repeatedly. With

the help of Monte Carlo, a naive approach is as follows:

1. Let Q̂N(s) = h(s) for all s;
2. For any 0 ≤ i ≤ N −1, given that Q̂i+1 is obtained, simulate a set of samples of Sti+1 , {S1

ti+1
, · · · ,SM

ti+1
}, from

Sti = s and use Ĉi(s) = 1
M ∑M

j=1 Q̂i+1(S
j
ti+1

) to estimate Ci(s);

3. Let Q̂i(s) = max{h(s),Ĉi(s)}.

Repeat steps (1)-(3) from i = N back to i = 0 and we can find an estimation to the option price Q0. Of course, the
above Monte Carlo method is very time-consuming. A host of algorithms are proposed in the literature to improve its
efficiency. One may refer to Chapter 8 in Glasserman (2004) and the references therein for a comprehensive overview.

3 FIRST AND SECOND ORDER SENSITIVITIES ON AMERICAN PUTS

We derive unbiased estimators for American-put option price sensitivities in this section.

3.1 The Smooth-Pasting Condition

In addition to the continuous property of Qi, we can further prove that it should be smooth at B∗
i too. The following

theorem summarizes the related result, which plays an important role in deriving the second-order price sensitivities.
Note that the derivative of function (K − s)+ equals −1 when s < K. Theorem 1 simply states that the two pieces of
the option value function should be joined together smoothly across the exercising boundary B∗

i .
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Theorem 1 (The smooth-pasting condition). For 0 ≤ i ≤ N − 1, the derivative of Qi exists at the optimal exercise
boundary B∗

i and furthermore, Q′
i(B

∗
i ) = −1.

The preceding smooth pasting condition can also be regarded as a variation of the first-order minimization condition
in the setting of optimal stopping problems. Recall that Qi(s) ≥ K − s for all s. Hence B∗

i must be a minimizer of the
function Qi(s)− (K − s). Thus, we have

0 =
d
ds

[Qi(s)− (K − s)](B∗
i ) =

dQi

ds
(B∗

i )− (−1).

A more rigorous argument for Theorem 1 is provided in the Appendix.

3.2 First-Order Sensitivities

Now turn to develop unbiased estimators to the first-order sensitivities of American puts. The American option price
under (1) is affected by the current price of the underlying S0, the volatility σ and the risk-free interest rate r.
Correspondingly, we consider three sensitivities: delta, vega and rho. They are the first-order price sensitivities with
respect to S0, σ and r, respectively. We have the following theorem to encapsulate the main results.

Theorem 2. Suppose that τ∗ is the optimal stopping time defined as in Section 2. Then,

Delta =
∂Q0(S0)

∂S0
= −E[e−rτ∗ Sτ∗

S0
], Vega =

∂Q0(S0)

∂σ
= −E[e−rτ∗Sτ∗(−στ∗ +Wτ∗)]

and

Rho =
∂Q0(S0)

∂ r
= (−K) ·E[τ∗e−rτ∗ ].

We can justify the statements of Theorem 2 heuristically as follows. Take the delta as an illustration. Given a
realization of the Brownian motion {Wt ,0 ≤ t ≤ T}, the sample path of the underlying price St is determined by the
initial position S0 through the following relationship:

St = S0 exp

(

(r− 1
2

σ2)t +σWt

)

, 0 ≤ t ≤ T.

And the optimal stopping time τ∗, defined by (4), is also dependent on S0. Applying the pathwise derivative method,
we have

∂Q0(S0)

∂S0
=

∂
∂S0

E[e−rτ∗(K −Sτ∗)
+] = E

[

∂
∂S0

e−rτ∗(K −Sτ∗)
+

]

,

where the derivative in the expectation on the right hand side can be interpreted as the differentiation of the random
payoff with respect to S0 with {Wt ,0 ≤ t ≤ T} held fixed.

Consider a small positive ∂S0 and two processes indexed by S0 and S0 −∂S0:

S1
t = S0 exp

(

(r− 1
2

σ2)t +σWt

)

and S2
t = (S0 −∂S0)exp

(

(r− 1
2

σ2)t +σWt

)

, 0 ≤ t ≤ T. (5)

Denote τ∗(S0) and τ∗(S0 −∂S0) to be the optimal stopping times in these two processes respectively. The effect of this
perturbation is two-folded. For some sample paths of W , it does not change the value of τ∗, i.e., τ∗(S0) = τ∗(S0 −∂S0)
(see the the left plot of Figure 2). Therefore,

∂
∂S0

e−rτ∗(K −Sτ∗)
+ =

e−rτ∗(S0−∂S0)(K −S2
τ∗(S0−∂S0))

+ − e−rτ∗(S0)(K −S1
τ∗(S0))

+

∂S0

= e−rτ∗(S0) ·
(K −S2

τ∗(S0))− (K −S1
τ∗(S0))

∂S0

in these sample paths. By (5), we know that the right hand side of the above equality should be e−rτ∗Sτ∗/S0.
As shown by the right plot in Figure 2, the small perturbation on S0 can also change the value of the optimal

stopping time τ∗ under some other sample paths of W . Starting from S0, the trajectory of St driven by such W approaches
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Figure 2: The effects of perturbation on S0. In the left plot, it just changes the payoff value. Small perturbation ∆S0

(shown by the dot line) has no impact on the optimal exercising time. But the right plot shows that the perturbation
can change the optimal stopping time in some sample paths. For the path in the plot, the holder exercises at t5. With
a small perturbation ∆S0, he should exercise the option at t4.

the exercise boundary B∗ at least once (say, t4 in the plot) before it is stopped at τ∗ (t5 in the plot). When we apply
the perturbation ∂S0 to the initial price S0, it results in a dramatic value change in τ∗. More precisely, such sample
path of W must satisfy that

B∗
t < S1

t < B∗
t +O(∂S0)

for some t = τ∗(S0 −∂S0) < τ∗(S0). Changing the initial point from S0 to S0 −∂S0 leads to S2
t < B∗

t and makes the
option holder stop at t = τ∗(S0 −∂S0).

In light of the observations in the last paragraph, the expectation of the option value change under such realization
of W is given by

E

[

e−rτ∗(S0−∂S0)(K −S2
τ∗(S0−∂S0))

+ − e−rτ∗(S0)(K −S1
τ∗(S0))

+

∂S0
·1{B∗

τ∗(S0−∂S0)
<S1

τ∗(S0−∂S0)
<B∗

τ∗(S0−∂S0)
+O(∂S0)}

]

. (6)

Given Wτ∗(S0−∂S0), the values of S1 and S2 at τ∗(S0 − ∂S0) are determined through (5). Meanwhile, the conditional
expectation

E[e−rτ∗(S0)(K −S1
τ∗(S0))

+|S1
τ∗(S0−∂S0)] = e−rτ∗(S0−∂S0)E[e−r(τ∗(S0)−τ∗(S0−∂S0))(K −S1

τ∗(S0))
+|S1

τ∗(S0−∂S0)]

= e−rτ∗(S0−∂S0)C(S1
τ∗(S0−∂S0)).

according to the definition of the continuation value. Therefore,

E

[

e−rτ∗(S0−∂S0)(K −S2
τ∗(S0−∂S0))

+ − e−rτ∗(S0)(K −S1
τ∗(S0))

+

∂S0
·1{B∗

τ∗(S0−∂S0)
<S1

τ∗(S0−∂S0)
<B∗

τ∗(S0−∂S0)
+O(∂S0)}

∣

∣

∣
Wτ∗(S0−∂S0)

]

=
e−rτ∗(S0−∂S0)(K −S2

τ∗(S0−∂S0))
+ − e−rτ∗(S0−∂S0)C(S1

τ∗(S0−∂S0))

∂S0
·1{B∗

τ∗(S0−∂S0)
<S1

τ∗(S0−∂S0)
<B∗

τ∗(S0−∂S0)
+O(∂S0)}. (7)

Substituting (7) to (6) and using the tower rule of conditional expectation, the expectation (6) equals to

E

[

e−rτ∗(S0−∂S0)
(

(K −S2
τ∗(S0−∂S0))

+ −C(S1
τ∗(S0−∂S0))

)

· 1
∂S0

·1{B∗
τ∗(S0−∂S0)

<S1
τ∗(S0−∂S0)

<B∗
τ∗(S0−∂S0)

+O(∂S0)}

]

.

When ∂S0 tends to zero, both S2
τ∗(S0−∂S0) and S1

τ∗(S0−∂S0) converge to the exercising boundary B∗. By the continuous-fit
property, we have

lim
∂S0→0

(K −S2
τ∗(S0−∂S0))

+ −C(S1
τ∗(S0−∂S0)) = (K −B∗)−C(B∗) = 0.
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In addition,

lim
∂S0→0

E

[

1
∂S0

·1{B∗
τ∗(S0−∂S0)

<S1
τ∗(S0−∂S0)

<B∗
τ∗(S0−∂S0)

+O(∂S0)}

]

exists, which converges to the density function of S1
τ∗(S0−∂S0) at B∗

τ∗(S0−∂S0).
In summary, we know that the expectation (6) is actually zero. The unbiased estimator of delta should be given

by the statement of the theorem. The other estimates can be understood in a similar way.

3.3 Second-order Sensitivities

Gamma is the most important one among the second-order sensitivities. It is defined as the second-order derivative of
the option price with respect to the current underlying price S0.

Using the smooth-pasting property of the exercising boundary, we can establish the following theorem. Its proof
appears in the Appendix part.

Theorem 3. Suppose that τ∗ is the optimal exercising time. Then,

Gamma =
∂ 2Q0(S0)

∂S2
0

= e−rT
(

K
S0

)2

·E
[

1{τ∗>tN−1} ·g(StN−1 ,K)
]

,

where

g(StN−1 ,K) =
1

Kσ
√

∆t
φ

(

log(K/StN−1)− (r− 1
2 σ2)∆t

σ
√

∆t

)

.

4 NUMERICAL EXPERIMENTS

In this section we conduct numerical experiments to test the accuracy and efficiency of the estimators in the last two
sections. Our estimators involve τ∗, the optimal stopping times and it would be very difficult to obtain the exact value
of τ∗ in Monte Carlo simulation. But a host of algorithms, such as those we mentioned in the introduction section, do
provide very accurate approximations of the optimal stopping rule. Therefore, we can easily embed the estimators in
those algorithms to generate the sensitivities as a by-products of American option pricing.

The results are summarized in Table 4. We use the numerical example in Huang, Subrahmanyam, and Yu (1996)
as a benchmark for comparison. That paper relies on the PDE approach to yield the price and sensitivities for American
put options. In the table, we make use of a regression-based method (Longstaff and Schwartz 2001) to obtain the
prices and sensitivities, which are shown in the columns with the superscript PW . The table illustrates that our method
produces quite accurate estimation.

Table 1: Sensitivities for American Put Options. The sensitivities with superscript ∗ are cited from Huang et al. (1996).
The defaulting parameters are S0=40, r = 0.0488 and σ = 0.2. The step number is N = 400 between t = 0 and T . The
total sample number is 1 million for simulation. The numbers in the parentheses are the standard errors of Monte Carlo.

K T Price∗ PriceMC Delta∗ DeltaPW

35 0.3333 0.2010 0.2004(0.0007) -0.0904 -0.0906(0.0003)
35 0.5833 0.4345 0.4344(0.0011) -0.1343 -0.1345(0.0003)
40 0.3333 1.5859 1.5831(0.0019) -0.4454 -0.4451(0.0005)
40 0.5833 1.9985 1.9982(0.0024) -0.4304 -0.4309(0.0004)
45 0.3333 5.1098 5.1081(0.002) -0.8849 -0.8854(0.0003)
45 0.5833 5.2859 5.2854(0.0028) -0.7966 -0.7963(0.0004)

Gamma∗ GammaPW Vega∗ VegaPW Rho∗ RhoPW

0.0358 0.0355(0.0002) 3.7473 3.7553(0.0107) -1.0995 -1.0977(0.0033)
0.0365 0.0368(0.0002) 6.5595 6.5864(0.0147) -2.7835 -2.791(0.0065)
0.0928 0.0924(0.0003) 8.946 8.9625(0.01) -4.2627 -4.2729(0.0052)
0.0721 0.0724(0.0002) 11.6561 11.6616(0.0127) -7.0988 -7.1098(0.0088)
0.0828 0.0825(0.0002) 3.7578 3.7491(0.0048) -1.9717 -1.9635(0.004)
0.0783 0.0784(0.0002) 7.5223 7.5164(0.0064) -5.7571 -5.7614(0.0076)
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A PROOF OF THE SMOOTH PASTING CONDITION

Proof of Theorem 1. For any small ε > 0 and 1 ≤ i ≤ n, we have

Qi(B
∗
i + ε) = max{K − (B∗

i + ε),E[Qi+1(Sti+1)|Sti = B∗
i + ε]} ≥ K − (B∗

i + ε)

according to (3). Therefore,

liminf
ε↓0

Qi(B∗
i + ε)−Qi(B∗

i )

ε
= liminf

ε↓0

Qi(B∗
i + ε)− (K −B∗

i )

ε
≥ liminf

ε↓0

K − (B∗
i + ε)− (K −B∗

i )

ε
= −1. (8)

On the other hand, we claim that

limsup
ε↓0

Qi(B∗
i + ε)−Qi(B∗

i )

ε
≤−1. (9)

Combining (8) with (9) will yield the theorem.
To show (9), consider a new geometric Brownian motion starting from B∗

i + ε , i.e., letting Sε
ti = B∗

i + ε and

Sε
t j

= Sε
t j−1

exp

(

(r− 1
2

σ2)+σ(Wt j −Wt j−1)

)

for all i ≤ j ≤ N. Define a stopping time such that

τε
i := min{ j ∈ {i, · · · ,N} : K −Sε

t j
≥ E[Q j+1(S

ε
t j+1

)|Sε
t j
]}.

This is an optimal exercising rule for an option issued at ti as the underlying price is given by Sε . Therefore, we have

Qi(B
∗
i + ε) = E[(K −Sε

τε
i
)+|Sε

ti = B∗
i + ε].

In the meantime, note that this τε
i is suboptimal if the underlying state process follows the original dynamic St , which

implies

Qi(B
∗
i ) ≥ E[(K −Sτε

i
)+|Sti = B∗

i ].

Consequently,

limsup
ε↓0

Qi(B∗
i + ε)−Qi(B∗

i )

ε
≤ d

dε
E
[

(K −Sε
τε

i
)+ − (K −Sτε

i
)+
∣

∣

∣
Sti = B∗

i , Sε
ti = B∗

i + ε
]

. (10)

It is easy to verify that the function g(x) = (K −x)+ is Lipschitz and there exists an integrable random variable κ
such that

|Sε
τε

i
−Sτε

i
| ≤ κε

for all ε > 0. The dominated convergence theorem then implies that we can interchange the order of expectation and
differentiation on the right hand side to obtain

limsup
ε↓0

Qi(s∗ + ε)−Qi(s∗)
ε

≤ E

[

lim
ε↓0

(K −Sε
τε

i
)+ − (K −Sτε

i
)+

ε

]

.

As ε → 0, Sε
t j
→ St j for all i ≤ j ≤ N. Then, the stopping time τε

i converges to

τi := min{ j ∈ {i, · · · ,N} : K −St j ≥ E[Q j+1(St j+1)|St j ]}.

In addition, τi = ti when we start St from Sti = B∗
i . Therefore,

lim
ε↓0

(K −Sε
τε

i
)+ − (K −Sτε

i
)+

ε
= lim

ε↓0

(K −Sε
ti)

+ − (K −Sti)
+

ε
= lim

ε↓0

(K − (B∗
ti + ε))+− (K −B∗

ti)
+

ε
= −1. (11)

2727



Chen and Liu

The smooth pasting condition is proved if we plug (11) into (10). 2

B A USEFUL LEMMA

Lemma 1. Suppose that Ψ(θ) and ν(θ) are random variables that depend on θ . Denote fθ (u) to be the probability
density function of ν(θ). Assume
(1) Ψ(θ) and ν(θ) are differentiable with respect to θ with probability 1,
(2) there exists an integrable random variable Kθ

Ψ such that |Ψ(θ +∆θ)−Ψ(θ)| ≤ Kθ
Ψ · |∆θ | when |∆θ | is sufficiently

small.
Then, we have:

∂
∂θ

E[Ψ(θ) ·1{ν(θ)≥0}] = E[Ψ′(θ) ·1{ν(θ)≥0}]+ fθ (0) ·E[Ψ(θ) ·ν ′(θ)|ν(θ) = 0]. (12)

Proof. It is Theorem 1 in Wang, Fu, and Marcus (2009). A similar result appears in Liu and Hong (2009). 2

C PROOFS OF THE THEOREMS

Proof of Theorem 2. We prove the estimator of delta first. Note that there exists a boundary B∗
0 < K such that

Q0(S0) = (K −S0)1{S0≤B∗
0} +C0(S0)1{S0>B∗

0}.

Therefore,

∂Q0(S0)

∂S0
=

∂ (K −S0)

∂S0
·1{S0≤B∗

0} +
∂C0(S0)

∂S0
·1{S0>B∗

0}. (13)

Focus on the second term of the above equality. Denote

Ii = E[(K −Sti)1{St0>B∗
0, St1>B∗

1, ..., Sti−1>B∗
i−1, Sti≤B∗

i }].

Then the continuation value function has the following decomposition: C0(S0) = ∑N
i=1 e−rti Ii.

Taking the partial derivative of Ii with respect to S0 and invoking Lemma 1, we can show that

∂ Ii

∂S0
= E

[

(−1) · ∂Sti

∂S0
·1{St0>B∗

0, St1>B∗
1, ..., Sti−1>B∗

i−1, Sti≤B∗
i }

]

+
i−1

∑
j=1

E

[

(K −Sti) ·1{St0>B∗
0, ..., St j−1>B∗

j−1} ·1{St j+1>B∗
j+1, ..., Sti−1>B∗

i−1, Sti≤B∗
i } ·

∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j)

−E

[

(K −Sti)1{St0>B∗
0, ..., Sti−1>B∗

i−1} ·
∂Sti

∂S0

∣

∣

∣
Sti = B∗

i

]

· fSti
(B∗

i ), (14)

where fSti
(x) is the probability density function of Sti at x, i.e.,

fSti
(x) =

1
xσ

√
ti

φ

(

log(x/S0)− (r− 1
2 σ2)ti

σ
√

ti

)

and φ is the pdf of a standard normal.
Denote Ĩ j

i to be the jth-summand in the second line of the right hand side of (14). By the Markov property of St ,
the expectation inside each Ĩ j

i can be represented as follows:

E

[

(K −Sti) ·1{St0>B∗
0, ..., St j−1>B∗

j−1} ·1{St j+1>B∗
j+1, ..., Sti−1>B∗

i−1, Sti≤B∗
i } ·

∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

= E

[

1{St0 >B∗
0, ..., St j−1>B∗

j−1} ·
∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

·E
[

(K −Sti) ·1{St j+1>B∗
j+1, ..., Sti−1>B∗

i−1, Sti≤B∗
i }
∣

∣

∣
St j = B∗

j

]

.

Therefore,
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N

∑
i=1

i−1

∑
j=1

e−rti Ĩ j
i =

N−1

∑
j=1

N

∑
i= j+1

e−rti Ĩ j
i

=
N−1

∑
j=1

E

[

1{St0 >B∗
0, ..., St j−1 >B∗

j−1} ·
∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j) ·E
[

N

∑
i= j+1

e−rti(K −Sti) ·1{St j+1 >B∗
j+1, ..., Sti−1 >B∗

i−1, Sti≤B∗
i }
∣

∣

∣
St j = B∗

j

]

.

Note that the final term in the above equality satisfies that

E

[

N

∑
i= j+1

e−rti(K −Sti) ·1{St j+1>B∗
j+1, ..., Sti−1>B∗

i−1, Sti≤B∗
i }
∣

∣

∣
St j = B∗

j

]

= E
[

e−rt j+1Q j+1(St j+1)
∣

∣

∣
St j = B∗

j

]

= e−rt jCj(B
∗
j) = e−rt j(K −B∗

j),

where the first equality is due to the definition of Q j+1 and we have the second equality because

Cj(B
∗
j) = E

[

e−r(t j+1−t j)Q j+1(St j+1)
∣

∣

∣
St j = B∗

j

]

.

In summary, we have

N

∑
i=1

i−1

∑
j=1

e−rti Ĩ j
i =

N−1

∑
j=1

e−rt j E

[

(K −St j)1{St0>B∗
0, ..., St j−1>B∗

j−1} ·
∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j). (15)

To obtain unbiased estimator to the delta, we sum (14) across all 1 ≤ i ≤ N. It leads to

∂C0(S0)

∂S0
= −E[

N

∑
i=1

e−rti ∂Sti

∂S0
·1{τ∗=ti}]+

N

∑
i=1

i−1

∑
j=1

e−rti Ĩ j
i −

N

∑
i=1

e−rtiE

[

(K −Sti)1{St0>B∗
0, ..., Sti−1>B∗

i−1} ·
∂Sti

∂S0

∣

∣

∣
Sti = B∗

i

]

· fSti
(B∗

i )

= −E[
N

∑
i=1

e−rti ∂Sti

∂S0
·1{τ∗=ti}] = −E[e−rτ∗ ∂Sτ∗

∂S0
], (16)

where the second equality holds because of (15) and B∗
N = K. Combing the above equality with the fact that

∂St/∂S0 = St/S0, we prove the case of delta.
The proofs of vega and rho are very similar. Here we only illustrate how to obtain the unbiased estimator for vega

briefly. Emulating (14), we can establish that

∂ Ii

∂σ
= E

[

(−1) · ∂Sti

∂σ
·1{St0>B∗

0, St1>B∗
1, ..., Sti−1>B∗

i−1, Sti≤B∗
i }

]

+
i−1

∑
j=1

E

[

(K −Sti) ·1{St0>B∗
0, ..., St j−1>B∗

j−1} ·1{St j+1>B∗
j+1, ..., Sti−1>B∗

i−1, Sti≤B∗
i } ·

∂ (St j −B∗
j)

∂σ

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j)

−E

[

(K −Sti)1{St0>B∗
0, ..., Sti−1 >B∗

i−1} ·
∂ (Sti −B∗

i )

∂σ

∣

∣

∣
Sti = B∗

i

]

· fSti
(B∗

i ),

where the optimal boundary B∗ is under the affect of σ . Following similar arguments as in the case of delta will lead
us to

∂C0

∂σ
= −E[

N

∑
i=1

e−rti ∂Sti

∂σ
·1{τ∗=ti}] = −E[e−rτ∗Sτ∗(−στ∗ +Wτ∗)].

By the decomposition of Q0 at the beginning of the proof, we can show the case of vega. 2

Proof of Theorem 3. From Theorem 2, we know that

∂ 2Q0(S0)

∂S2
0

=
∂

∂S0

[

∂Q0(S0)

∂S0

]

= − ∂
∂S0

E

[

e−rτ∗ · Sτ∗

S0

]

= −
N

∑
i=0

∂
∂S0

E

[

e−rti · exp((r− 1
2

σ2)ti +σWti)1{τ∗=ti}

]

, (17)
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where the last equality uses the fact that St = S0 exp((r−σ2/2)t +σWt). Applying Lemma 1 again,

∂
∂S0

E

[

exp((r− 1
2

σ2)ti +σWti)1{τ∗=ti}

]

=
∂

∂S0
E

[

exp((r− 1
2

σ2)ti +σWti)1{S0>B∗
0, St1 >B∗

1, ··· , Sti−1>B∗
i−1, Sti≤B∗

i }

]

= −
i−1

∑
j=0

E

[

exp((r− 1
2

σ2)ti +σWti)1{S0>B∗
0,...,St j−1>B∗

j−1} ·1{St j+1>B∗
j+1,...,Sti−1>B∗

i−1,Sti≤B∗
i }

∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j)

+E

[

exp((r− 1
2

σ2)ti +σWti)1{S0>B∗
0,...,Sti−1>B∗

i−1}
∂Sti

∂S0

∣

∣

∣
Sti = B∗

i

]

· fSti
(B∗

i ). (18)

On the other hand, summing up the third line in (18) across all 1 ≤ i ≤ N will yield

N
∑

i=1
e−rti

i−1
∑
j=0

E

[

exp((r− 1
2

σ2)ti +σWti )1{S0>B∗0 ,...,St j−1 >B∗j−1}
·1{St j+1 >B∗j+1 ,...,Sti−1 >B∗i−1 ,Sti ≤B∗i }

∂St j
∂S0

∣

∣

∣
St j = B∗j

]

· fSt j
(B∗j )

=
N−1
∑
j=0

e
−rt j E

[

1{S0>B∗0 ,...,St j−1 >B∗j−1}
∂St j
∂S0

∣

∣

∣
St j = B∗j

]

· fSt j
(B∗j ) ·

St j
S0

·
N
∑

i= j+1
e
−r(ti−t j )E

[

Sti
St j

·1{St j+1 >B∗j+1 ,...,Sti−1 >B∗i−1 ,Sti ≤B∗i }
∣

∣

∣
St j = B∗j

]

.

(19)

According to the proof of Theorem 2, especially (16),

N

∑
i= j+1

e−r(ti−t j)E

[

Sti

St j

·1{St j+1>B∗
j+1,...,Sti−1>B∗

i−1,Sti≤B∗
i }
∣

∣

∣
St j = B∗

j

]

= C′
t j
(B∗

j) = −1,

where we use the smooth-pasting condition in the last equality. Consequently, the left hand side of (19) should equal to

−
N−1

∑
j=0

e−rt j E

[

1{S0>B∗
0,...,St j−1>B∗

j−1}
∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j) ·
St j

S0

= −
N−1

∑
j=0

e−rt j E

[

exp((r− 1
2

σ2)t j +σWt j)1{S0>B∗
0,...,St j−1>B∗

j−1}
∂St j

∂S0

∣

∣

∣
St j = B∗

j

]

· fSt j
(B∗

j). (20)

If we substitute (18) into (17), then we have

∂ 2Q0(S0)

∂S2
0

= e−rT E

[

exp((r− 1
2

σ2)T +σWT )1{S0>B∗
0,...,StN−1>B∗

N−1}
∂ST

∂S0

∣

∣

∣
ST = B∗

N

]

· fST (B∗
N).

using (20). Notice that ∂ST /∂S0 = ST /S0 and B∗
N = K. We can obtain the unbiased estimator in the theorem statement

for gamma. 2
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