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ABSTRACT

We consider a class of parametric estimation problems where the goal is efficient estimation of a quantity of interest for
many instances that differ in some model or decision parameters. We have proposed an approach, called DataBase Monte
Carlo (DBMC), that uses variance reduction techniques in a “constructive” way in this setting: Information is gathered
through sampling at a set of parameter values and is used to construct effective variance reducing algorithms when
estimating at other parameters. We have used DBMC along with the variance reduction techniques of stratification and
control variates. In this paper we present results for the application of DBMC in conjunction with importance sampling.
We use the optimal sampling measure at a nominal parameter as a sampling measure at neighboring parameters and
analyze the variance of the resulting importance sampling estimator. Experimental results for this implementation are
provided.

1 INTRODUCTION AND OVERVIEW

A basic step in the analysis, optimization, and control of stochastic systems is evaluating or approximating quantities
of interest based on stochastic models of such systems. These quantities, depending on context, may be performance
measures such as cost, price, measures of congestion, energy, · · · , or may be sensitivities of these quantities with
respect to some model or decision parameters. Whether performance indices or their sensitivities, they most often can
be represented as expected values of appropriately defined random variables. Analytic or deterministic approximation
methods, when available, are the most efficient way to evaluate such expected values. The reach of deterministic
methods, however, is limited and for most stochastic models statistical estimation via sampling, the so-called Monte
Carlo (MC) method, is the most general and flexible tool.

1.1 Variance Reduction Techniques

MC simulation, while flexible and widely applicable, has a relatively slow rate of convergence and since its inception
significant effort has been devoted to improving its efficiency. The statistical techniques used for efficiency improvement
are often referred to as Variance Reduction Techniques (VRT), or Efficiency Improvement Techniques (EIT) (Glynn 1994).

Assume the quantity of interest, say J, can be represented as the expected value of a random variable Y , with
respect to a probability measure P, i.e.,

J = EP[Y ] (1)

For some problems sampling from P directly is not feasible or is excessively costly. Consider the following cases:
(i) in many continuous-time models in finance or physics generating continuous-time samples according to P is not
possible and discrete-time approximations are simulated; (ii) P represents the stationary distribution of a stochastic
process and direct sampling from P may not be feasible; (iii) P has a complex joint density on Rd for some d for which
the common i.i.d. sampling methods are highly inefficient; (iv) P is a probability measure on a finite set S and efficient
sampling directly from P is not feasible. This would be case, for example, when P has a Gibbs distribution over a
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very large set (as a result, the so-called partition function is not easy to obtain). In such cases, sampling according to
P′, an appropriate approximation to P, is used.

Assume Y1, · · · ,Yn are n samples. The MC estimator is defined as the sample average

ĴMC =
1
n
(Y1 + · · ·+Yn).

Y1, · · · ,Yn may be i.i.d. samples according to probability measure P (or P′), or they may be correlated samples with
stationary measure P (or P′), the latter corresponding to the so-called Markov Chain Monte Carlo (MCMC) when Yi’s
are evaluated on an appropriately defined Markov chain.

VRTs involve finding a random variable Z and a sampling measure Q such that

EQ[Z] = EP[Y ] and VarQ(Z) < VarP(Y ).

The method is effective if VarQ(Z) is substantially less than VarP(Y ). More generally, one may allow some estimation
bias if the resulting mean square error is less than VarP(Y ), i.e.,

EQ[(Z − J)2] < VarP(Y ).

The most commonly used such techniques are Control Variate, Stratification, and Importance Sampling (see, e.g.,
(Asmussen and Glynn 2007), (Glasserman 2004)).

It is worth noting that in many instances of practical importance we are interested in simultaneously evaluating a
number of performance indices, Y is a random vector, and J is a vector in Rk for some k. Some VRTs are effective for
simultaneous estimation of a number of performance indices; some adapt too closely to single performance indices to
be simultaneously effective for a vector of performance indices. Control variate technique belongs to the former group
and stratification and importance sampling generally belong to the latter. In this paper, we assume J is a scalar.

1.2 Parametric estimation & DataBase Monte Carlo (DBMC)

We consider a parametric version of the estimation problem (1); namely, we assume that J depends on some model or
decision variable θ . Specifically, let {Pθ ;θ ∈ Θ} be a family of probability measures on a measurable space (Ω,B).
Let Y be a real-values function on Ω, i.e., Y : Ω → R. We are interested in estimating

J(θ) = EPθ [Y ] for a number of θ ∈ Θ.

We assume that the goal is efficient estimation of J(θ) for many θ , or efficient estimation of J(θ) for some θ under
time and budget constraints. More precisely, we consider the following settings

1. Estimate J(θ) for many θ ∈ Θ.
2. Estimate J(θ) for a θ that is initially not specified. Once it is, there is a time and/or budget constraints to

estimate it.
3. A combination of the two settings above.

We have proposed an approach, called DataBase Monte Carlo (DBMC), that uses variance reduction techniques
in a “constructive” way in the above settings: Information is gathered through sampling at a set of parameter values
and is used to construct effective variance reducing algorithms when estimating at other parameters. In other words,
the overall strategy for efficient estimation is to learn from computationally solving instances of the problem, say, at
θ1, · · · ,θl , and then use that information to improve the efficiency of MC when solving other instances. The premise
of the approach is that in some parametric estimation problems the setup cost of gathering information at θ1, · · · ,θl is
justifiable by the resulting improved efficiency when solving other instances; in some cases this is so even if the setup
cost is substantial. We have considered this approach when using variance reduction techniques of stratification and
control variates. (See, e.g., (Zhao and Vakili 2008), (Borogovac and Vakili 2008), and (Borogovac and Vakili 2009).)
In this paper we present some preliminary results for the case where DBMC is used in conjunction with importance
sampling.

1.3 Relevant literature

The literature on VRTs generally and the Importance Sampling technique specifically is vast and we will not give
a general review. See (Asmussen and Glynn 2007) for a general description and (Liu 2001), (Glasserman 2004),
(Chen, Shao, and Ibrahim 2000), for specific focus on application domains of, respectively, scientific computing,
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computational finance, and Bayesian computation. (Glynn and Iglehart 1989) covers the theoretical basis of importance
sampling and its various implementations.

One of the most effective uses of importance sampling has been the estimation of the probability of rare events,
called rare event simulation. See (Juneja and Shahabuddin 2006) for a recent review. Assume the objective is to estimate

α = EP[I{A}] = P(A) for some A ∈ B

where I{A} is the indicator of the event A. Let X1, · · · ,Xn be an i.i.d. sample with distribution P and let Yi = I{Xi ∈ A}.
Then, a crude MC estimator of α is

α̂(n) = Y (n) =
1
n
(Y1 + · · ·+Yn).

The central limit theorem always holds in this case and we have

√
n(α̂(n)−α) ⇒ N(0,α(1−α)).

For α close to zero the absolute error of α̂(n) is of the order of
√

α · (1−α)n−1/2 and is small. However, its relative
error, which is more relevant given the small value of α , is of the order

√
1−α

α
n−1/2 ≈ α−1/2 ·n−1/2.

For rare events, i.e., for α very small, the number of samples needed to obtain crude MC estimators with acceptable rela-
tive error can be prohibitively high (Glynn 1994). Importance sampling has been the main tool employed in this context
leading to significant gains in efficiency. Large deviation theory has provided one of the guidelines for obtaining effective
importance sampling measures in specific problems (see, e.g., (Bucklew 2004)). Another approach is to consider a para-
metric family of candidate importance sampling measures and then solve a parametric optimization problem to select the
optimum sampling measure from the parametric family (see, e.g., (Glasserman, Heidelberger, and Shahabuddin 1999)).

A recent approach to rare event simulation has been the so-called Cross Entropy (CE) method (see, e.g.,
(de Mello and Rubinstein 2002), (Rubinstein 2005)). CE, similar to the approach we consider in this paper, uses stochas-
tic sampling to search for a good importance sampling measure. The non-parametric approach to estimating the importance
sampling density used in the Generalized Cross Entropy (GCE) method (see, (Botev, Kroese, and Taimre 2007)) is
relevant to our research.

Now, let us consider the setting we have in mind in this paper, i.e., the case where the estimation parameter Y (θ)
depends on some model or decision parameter θ . We assume that the parameter θ is a parameter of the probability
measure in the following sense. Let {Pθ ;θ ∈ Θ} be a family of probability measures on a measurable space (Ω,B).
Let Y be a real-values function on Ω, i.e., Y : Ω → R. Let Eθ denote expectation with respect to probability measure
Pθ . It is well-known that

J(θ) = Eθ [Y ] = Eθ0 [Y · dPθ
dPθ0

(Y )] = Eθ0 [Y ·L(θ ,θ0,Y ))] (2)

where dPθ /dPθ0(Y ) = L(θ ,θ0,Y ) is the likelihood ratio (assume it is well-defined). Therefore, in principle, from
sampling at θ0 we can obtain an estimate of the entire response surface, namely, J(θ) at all θ . The variance of such
an estimator can grow extremely large as θ moves away from θ0 (see, e.g., (Glynn and Iglehart 1989), Section 8.)

The approach is used in statistical physics for studying phase transitions (see, e.g., (Binder and Heermann 2002)).
The parameter of interest is a temperature related parameter and the goal is to obtain information about quantities of
interest at multiple temperatures. Markov Chain Monte Carlo (MCMC) is used at one temperature and the samples
are re-weighting using likelihood ratio weights. This method is called Histogram Re-weighting method (see, e.g.,
(Ferrenberg and Swendsen 1988), (Ferrenberg, Landau, and Swendsen 1995), and (Binder and Heermann 2002)) and
apparently was initially introduced in statistics (see, (Madras and Piccioni 1999), (Barbu and Zhu 2005)). This approach,
which is closely related to ours, is effective in a sufficiently small neighborhood of the nominal parameter.

Compared to i.i.d. sampling, MCMC sampling in general moves in a more restricted way in the sample space. In
other words, due to correlations introduced by the Markov chain, consecutive samples are often in some sense closer to
each other when compared to independent samples. As a result the time until the Markov chain reaches stationarity, the
so-called mixing time, is an important consideration for MCMC. Some recent techniques in the context of parametric
MCMC, called Simulated Tempering and Replica Exchange, consider coupling parametric Markov chains at different
parameters to improve the mixing times (see, (Madras and Piccioni 1999)). These are relevant to the setting we have
in mind where importance sampling is used in conjunction with MCMC.
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In this paper we use information gathered at a single parameter value to improve efficiency of the importance
sampling algorithm at neighboring parameters. We analyze the variance of the resulting importance sampling estimator
in a neighborhood of the nominal parameter and present a DataBase Monte Carlo (DBMC) implementation.

The rest of the paper is organized as follows. We give a brief review of importance sampling in Section 2 and
present our approach and results in Section 3. Some experimental results are given in Section 4. We conclude in
Section 5.

2 IMPORTANCE SAMPLING

In this section, we give a brief review of the importance sampling technique. Importance sampling is a general method
to reduce variance by having samples generated from a different sampling probability measure that implied by the
stochastic model. The sample values are corrected by the likelihood ratio. In importance sampling, we change the
probability measure in order to give more weight to “important” outcomes thereby increasing estimation efficiency.

Let P be a probability measure on (Ω,B), X ∼ P and Y = h(X) a random variable. Let

J = EP[Y ] = EP[h(X)].

Assume generating samples of X is feasible. Let X1, · · · ,Xn be i.i.d. P distributed samples. Then the crude MC
estimator is

ĴMC(n) =
1
n
(Y1 + · · ·+Yn)

where Yi = h(Xi). If Var(Y ) = σ2
Y is finite the central limit theorem holds

√
n(ĴMC(n)− J) ⇒ σY N(0,1)

where ⇒ denotes weak convergence and N(0,1) is the standard normal random variable.
Let Q be another probability measure on (Ω,B) such that P is absolutely continuous with respect to Q (P ≪ Q),

i.e., P(A) > 0 implies Q(A) > 0 for all A ∈ B. Then J can be alternatively represented as

J = EP[h(X)] = EQ[h(X)
dP
dQ

(X)].

Q is the called the importance sampling probability measure.

Therefore, the Importance Sampling Algorithm (the i.i.d version) is as follows.

• Generate X1,X2, ...,Xn, an i.i.d. sample, where Xi ∼ Q.
• Set Zi = h(Xi)

dP
dQ (Xi).

• Evaluate

ĴIS(n) =
1
n
(Z1 + · · ·+Zn).

ĴIS is an unbiased estimator of J. The weight dP
dQ is the Radon-Nikodym derivative (or the likelihood ratio) of P

with respect to Q.

If

VarQ(Z) = VarQ(h(X)
dP
dQ

(X)) = σ2
Z < ∞

again the central limit theorem holds and we have

√
n(ĴIS(n)− J) ⇒ σZN(0,1).

Importance Sampling is effective if

VarQ(Z) < VarP(Y ).

One can alternatively consider a more general measure of effectiveness by taking the computational costs of the two
approaches of crude MC and importance sampling into account as in (Glynn and Iglehart 1989), Section 5.
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(Glynn and Iglehart 1989) shows that the absolute continuity condition can be relaxed on Q as follows. The
requirement of P(A) > 0 implies Q(A) > 0 is replaced by the new requirement

Ep[h(X)I{A}] > 0 implies Q(A) > 0, A ∈ B.

where I{A} is the indicator function of A ∈ B. In this case L does not have a likelihood ratio interpretation. In what
follows we consider this more general case. It is well known that there exists an optimal sampling measure, in the
sense that it minimizes the VarQ(Z). (See, e.g., (Asmussen and Glynn 2007), Chapter 5.)

Proposition 1. Assume the objective is to estimate J = EP[h(X)]. The following variance minimization problem

min
Q

{VarQ(Z);Z = h(X)
dP
dQ

(X);Ep[h(X)I{A}] > 0 implies Q(A) > 0, A ∈ B}

has a solution Qopt ,

dQopt(x) =
|h(x)|dP(x)

K

where K = EP[|h(X)|] and the corresponding minimum variance is K2 − J2.

An immediate corollary of the above proposition is the following well-known result.

Corollary 1. If h(·) above is a nonnegative (or nonpositive) function, then Qopt provides a zero-variance estimator.

At first glance, it seems that we have identified a perfect sampling measure. However, to obtain the optimal
sampling measure, we first need to know EP[h(X)] which is exactly what we would like to estimate. This corollary
has been used as a guideline for selecting near optimal sampling measures. The corollary shows that a good sampling
measure should allocate samples approximately proportional to

h(x) ·dP(x).

In Section 3 we show that this apparently circular result can be constructively used in the context of parametric
estimation considered in this paper.

2.1 Importance Sampling and “distance” between probability measures

Another approach for obtaining a good importance sampling measure is to select the best from a restricted set of
sampling measures. This latter variance minimization problem can alternatively be formulated as looking for a sampling
measure from a restricted set that is the “closest” to the optimum sampling measure, for an appropriately defined
distance between probability measures.

(Ali and Silvey 1966) defines a general class of measures of divergence between probability measures. Members
of this class are often referred to as Ali-Silvey distances. It is worth noting that these measures of divergence do not
satisfy all the properties of a distance in a metric space. An Ali-Silvey distance between two probability measures,
defined on the same measurable space, is defined as

d(P1,P2) = φ(
∫

RM
C[

dP2

dP1
(x)]dP1(x))

where C(·) is a continuous convex real-valued function and φ(·) is an increasing real-valued function of a real variable.
Some of the well-known distances between probability measures, such the Kullback-Leibler distance, belong to this
class.

The Ali-Silvey distance satisfies the following properties

• d(P1,P2) takes its minimum value when P1 = P2 and its maximum value when P1⊥P2.
• In general, d(P1,P2) 6= d(P2,P1), i.e., d(·, ·) is not symmetric.
• In general, d(P1,P2)+ d(P2,P3) is not greater than or equal to d(P1,P3), i.e., the distance measure does not

satisfy the triangle inequality.
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Assume we use Q as the importance sampling probability measure. Then, the variance of the importance sampling
estimator is

Var(h(X)
dP
dQ

(X)) =
∫

[h(x)
dP
dQ

(x)]2dQ(x)− J2

= K2
∫

[
|h(x)|

K
dP
dQ

(X)]2dQ(x)− J2

Substituting in dQopt from Proposition 1, we have

Var(h(X)
dP
dQ

(X)) = K2
∫

[
dQopt

dQ
(x)]2dQ(x)− J2

= K2dIS(Q,Qopt)− J2

where dIS(·, ·) denotes the Ali-Silvey distance with φ(x) = x and C(x) = x2.
Assume that the choice of importance sampling measure is restricted to a subset of probability measures denoted

by G . Then, the above implies that the variance minimization problem

min
Q∈G

Var(ZIS) = min
Q∈G

Var(h(Y )
dP
dQ

(Y ))

is equivalent to the following distance minimization problem.

min
Q∈G

dIS(Q,Qopt).

For an application of this approach, see, e.g., (Orsak and Aazhang 1991).

3 APPROACH AND PRELIMINARY RESULTS

As stated earlier, our strategy for efficient estimation is to learn from computationally solving a number of instances
of the estimation problem, say, at θ1, · · · ,θl , and then use what we learnt to find better importance sampling measures
for estimation at other parameters. In this section we assume that sampling at a single parameter, denoted by θ0 is
used to obtain information, i.e., to learn.

Let {Pθ ;θ ∈ Θ} be a family of probability measures on a measurable space (Ω,B). Let

J(θ) = Eθ [h(X)] where X ∼ Pθ .

Assume Pθ ≪ Pθ0 , i.e., Pθ (A) > 0 implies Pθ0(A) > 0 for all θ ∈ Θ and all A ∈ B. Then, we have

J(θ) = Eθ0 [h(X)
dPθ
dPθ0

(X)].

This is the well-known result that by re-weighing samples obtained according to the sampling measure at θ0 one can
estimate the quantity of interest J(θ) for any θ . It is also well-known that while re-weighing leads to an unbiased
estimator of J(θ) the variance of the resulting estimator is not guaranteed to be lower than Varθ (h(X)) and in fact it
can be much higher.

We consider the implications of using the optimal importance sampling measure for estimating J(θ0) as a sampling
measure for estimating J(θ).

As we pointed out in the previous section, if h(·) is either nonnegative or nonpositive, the optimal importance
sampling measure produces a zero variance estimator of J(θ0). However, knowing the optimal sampling measure
requires knowing J(θ0) making such a zero variance estimator apparently useless. We ask the question of what can be
said if the optimal Importance Sampling measure for estimating J(θ0) is used to estimate J(θ) in a neighborhood of
θ0. The following proposition provides an answer to this question.

Assume θ is a scalar and Pθ is twice continuously differentiable with respect to θ in a neighborhood of θ0. Then,
we have

Proposition 2. For a fixed parameter θ0, assume h(·) is a nonnegative (or nonpositive) function and dQ(x,θ0) =
h(x)dP(x,θ0)/J(θ0) is the optimal importance sampling probability measure for estimating J(θ0). If this sampling
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measure is used for estimating J(θ) in a neighborhood of θ0, then the variance of the corresponding importance
sampling estimator satisfies the following.

VarQ(θ0)[h(X)
dPθ

dQ(θ0)
(X)] = O(θ −θ0)

2

The proof is given in the appendix.

The above proposition implies that the optimal importance sampling for estimating J(θ0) can be a very effective
sampling measure for estimating J(θ) for values of θ close to θ0. In other words, the effort to obtain Q(θ0) pays
dividends when estimating J(θ) in a neighborhood of θ0.

To operationalize the above result we use the so-called DataBase Monte Carlo approach (DBMC) as follows.

3.1 Setup phase of DBMC

Let X1, · · · ,XN be an i.i.d. sample from Pθ0 for large N. Let DB = {x1, · · · ,xN} be the samples generated. We call this
set the database. Let P̃ denote the empirical measure associated with the sample. Then, P̃ is the uniform measure on
DB assuming that if identical samples are generated, they are kept as separate elements of DB. We have

EP̃[h(X)] =
1
N

N

∑
i=1

h(xi) = J̃(θ0) ≈ J(θ0).

We consider solving the following approximate problem to our original estimation problem.

Estimate J̃(θ) = EP̃[h(X)
dPθ
dPθ0

(X)].

3.2 Estimation phase of DBMC

Define the probability measure Q̃ on DB by

Q̃(xi) = h(xi)/
N

∑
i=1

h(xi).

Then the estimation phase of the DBMC is given by Figure 1.

1. Sample Y1,Y2, ...,YM from DB according to Q̃.
2. Set

Zi =
dPθ
dPθ0

(Yi) · J̃(θ0).

3. Calculate

ĴIS(θ) =
1
M

M

∑
i=1

Zi

.

Figure 1: DBMC and importance sampling algorithm
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Z is an unbiased estimator of J̃(θ). Note that

EQ̃[Z] =
N

∑
i=1

dPθ
dPθ0

(xi)J̃(θ0) · Q̃(xi)

=
N

∑
i=1

dPθ
dPθ0

(xi)(
1
N

N

∑
i=1

h(xi)) ·
h(xi)

∑N
i=1 h(xi)

=
N

∑
i=1

dPθ
dPθ0

(xi)h(xi) ·
1
N

= J̃(θ).

4 EXPERIMENTAL RESULTS

In this section we provide a number of experimental results for the application of the DBMC algorithm above to give
some indications about the performance of the algorithm. We consider estimating prices of three financial options, a
simple European call, an Asian call, and a lookback call option. We assume the price of the underlying asset satisfies
the Black-Scholes model. The parameters of interest are the volatility parameter σ and the risk-free interest rate r,
namely, the drift parameter of the underlying asset under the risk-neutral measure.

In all cases the information is gathered by extensive sampling at a nominal parameter value (N = 1000,000). Using
the resulting payoffs, the optimal sampling measure at the nominal parameter was evaluated and used for sampling
when perturbing the parameter of interest. M = 1000 values were used in resampling.

Figures 2, 3, and 4 show the results for, respectively European, Asian, and lookback options. The x-axis shows
different values of the parameter of interest and the y-axis gives the ratio of the variance of the importance sampling
estimator to the crude MC estimator. Note that we are talking about the approximate estimation problem.

All results are consistent with Proposition 2 given in Section 3. The variance of the importance sampling approaches
zero as the parameter approaches the nominal parameter. In each case there is a neighborhood of the nominal parameter
where importance sampling leads to variance reduction. The variance reduction increases as the parameter approaches
the nominal parameter value.

The details of the experiments are given below.

4.1 European Call Option

Assume the objective is to estimate the price of a European call option via Monte Carlo. Let S0 = 100 denote the
initial price of the underlying asset, K = 100 the strike price, r = 5% the risk-free interest rate, and T = 1/6, the time
horizon. Let σ , the volatility of the underlying asset be the parameter of interest. Then,

J(σ) = e−rT E[(S0e(r− 1
2 σ2)T+σ

√
T Z −K)+].

where Z ∼ N(0,1).
We use the above algorithm and the optimal density at σ0 = 0.2 as importance sampling density to estimate J(σ)

where σ changes from 0.08 to 0.3 by step size of 0.004.
Similiarly, if we fix σ = 0.2, let interest rate r of the underlying asset be the parameter of interest. Then,

J(r) = e−rT E[(S0e(r− 1
2 σ2)T+σ

√
T Z −K)+].

where Z ∼ N(0,1).
We use the optimal density at r = 0.05 as importance sampling density to estimate J(r) where r changes from 0

to 0.4 by step size of 0.004.

4.2 Asian Call Option

Let S0 = 100 denote the initial price of the underlying asset, K = 100 the strike price, r = 5% the risk-free interest rate,
and T = 1/12, the time horizon. Let σ , the volatility of the underlying asset be the parameter of interest. Then,

J(σ) = e−rT E[(S(σ)−K)+].

S =
1
m

m

∑
j=1

S(t j)
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Figure 2: European Call Option - Using optimal IS density at σ = 0.2 and r = 0.05.

S(t j+1) = S(t j)exp([r− 1
2

σ2](t j+1 − t j)+σ
√

t j+1 − t jZ j+1)

where Z1, ...,Zm are independent standard normal random variables. Here we assume m = 10.
We use the above algorithm and the optimal density at σ0 = 0.2 as importance sampling density to estimate J(σ)

where σ changes from 0.14 to 0.26 by step size of 0.002.
Similarly, if we fix σ = 0.2, let interest rate r of the underlying asset be the parameter of interest. Then,

J(r) = e−rT E[(S(r)−K)+].

We use the optimal density at r = 0.05 as importance sampling density to estimate J(r) where r changes from 0
to 0.2 by step size of 0.001.
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Figure 3: Asian Call Option - Using optimal IS density at σ = 0.2 and r = 0.05.

4.3 Lookback Call Option

Let S0 = 100 denote the initial price of the underlying asset, K = 100 the strike price, r = 5% the risk-free interest rate,
and T = 1/12, the time horizon. Let σ , the volatility of the underlying asset be the parameter of interest. Then,

J(σ) = e−rT [S(tm,σ)− min
j=1,..,m

(S(t j,σ))].

S(t j+1,σ) = S(t j,σ)exp([r− 1
2

σ2](t j+1 − t j)+σ
√

t j+1 − t jZ j+1)
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where Z1, ...,Zm are independent standard normal random variables. Here we assume m = 10.
We use the above algorithm and the optimal density at σ0 = 0.2 as importance sampling density to estimate J(σ)

where σ changes from 0.14 to 0.26 by step size of 0.002.
Similarly, if we fix σ = 0.2, let interest rate r of the underlying asset be the parameter of interest. Then,

J(r) = e−rT [S(tm,r)− min
j=1,..,m

(S(t j,r))].

We use the optimal density at r = 0.05 as importance sampling density to estimate J(r) where r changes from 0
to 0.2 by step size of 0.004.
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Figure 4: Lookback Call Option - Using optimal IS density at σ = 0.2 and r = 0.05.

5 CONCLUSIONS

We consider the application of DataBase Monte Carlo (DBMC) approach in conjunction with the variance reduction
technique of importance sampling in a parametric estimation setting. In DBMC, information, gathered via statistical
sampling at a number of parameter values, is used to construct a more effective variance reducing algorithm for
estimation at other parameter values. In this paper, information is gathered at a single parameter value. We show
that the optimal importance sampling measure can be a very effective sampling measure for estimation at neighboring
parameter values and give an analysis of the variance of the resulting importance sampling estimator. Experimental
results for a number of examples are provided that show the effectiveness of the approach in a neighborhood of the
nominal parameter. A natural extension of this approach to the case where information is gathered at a finite number
of parameter values is the subject of our current research.
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APPENDIX

Proposition 2. For a fixed parameter θ0, assume h(·) is a nonnegative (or nonpositive) function and dQ(x,θ0) =
h(x)dP(x,θ0)/J(θ0) is the optimal Importance Sampling probability measure for estimating J(θ0). If this sampling
measure is used for estimating J(θ) in a neighborhood of θ0, then the variance of the corresponding Importance
Sampling estimator satisfies the following.

VarQ(θ0)[h(X)
dPθ

dQ(θ0)
(X)] = O(θ −θ0)

2
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Proof : Since dQ(x,θ0) = h(x)dP(x,θ0)/J(θ0), we have

VarQ(θ0)(h(X)
dPθ

dQ(θ0)
(X)) =

∫
[h(x)

dPθ
dQ(θ0)

(x)]2dQ(x,θ0)− J(θ)2

= J(θ0)
2
∫

(
dPθ
dPθ0

(x))2dQ(x,θ0)− J(θ)2

Assume P is sufficiently differentiable at θ0 and consider the Taylor expansions of dPθ and J(θ). We have

(
dPθ
dPθ0

)2 = 1+2(θ −θ0)
dP′(θ0)

dPθ0

+(θ −θ0)
2[

dP′′(θ0)

dPθ0

+(
dP′(θ0)

dPθ0

)2]+o[(θ −θ0)
2]

J(θ)2 = J(θ0)
2 +2(θ −θ0)J(θ0)J

′(θ0)+(θ −θ0)
2[J(θ0)J

′′(θ0)+(J′(θ0))
2]+o[(θ −θ0)

2]

Therefore,

VarQ(θ0)[h(X)
dPθ

dQ(θ0)
(X)] = J(θ0)

2
∫

(
dP(x,θ)

dP(x,θ0)
)2dQ(x,θ0)− J(θ)2

= J(θ0)
2

+ J(θ0)
2 ·2(θ −θ0)

∫
dP′(x,θ0)

dP(x,θ0)
dQ(x,θ0)

+ J(θ0)
2(θ −θ0)

2
∫

(
dP′′(x,θ0)

dP(x,θ0)
+ [

dP′(x,θ0)

dP(x,θ0)
]2)dQ(x,θ0)

− J(θ0)
2

− 2(θ −θ0)J(θ0)J
′(θ0)

− (θ −θ0)
2[J(θ0)J

′′(θ0)+(J′(θ0))
2])

+ o[(θ −θ0)
2]

= 2(θ −θ0)J(θ0)
∫

h(x)dP′(x,θ0)

+ (θ −θ0)
2J(θ0)(

∫
h(x)dP′′(x,θ0)+

∫
h(x)

dP′(x,θ0)
2

dP(x,θ0)
)

− 2(θ −θ0)J(θ0)J
′(θ0)

− (θ −θ0)
2[J(θ0)J

′′(θ0)+(J′(θ0))
2])

+ o[(θ −θ0)
2]

Since

J′(θ0) =
∫

h(x)dP′(x,θ0),

J′′(θ0) =
∫

h(x)dP′′(x,θ0).

Therefore, we have

VarQ(θ0)[h(X)
dPθ

dQ(θ0)
(X)] = (θ −θ0)

2[J(θ0)
∫

h(x)
dP′(x,θ0)

2

dP(x,θ0)
− (J′(θ0))

2]+o[(θ −θ0)
2]

= O(θ −θ0)
2.
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