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ABSTRACT

We develop an importance sampling (IS) algorithm to estimate the lower tail of the distribution of returns for a discretely
rebalanced portfolio — one in which portfolio weights are reset at regular intervals. We use a more tractable continuously
rebalanced portfolio to design the IS estimator. We analyze a limiting regime based on estimating probabilities farther
in the tail while letting the rebalancing frequency increase. We show that the estimator is asymptotically efficient for
this sequence of problems; its relative error grows in proportion to the fourth root of the number of rebalancing dates.

1 INTRODUCTION

In contrast to many hedging strategies, which are built upon the assumption of continuous trading, in practice one
can only trade discretely. The study of discretely rebalanced portfolios arises naturally in models of transaction costs
and discrete hedging, such as Bertsimas, Kogan, and Lo (2000), Boyle and Emanuel (1980), Duffie and Sun (1990),
Leland (1985) and Morton and Pliska (1995). The difference between a discretely rebalanced portfolio and its continuous
counterpart has received extensive study. For example, Tankov and Voltchkova (2009) study it under jump-diffusion
models, drawing on tools from the simulation literature for discrete approximation of continuous processes, such as
Jacod and Protter (1998).

The tail distribution of a portfolio’s return is a focus of portfolio risk management. To estimate a distri-
bution far in the tail, techniques of rare event simulation have been well developed in various contexts; see
Asmussen and Glynn (2007) for background. Applications in finance have been explored, such as the single-period prob-
lem in Glasserman, Heidelberger, and Shahabuddin (2000) and the credit risk application in Glasserman and Li (2003).
Here we address a dynamic problem of estimating the lower tail of a portfolio that evolves over time and is periodically
rebalanced to a fixed set of weights. We develop an importance sampling estimator using a more tractable continuously
rebalanced portfolio to design the change in sampling distribution. Glasserman (2009) analyzed the asymptotic behavior
of the difference between the discretely rebalanced portfolio and its continuous counterpart as the number of rebalancing
dates increases. Here we extend a conditional limiting result in Glasserman (2009) to develop and analyze our importance
sampling technique.

In more detail, we derive a limiting result for the discretely rebalanced portfolio conditional on the logarithmic
value of the continuous portfolio being a large negative number of order O(

√
N), where N is the number of rebalancing

dates over a fixed horizon. We apply an exponential change of measure to the continuous portfolio to sets its mean at
a target level corresponding to the tail threshold of the discrete portfolio, and we carry out the importance sampling
under the new measure. We prove that this algorithm is logarithmically efficient, with a relative error that is O(N1/4).

Section 2 describes the setting in which we work. Section 3 provides the main theorem for the conditional limit
of the discretely rebalanced portfolio, and Section 4 gives the estimator. In Subsections 5.2 and 5.3, a lower bound of
the mean of the estimator and an upper bound of its variance are derived, respectively, which leads to the main result
of efficiency in Subsection 5.1. In Section 6 a numerical experiment is presented.

2 SETTING

We consider a portfolio consisting of d assets, with a fixed vector w = (w1, ...,wd)
⊤ of weights, such that ∑d

i=1 wi = 1.
Each wi is the target fraction of the portfolio’s value invested in the ith asset. A d-dimensional standard Brownian
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motion W = (W1, ...,Wd)
⊤ drives the prices of the d assets with dynamics

dSi(t)
Si(t)

= µidt +
d

∑
i=1

σ⊤
i dW (t), i = 1, ...,d.

The drifts µi and volatility vectors σi = (σi1, ...,σid)
⊤ are constant. In a continuously rebalanced portfolio, the portfolio

weights w can be maintained throughout. Under such continuous rebalancing, the portfolio value V has the following
dynamics:

dV (t)
V (t)

=
d

∑
i=1

wi
dSi(t)
Si(t)

= µwdt +
d

∑
i=1

σ̄⊤dW (t),

where µw = ∑i wiµi and σ̄ = ∑i wiσi. Denote the portfolio’s volatility by σw = ‖σ̄‖, with ‖.‖ being the l2-norm. Then
V has a closed form solution

V (t) = V (0)exp{(µw − 1
2

σ2
w)t + σ̄⊤W (t)}. (1)

Now consider a risk horizon T = 1, and rebalancing horizon ∆t = T/N. Assume we only rebalance the portfolio
at times n∆t for n = 1, ...,N, so that after each rebalancing the portfolio weights are equal to w, while between two
rebalancing dates we do nothing to the portfolio. This discretely rebalanced portfolio V̂ evolves from n∆t to (n+1)∆t
according to

V̂n+1 = V̂n

(

d

∑
i=1

wi
Si((n+1)∆t)

Si(n∆t)

)

= V̂n

(

d

∑
i=1

wi exp{(µi −
1
2
‖σi‖2)∆t +σ⊤

i ∆W (n)}
)

.

We write V̂n = V̂ (n∆t), ∆W (n) = W ((n + 1)∆t)−W (n∆t), and normalize both portfolios to V (0) = V̂ (0) = 1. Hence,
we can write

V̂N = V (T )
N

∏
n=1

R̂n,N

Rn,N
,

where
R̂n,N

Rn,N
=

d

∑
i=1

wi exp{(µi −µw − 1
2
‖σi‖2 +

1
2

σ2
w)∆t +(σi − σ̄)⊤∆W (n∆t)}. (2)

We focus on estimating the lower tail of the distribution of V̂N . We model this by focusing on P(V̂N < vN), where
vN is decreasing and converges to 0 as N → ∞. Note that the continuous value V in (1) is always positive. Since V̂N is
close to V (T ) as shown in Theorem 1 in Glasserman (2009) as well as Theorem 1 later in this paper, together with the
fact that logV (T ) has a normal distribution, such vN makes the lower tail of V̂N a rare event. Particularly, our work
considers the case where − logvN = O(

√
N).

To design an efficient importance sampling algorithm, we will use V (T ) to define a change of probability, and
then analyze the efficiency of the algorithm as N → ∞ in Sections 5.1–5.3. In order to do that, we will first look at
the conditional limit distribution of V̂N given − logV (T ) = O(

√
N) in Section 3.

3 CONDITIONAL LIMIT DISTRIBUTION

In this section, we provide a theorem that will be essential for building the importance sampling algorithm, as well as
the analysis of the efficiency of the algorithm.

Theorem 1 in Glasserman (2009) shows that as N → ∞, the continuous and discrete portfolios get closer at such a
rate that

√
N(V̂ (T )−V (T ))/V (T ) converges to a normal distribution. Furthermore, it shows that when conditioning on

− logV (T ) being a very large number of order Θ(
√

N), the ratio log(V̂ (T )/V (T )) converges to a nonzero constant, that is,
− logV̂ (T ) is of order Θ(

√
N) as well. To make things explicit, we condition on logV (T ) = ŷN = x

√
N +µwT −σ2

wT/2.
From (1) we can see that this is equivalent to conditioning on the Brownian motion σ̄⊤W (T ) = x

√
N.

The following theorem explores the conditional distribution of the V̂ (T ) (or say V̂ (T )/V (T )), which tells more
details about the rate of the convergence.
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Theorem 1. For fixed x < 0, ŷN = x
√

N + µwT −σ2
wT/2,

√
N(log

V̂N

V (T )
−ax)|(logV (T ) = ŷN) ⇒ N(bx, σ̃2), for some σ̃ > 0, (3)

where

ax =
1
2 ∑

i
wi[(σi − σ̄)⊤σ̄ ]2x2/σ4

w, (4)

and

bx =
1
6 ∑

i
wi

(

[
(σi − σ̄)⊤σ̄

σ2
w

]3x3 +
(σi − σ̄)⊤σ̄

σ2
w

[3‖σi − σ̄‖2 +4(µi −µw − 1
2
(‖σi‖2 −σ2

w))]x

)

. (5)

Here ⇒ means convergence in distribution.

Remark The discretely rebalanced portfolio can be negative, that is, V̂N < 0, however, as we prove in Appendix
A.1 the limit is almost surely non-negative, and the possibility that V̂N < 0 is negligible. We can simply assign any
value to the logarithm function for negative V̂N and not change the limit distribution.

Remark The theorem can be viewed as an extension of Theorem 2 of Glasserman (2009), which only shows the
conditional limit of log(V̂N/V (T )), while the theorem above also shows the speed of convergence. This theorem is
also closely related to Theorem 1 of Glasserman (2009) when x = 0 and a0 = b0 = 0. If we consider log(V̂N/V (T )) ≈
V̂N/V (T )−1, then it has a similar result of convergence to a normal distribution with zero mean.

4 IMPORTANCE SAMPLING ESTIMATOR

Following Theorem 1, we have the intuition that, conditional on an extreme value of V (T ),

V̂N |(logV (T ) = ŷN) ≈ HN(ŷN) = exp{ŷN +ax +bx/
√

N}.

So, we parameterize the loss threshold as vN = HN(ŷN). Then in order to compute P(V̂N < vN), it becomes natural to
choose a change of measure that sets the mean of logV (T ) to ŷN .

From the expression for V (T ) in (1), logV (T )∼ N((µw −σ2
w/2)T,σ2

w), so an exponential change of measure using
logV (T ) can be easily defined

dPθ
dP

= exp{θ logV (T )−ΨlogV (T )(θ)},

where ΨlogV (T )(θ) = logE[exp{θ logV (T )}] is the cumulant generating function of logV (T ). We use the subscript θ
to indicate the new measure. And θ can be chosen so that the mean of logV (T ) under the new measure is matched to
ŷN :

Eθ [logV (T )] = Ψ′
logV (T )(θ) = ŷN = x

√
N + µwT − 1

2
σ2

wT. (6)

By substituting the explicit form of ΨlogV (T )(θ), we can get θN = x
√

N/σ2
w, which also solves

Ψ∗(ŷN) = sup
θ
{θy−ΨlogV (T )(θ)} =

x2N
2σ2

w
.

Hence, under the PθN , ∆W (n) becomes ∆W̃ (n)+ σ̄x/(
√

∆tσ2
w), where W̃ is a Brownian motion under PθN . So we can

simply replace ∆W (n) with ∆W̃ (n)+ σ̄x/(
√

∆tσ2
w) in (2) to simulate V̂N .

The identity

P(V̂N ≤ HN(ŷN)) = EθN [I{V̂N≤HN(ŷN)} exp(−θN logVN +ΨlogV (θN))],
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yields the estimator

p̂ = I{V̂N≤HN(ŷN)} exp(−θN logVN +ΨlogV (θN)), under PθN . (7)

5 EFFICIENCY OF THE ESTIMATOR

5.1 Main Result

To analyze the efficiency of the estimator (7), we examine the squared coefficient of variation VarθN (p̂)/EθN [p̂]2 or its
logarithmic version log(VarθN (p̂))/ log(EθN [p̂]2), as N → ∞. To make our analysis easier to follow, we will first present
the result, and leave the main parts of the proof to Sections 5.2 and 5.3.

Theorem 2. The estimator p̂ is logarithmically efficient

lim
N→∞

logEθN [p̂2]

logEθN [p̂]
=

1
2
.

In fact, we have

VarθN [p̂]

EθN [p̂]2
= O(

√
N), as N → ∞.

The result follows immediately from the following two convergence results, which will be derived in the Subsection
5.2 and 5.3

EθN [p̂] ≥ Θ(
1√
N

)exp{−Ψ∗(ŷN)}); (8)

and EθN [p̂2] = O(
1√
N

)exp{−2Ψ∗(ŷN)}). (9)

Remark In fact, as observed by Jose Blanchet, this is the rate one would expect by applying the same change of
measure to estimate the continuous quantity P(logV (T ) < ŷN), so it seems reasonable to expect that this is the best
one can do with a path-independent change of measure for V̂N . It may be possible to improve the order of the relative
error through path-dependent importance sampling.

5.2 Lower Bound for the Mean

By the definition of Ψ∗(.), we have the lower bound

EθN [p̂] = EθN [I{V̂N≤HN(ŷN)} exp(−θN logVN +ΨlogV (θN))]

≥ PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN)exp{−θNŷN +ΨlogV (θN)}
≥ PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN)exp{−Ψ∗(ŷN)}. (10)

So, we only need to analyze PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN), which can be written in an integral form

PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN) =
∫ ∞

0
PθN (V̂N ≤ HN(ŷN)| logV (T ) = ŷN + y)PθN (logV (T )− ŷN ∈ dy). (11)

Denote ax = αx2 and bx = β1x3 +β2x for constants α,β1 and β2 implicitly defined by (4) and (5). Then

PθN (V̂N ≤ HN(ŷN)| logV (T ) = ŷN + y)

= PθN (
√

N(log
V̂N

V (T )
−ax) ≤ bx −

√
Ny| logV (T ) = ŷN + y)

= PθN (
√

N(log
V̂N

V (T )
−ax+y/

√
N) ≤ bx+y/

√
N −

√
Ny− (2αx+3β1x2 +β2)

y√
N
− (α +3β1x)

y2

N

−β1
y3

N3/2
| logV (T ) = ŷN + y), (12)
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where last equality is the result of evaluating a and b at x+ y/
√

N.
The conditional distribution of ∆W (n) under PθN is the same as the conditional distribution in Theorem 1 in (20),

so the result of Theorem 1 still holds under PθN . Also, the Central Limit Theorem used in the Theorem 1 satisfies
the Lyapunov criterion, so we can apply the error estimation for the Central Limit Theorem in Theorem 7.4.1 of
Chung (2000) to (12), leading to

PθN (V̂N ≤ HN(ŷN)| logV (T ) = ŷN + y)

≥ (1+ εN)Φ(−
√

Ny+(2αx+3β1x2 +β2)yN−1/2 +(α +3β1x)y2N−1 +β1y3N−3/2

σ̃
), (13)

where Φ(.) is the standard normal distribution function, and εN → 0 as N → ∞.
Then using a lower bound for the normal distribution function in (25) in Appendix A.2, we have that for any fixed

δ > 0, there exists some constant C′, such that

Φ(−
√

Ny+(2αx+3β1x2 +β2)yN−1/2 +(α +3β1x)y2N−1 +β1y3N−3/2

σ̃
)

≥C exp{−1
2
(
√

Ny+(2αx+3β1x2 +β2)
y√
N

+(α +3β1x)
y2

N
+β1

y3

N3/2
)2σ̃−2

−δ |
√

Ny+(2αx+3β1x2 +β2)
y√
N

+(α +3β1x)
y2

N
+β1

y3

N3/2
|σ̃−1}

≥C exp{−C′(
√

Ny+Ny2 + y3 +N−1y4 +N−2y5 +N−3y6)}, (14)

where (14) hold for sufficient large N. Now we substitute (12), (13) and (14) back into (11)

PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN)

≥ (1+ εN)C
∫ ∞

0
exp{−C′(

√
Ny+Ny2 + y3 +N−1y4 +N−2y5 +N−3y6)}PθN (logV (T )− ŷN ∈ y)

= (1+ εN)C̃
∫ ∞

0
exp{−C̃′(

√
Ny+Ny2 + y3 +N−1y4 +N−2y5 +N−3y6)}dy,

for some constants C̃ and C̃′, and the last equality holds because logV (T )− ŷN ∼ N(0,σ2
w) under PθN .

Next, we divide the integral into three parts, and only evaluate the central one to get a lower bound. In the middle
interval y ∈ [1/

√
N,

√
N], where Ny2 +

√
Ny dominates all other terms in the power. Then there exists some constant

C̃′′ such that

PθN (V̂N ≤ HN(ŷN), logV (T ) ≥ ŷN)

≥ (1+ εN)C̃(
∫ 1√

N

0
+
∫

√
N

1√
N

+
∫ ∞
√

N
)exp{−C̃′(

√
Ny+Ny2 + y3 +N−1y4 +N−2y5 +N−3y6)}dy

≥ (1+ εN)C̃
∫

√
N

1√
N

exp{−C̃′′(
√

Ny+Ny2)}dy

≥ (1+ εN)
C̃√
N

∫ N

1
exp{−C̃′′(y+ y2)}dy

= Θ(
1√
N

).

This proves (8).

5.3 Upper Bound for the Variance

We can write the second moment of the estimator as follows

EθN [p̂2] = EθN [(I{V̂N≤HN(ŷN),logVN>ŷN} + I{V̂N≤HN(ŷN),logVN≤ŷN})exp(−2θN logVN +2ΨlogV (θN))]

= I + II.
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We can write the second term as

II = EθN [I{V̂N≤HN(ŷN),logVN≤ŷN} exp(−2θN logVN +2ΨlogV (θN))]

= E[I{V̂N≤HN(ŷN),logVN≤ŷN} exp(−θN logVN +ΨlogV (θN))]

≤ exp{−Ψ∗(log(ŷN))}P(V̂N ≤ HN(ŷN), logVN ≤ ŷN)

≤ exp{−Ψ∗(log(ŷN))}P(logVN ≤ ŷN).

In the second line, we change the computation back to the original measure.
Denote φ(.) as the density function for standard normal distribution. Using the property of the normal tail distribution

in (27) in Appendix A.2, we can get an upper bound for II for sufficiently large N: there exists ε̃N → 0 as N → ∞ so
that

II ≤ exp{−Ψ∗(ŷN)}(1+ ε̃N)
φ(x

√
N/σw)

x
√

N/σw
= Θ(

1√
N

)exp{−2Ψ∗(ŷN)}. (15)

For the first term I, we have

I = EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN logVN +2ΨlogV (θN)})]
= EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN(logVN − ŷN)}]exp{−2Ψ∗(log(ŷN))}. (16)

So we only need to analyze EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN(logVN − ŷN)}].
First, we can write it in integral form as

EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN(logVN − ŷN)}]

=
∫ ∞

0
EθN [I

{
√

N(log
V̂N

V (T )
−ax)≤bx−

√
Ny}

exp{−2θNy}| logV (T ) = ŷN + y]PθN (logV (T )− ŷN ∈ dy), (17)

then we rewrite the integrand to use the result of Theorem 1:

EθN [I
{
√

N(log
V̂N

V (T )
−ax)≤bx−

√
Ny}

exp{−2θNy}| logV (T ) = ŷN + y]

= exp{−2θNy}PθN ({
√

N(log
V̂N

V (T )
−ax+y/

√
N) ≤ bx+y/

√
N −

√
Ny− (2αx+3β1x2 +β2)

y√
N

− (α +3β1x)
y2

N
−β1

y3

N3/2
| logV (T ) = ŷN + y).

Then using Theorem 1 and the error estimate for the Lyapunov Central Limit Theorem in Theorem 7.4.1 of Chung (2000)
as in Subsection 5.2, we have

EθN [I
{
√

N(log
V̂N

V (T )
−ax)≤bx−

√
Ny}

exp{−2θNy}| logV (T ) = ŷN + y]

≤ (1+ εN)exp{−2θNy}Φ(−
√

Ny+(2αx+3β1x2 −β2)yN−1/2 +(α +3β1x)y2N−1 +β1y3N−3/2

σ̃
)

≤ (1+ εN)exp{−2x
√

Ny
σ̃2 − (

√
Ny+(2αx+3β1x2 −β2)yN−1/2 +(α +3β1x)y2N−1 +β1y3N−3/2)2

2σ̃
}. (18)

The last inequality used the result θN = x
√

N/σ2
w (which was derived earlier when the change of measure was first

defined in Section 2) and an upper bound for the normal distribution in (26) in Appendix A.2.
Substituting (18) into (17), and dividing the integral into three parts, we get

EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN(logVN − ŷN)}]

≤ (1+ εN)

(

∫ 1√
N

0
+
∫

√
N

1√
N

+
∫ ∞
√

N

)

exp{−2x
√

Ny
σ̃2 − 1

2σ̃2 (
√

Ny+(2αx+3β1x2 +β2)
y√
N

+(α +3β1x)
y2

N
+β1

y3

N3/2
)2}φ(

y
σw

)dy.
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In the first integral, the power of the exponential function is bounded as y ∈ [0,1/
√

N], so the whole integrand is bounded.
As a result, the first integral is of order O(

√
N). In the third integral, where y >

√
N, −2x

√
Ny/σ̃2 −Ny2/(2σ̃2) < 0

for sufficient large N. So the exponential function is smaller than 1 for large N, which means the third integral is
bounded by the tail distribution Φ(−

√
N/σw) which is of order O(1/

√
N) from (27). And in the second integral,

√
Ny

and Ny2 dominate all other terms in the power. Then we have for some constant C̄

EθN [I{V̂N≤HN(ŷN),logVN>ŷN} exp{−2θN(logVN − ŷN)}]

≤ O(
1√
N

)+ exp{−|Ω(
√

N)|}+(1+ εN)
∫

√
N

1√
N

exp{−2x
√

Ny
σ̃2 −C̄Ny2}dy

≤ O(
1√
N

)+ exp{−|Ω(
√

N)|}+
1+ εN√

N

∫ N

1
exp{−2xy

σ̃2 −C̄y2}dy

= Θ(
1√
N

). (19)

So using (19), we have for (16) that

I = O(
1√
N

)exp{−2Ψ∗(log(ŷN))},

Together with (15), this proves (9).

6 NUMERICAL TEST

We now illustrate the effectiveness of this importance sampling algorithm with a numerical example.
Let d = 10 be the number of assets and set the total time horizon T = 1. Assume the ith asset has volatility

‖σi‖= 0.025+0.0125(i−1) for i = 1, ...,d, and all assets are equally correlated with correlation ρ = 0.2. We consider
those cases when the time horizon is divided equally into N intervals, where N = 3, 5, 10, 15, 20 and 25. Set the
coefficient of the condition x = −1, where x is as defined in (6). For each N, we use M = 5000 replications. We use
c2

v = VarθN (p̂)/(EθN [p̂])2 as an indicator for the efficiency of the algorithm.
Table 1 shows the results of the implementation. We denote by p̃ the plain Monte Carlo estimator, whose variance

is p− p2, where p = P(V̂N ≤ HN(ŷN)). An easy way to check the correctness of the tail probability is that given
ŷN = O(

√
N), logP(V̂N ≤ HN(ŷN)) should be roughly linear in N. This can be observed by looking at the power term

in the first column of Table 1. The last column in Table 1 is the ratio of variances between plain Monte Carlo estimator
and our importance sampling estimator. This variance ratio gives the number of plain Monte Carlo replications required
for each importance sampling replication in order that the two methods yield the same precision. So the larger is the
value of this ratio, the greater is the variance reduction. The results in Table 1 show a very large reduction.

As expected, from Table 1 we can see that c2
v/
√

N is of order O(1). From Figure 1, where we run the algorithm
for some larger values of N as well, we can see that this ratio decreases relatively fast for small N, indicating that the
numerical performance is better than the limiting analysis predicts; the ratio stabilizes as N → ∞, as guaranteed by the
analysis. The figure includes a graph of 1/

√
N for comparison.

Table 1: Variance reduction for increasing N.

N c2
v/
√

N P(V̂N ≤ HN(ŷN)) (95% confidence) Var(p̃)/VarθN (p̂)

3 0.56 (2.29,2.39)×10−2 42.7
5 0.44 (3.03,3.17)×10−3 327

10 0.33 (1.93,2.02)×10−5 5.09 ×104

15 0.27 (1.25,1.32)×10−7 7.45 ×106

20 0.23 (8.40,8.82)×10−10 1.10 ×109

25 0.20 (5.66,5.93)×10−12 1.65×1011

7 CONCLUDING REMARKS

We have developed, analyzed and tested an importance sampling estimator for the tail of the return distribution of
a discretely rebalanced portfolio. Our method uses a more tractable continuously rebalanced portfolio to design the
estimator, and our analysis is based on the conditional convergence of the difference between the discrete and continuous
cases. The method is asymptotically efficient as we move farther into the tail while increasing the number of rebalancing
dates.
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Figure 1: Plot of c2
v/
√

N.

The discussion here is limited to a simple model of the dynamics of the underlying assets and a simple type of
portfolio specified by a fixed set of weights. Potential extensions of the approach developed here include relaxing these
restrictions.
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A APPENDICES

A.1 Proof of Theorem 1

Proof. Since logV (T ) = (µw−σ2
w/2)T +∑N

n=1 σ̄⊤∆W (n) is a sum of i.i.d. normal random variables, when conditioned
on the sum, each normal increment will have the following distribution (as in, e.g., Theorem 2.5.1 of Anderson (1984)),

∆W (n)|(logV (T ) = ŷN)
d
=

σ̄
σ2

w
x
√

∆t +∆W̃ (n)− σ̄ σ̄⊤W̃ (T )

σ2
w

∆t, (20)

where W̃ is a standard d-dimensional Brownian motion, and
d
= means equality in distribution. Then we have

V̂N

V (T )
|(logV (T ) = ŷN)

d
=

N

∏
n=1

(

∑
i

wihN,n,i(x,
√

∆t)

)

,

where

hN,n,i(x,
√

∆t) = exp{ (σi − σ̄)⊤σ̄
σ2

w
x
√

∆t +(µi −µw − 1
2
(‖σi‖2 −σ2

w))∆t +(σi − σ̄)⊤ZN,n

√
∆t − (σi − σ̄)⊤σ̄ σ̄⊤ ∑N

k=1 ZN,k

σ2
w

∆t}

for i.i.d. ZN,n ∼ N(0, I). Then we can obtain a Taylor approximation for each hN,n,i(x, .) as follows

∑
i

wihN,n,i(x,
√

∆t) = 1+YN,n +XN,n + rN,n,

where the term of degree one is zero, YN,n and XN,n are the terms of degree two and three, respectively, and rN,n is the
remainder, such that

‖YN,n‖ = O(∆t), ‖XN,n‖ = O(∆t3/2), ‖rN,n‖ = O(∆t2).
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With some algebraic simplification, we obtain an explicit expression for YN,n as

YN,n =

(

1
2 ∑

i
wi
(

(σ2
w −‖σi‖2)+ [(σi − σ̄)ZN,n]

2)+∑
i

wi(σi − σ̄⊤)ZN,n(σi − σ̄)⊤
x

σ2
w

+ax

)

∆t,

where ax is defined in (4). Then
√

N ∑N
n=1(YN,n−ax/N) has mean zero. Also because YN,n−ax/N is a sum of independent

copies of polynomials of normal random variables, each of which has Lp-norm O(∆t) for any p ≥ 1, the Lyapunov
Central Limit Theorem in Theorem 7.1.2 of Chung (2000), yields

√
N

N

∑
n=1

(YN,n −
ax

N
) ⇒ N(0,σ ′2), for some σ ′ > 0. (21)

We can also derive XN,n with the following form

XN,n =
1
6

g(3)
N,n(0)∆t3/2 + lN,n∆t3/2 +

1
6 ∑

i
wi

(

[
(σi − σ̄)⊤σ̄

σ2
w

x]3∆t3/2 +3[
(σi − σ̄)⊤σ̄

σ2
w

x]2(σi − σ̄)⊤ZN,n

+
1
2

(σi − σ̄)⊤σ̄
σ2

w
x[(σi − σ̄)⊤ZN,n]

2 +
2
3

(σi − σ̄)⊤σ̄
σ2

w
x(µw −µw − 1

2
(‖σi‖2 −σ2

w))

)

∆t3/2,

where

gN,n(
√

∆t) = ∑
i

wi exp{(µi −µw)∆t − 1
2
(‖σi‖2 −σ2

w)∆t +(σi − σ̄)⊤ZN,n

√
∆t}−1,

and

lN,n = −2
9 ∑

i
wi

‖σi − σ̄‖2σ̄⊤ ∑N
k=1 ZN,k/

√
N

σ2
w

∆t3/2.

Here gN,n(.) is the same as defined in Glasserman (2009), and g(3)
N,n(0) consists of odd powers of normal distributions,

and does not depend on x. So we can divide XN,n into two parts. The first part is ( 1
6 g(3)

N,n(0)+ lN,n)∆t3/2, which does

not contain x and has mean zero and Lp-norm of order O(∆t3/2) for any p > 1. The second part has mean bx∆t3/2 as
defined in (5), and Lp-norm of order O(∆t3/2) for any p > 1. So for the same reason as for (21), we have

√
N

N

∑
n=1

XN,n ⇒ N(bx,σ ′′2), for some σ ′′ > 0. (22)

Based on the fact that convergence to zero in Lp (here we can easily prove for p = 1) implies convergence to zero
in distribution, we have

√
N

N

∑
n=1

(YN,n −ax∆t)2,
√

N
N

∑
n=1

rN,n,
√

N
N

∑
n=1

r2
N,n,

√
N

N

∑
n=1

X2
N,n, (23)

√
N

N

∑
n=1

(YN,n −ax∆t)rN,n,
√

N
N

∑
n=1

XN,nrN,n,
√

N
N

∑
n=1

XN,n(YN,n −ax∆t) (24)

all converge to zero in probability. Thus,
√

N ∑N
n=1(YN,n − ax/N + XN,n + rN,n) converges in distribution to a normal

distribution, and
√

N ∑N
n=1(YN,n − ax/N + XN,n + rN,n)

2 converges to zero in probability. And because for sufficiently
small v, exp{v− v2} ≤ 1+ v ≤ exp{v+ v2}, we can show that

N

∏
n=1

(

∑
i

wihN,n,i(x,
√

∆t)

)

√
N

≤ exp

{

√
N

N

∑
n=1

(1+YN,n +XN,n + rN,n)+
√

N
N

∑
n=1

(1+YN,n +XN,n + rN,n)
2

}
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and

N

∏
n=1

(

∑
i

wihN,n,i(x,
√

∆t)

)

√
N

≥ exp

{

√
N

N

∑
n=1

(1+YN,n +XN,n + rN,n)+
√

N
N

∑
n=1

(1+YN,n +XN,n + rN,n)
2

}

So using (21), (22) and convergence of terms in (24), we have

(

V̂N

V (T )

)

√
N

exp{−ax

√
N}|(logV (T ) = ŷN) ⇒ exp{N(bx, σ̃2)}, for some σ̃ > 0.

By Theorem 2.19 in van der Vaart (1998), we can, through a change in probability space, replace convergence in
distribution with almost sure convergence. Since the limit exp{N(bx, σ̃2)} is non-negative, we can conclude that the
result (3) holds.

A.2 Bounds for the Normal Distribution

For z > 0, any δ > 0 and choose θ = z, for Z ∼ N(0,1), there exists some constant C > 0 such that

Φ(−z) = 1−Φ(z) = Eθ [IZ>z exp{−θZ +Ψz(θ)}]
≥ Eθ [Iz<Z<z+δ exp{−θZ +Ψz(θ)}]
≥ Pθ (z < Z < z+δ )exp{−θ(z+δ )+Ψz(θ)}

≥C exp{− z2

2
− zδ}, (25)

where Φz(θ) = logE[exp{θZ}]. By choosing θ = x, we have get

Φ(−z) = 1−Φ(z) = Eθ [IZ>z exp{−θZ +ΨZ(θ)}]
≤ exp{−θz+ΨZ(θ)} = exp{−z2/2}. (26)

By applying L’Hopital’s rule, we can easily get

lim
z→∞

Φ(−z)

e−z2
/z

=
1√
2π

leading to a well-known asymptotic for the normal tail distribution

Φ(−z) = 1−Φ(z) ∼ φ(z)
z

, as z → ∞. (27)
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