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ABSTRACT

Assuming the underlying assets follow a Variance-Gamma (VG) process, we consider the problem of estimating
sensitivities such as the Greeks on a basket of stocks when Monte Carlo simulation is employed. We focus on a class
of derivatives called mountain range options, comparing indirect methods (finite difference techniques such as forward
differences) and two direct methods: infinitesimal perturbation analysis (IPA) and the likelihood ratio (LR) method,
where the latter is also implemented via a recently proposed numerical technique developed by Glasserman and Liu
(2007) using the characteristic function. We carry out numerical simulation experiments to evaluate the efficiency of
the different estimators and discuss the strengths and weakness of each method.

1 INTRODUCTION

Simulation-based derivative estimates are useful in financial engineering in estimating the Greeks, which are critical
for hedging financial derivatives such as options. Gradient estimation techniques were first applied to option pricing
using infinitesimal perturbation analysis (IPA) for European and American options by Fu and Hu (1995) and using
both IPA and the likelihood ratio (LR) method for European and Asian options by Broadie and Glasserman (1996);
see also Glasserman (2004) and Fu (2006, 2008) for more details on Monte Carlo simulation for financial engineering
and various methods for estimating the Greeks using simulation.

The Variance-Gamma (VG) process was introduced to the finance community as a model for log-price returns
and option pricing by Madan and Seneta (1990), and developed in Madan and Milne (1991) and Madan, Carr, and
Chang (1998). Fu (2007) gives a general introduction to the VG Process in the context of stochastic (Monte Carlo)
simulation and shows how to price and simulate the stock price. Hall (2009) considered gradient estimation for a class
of financial derivatives on a basket of stocks called mountain range options under an asset price model of geometric
Brownian motion. This paper also considers gradient estimation for mountain range options, but assuming that the
underlying assets follow VG processes. We derive IPA and LR estimators for the various sensitivities where applicable
and compare them in numerical experiments with each other and with finite difference estimates. We also compare
these estimators with an LR estimator using the recently developed numerical approximation technique of Glasserman
and Liu (2007), which relies only on the characteristic function and does not require the explicit probability density
function for the transition. This method is especially relevant for simulation of Lévy processes, where the characteristic
function is readily available. We discuss the strengths and weaknesses of each method.

2 BACKGROUND

2.1 Problem Setting

The objective is to estimate

∂V
∂ξ

,
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where V is the value (or price) of the financial derivative and ξ is the parameter of interest. For example, if V is the
price of an option written on a single underlying stock and ξ is a current stock price, then this would correspond to
estimating the most famous financial Greek, the “Delta” of the option in Hull(2002).

In this paper, the derivative price will take the following form:

V = e−rT E[JT ],

where T is the maturity or expiration date, r is the risk-free interest rate (assumed deterministic and constant), and JT

is an option payoff function. The setting assumes that the expected payoff E[JT ] cannot be easily computed, so that
Monte Carlo simulation is required to estimate it. This paper focuses on options written on a basket of underlying
assets following VG processes.

2.2 Variance-Gamma Process

The VG process is a Lévy process, having independent and stationary increments, with three parameters σ , ν , θ . The
characteristic function of the process at a fixed time T , VG(σ , ν , θ , T ), is given by

φV G(u,σ ,ν ,θ ,T ) = (1− iuθν +0.5σ2νu2)−T/ν . (1)

Two ways to define the VG process {Xt} are as follows:

• Gamma-time-changed Brownian motion, with the subordinator being a gamma process. Let {Wt} denote
standard Brownian motion, Bµ,σ

t = µt +σWt denote Brownian motion with constant drift rate µ and volatility

σ , γ(ν)
t be the gamma process with drift µ = 1 and variance parameter ν .

Xt = B(θ ,σ)
γν
t

= θγ(ν)
t +σW

γ(ν)
t

. (2)

• Difference of two gamma processes. Let γ(µ,ν)
t be the gamma process with drift parameter µ and variance

parameter ν .

Xt = γµ+,ν+
t − γµ−,ν−

t , (3)

where µ± = (
√

θ 2 +2σ2/ν ±θ)/2, and ν± = µ2
± ·ν .

Under the risk-neutral measure, with no dividends, the stock price is given by

St = S0exp((r +ω)t +Xt),

where ω = ln(1−θν −σ2ν/2)/ν is the parameter that makes the discounted asset price is a martingale, which makes
E[e−rtSt ] = S0.

In Madan, Carr and Chang(1998), the density function of the log-price z = ln(St/S0) is

h(z) =
2exp(θx/σ2)

ν t/ν
√

2πσΓ( t
ν )

(
x2

2σ2/ν +θ 2 )
t

2ν − 1
4 κ t

ν − 1
2
(

1
σ2

√

x2(2σ2/ν +θ 2)), (4)

where κ is the modified Bessel function of 2nd kind, and x = z− rt − t
ν ln(1−θν −σ2ν/2).

2.3 LR Method using Characteristic Function

Glasserman and Liu (2007) propose an LR method to estimate the Greeks using only the characteristic function by

numerically approximating the density function gξ (x) and derivative of the density function
dgξ (x)

dξ . The algorithm is as
follows: Pick a finite grid of x values, pre-compute values of Gξ ,gξ , ġξ , through numerical transform inversions.

• Using the Abate-Whitt (1992) algorithm, each transform inversion is approximated using a finite weighted
sum of transform values:

IN,h
ξ ,x (L f ) =

heσx

2π
L f (σ)+

heσx

π

N

∑
k=1

(

Re[L f (σ + ikh)]cos(khx)− Im[L f (σ + ikh)]sin(khx)

)

,
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where N is the truncation point, and L f is the characteristic function. Then calculate G j on the grid, pick
σ+ ∈ (0,σu) and σ− ∈ (σl ,0) and let

G j =

{

IN,h
σ+,x j(LGξ ), i f x j ≤ 0;

1− IN,h
σ−,x j(LḠξ

), i f x j > 0.

• Generate X̂ from the approximation Ĝξ by setting X = Ĝ−1
ξ (U),U ∼U(0,1):

X̂ =
Uδ + x j−1G j − x jG j−1

G j −G j−1
.

• At each simulation step, approximate gξ and ġξ through G j:

ĝξ (x) =

{

(G j −G j−1)/δ , i f x ∈ [x j−1,x j), j ∈ J
0, i f x < xmin or x > xmax

˙̂gξ (x) =

{

(Ġ j − Ġ j−1)/δ , i f x ∈ [x j−1,x j), j ∈ J
0, i f x < xmin or x > xmax

where Ġ j ≈ Ġξ (x j) is calculated through Ġξ =
dGξ
dξ . Then estimate the approximation score function Ŝξ =

˙̂gξ
ĝξ

at X .
• At the end of each path, return the LR estimate e−rT JT (X̂)Ŝξ (X̂) with the option price estimate e−rT JT (X̂).

To distinguish this from the usual LR estimator, we will henceforth refer to it as the GL estimator.

3 MOUNTAIN RANGE OPTIONS

Mountain range options are exotic options originally marketed by Société Générale in 1998; see also Overhaus (2002),
Quessette (2002) and Meaney(2007). The options combine characteristics of basket options and range options by basing
the value of the option on several underlying assets, and by setting a time frame for the option. Here, we will consider
only the case where the underlying assets are independent, and treat four types of mountain range options: Everest, Atlas,
Altiplano/Annapurna, and Himalayan. To price these options, we take (X1(t),X2(t))T as a two-dimensional independent
VG process. Since they are independent, we can deal with them separately. Two different ways of representing each
Xi are as follows:

• Gamma-time-changed Brownian motion

Xj(t) = B
(θ j ,σ j)

γ
(ν j)
j (t)

= θ jγ
(ν j)
j (t)+σ jW

γ
(ν j)
j (t)

, for j = 1,2.

• Difference of two gamma processes

Xj(t) = γ
(µ+

j ,ν+
j )

j (t)− γ
(µ−

j ,ν−
j )

j (t),

where

µ±
j = (

√

θ 2
j +2σ2

j /ν j ±θ j)/2andν±
j = (µ±

j )2 ·ν j , for j = 1,2.

The characteristic function of VG process Xj(t) is given by

φV G(u,σ j,ν j,θ j, t) = (1− iuθ jν j +0.5σ2
j ν ju

2)−t/ν j . (5)

Under the risk-neutral measure, the stock price would be

S j(t) = S0(t)exp((r +ω j)t +Xj(t)),

where ω j = 1
ν j

log(1−θ jν j −σ2
j ν j/2), for j = 1,2.
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The density function of log-price z j = ln(S j(t)/S0(t)) is:

h j(z j) =
2exp(θ jx j/σ2

j )

ν t/ν j
j

√
2πσ jΓ( t

ν j
)
(

x2
j

2σ2
j /ν j +θ 2

j

)
t

2ν j
− 1

4 κ t
ν j

− 1
2
(

1

σ2
j

√

x2
j(2σ2

j /ν j +θ 2
j )), (6)

where κ is the modified Bessel function of 2nd kind, and x j = z j − rt − t
ν j

ln(1−θ jν j −σ2
j ν j/2), for j = 1,2.

3.1 Everest Option

Given n stocks S1,S2, · · · ,Sn, the payoff for an Everest option is given by

JT = min
i=1,··· ,n

(

ST
i

S0
i

)

. (7)

Notice that the payoff function is a continuous and monotonically non-decreasing piecewise linear function of ST
i .

3.1.1 IPA for Everest Option

The IPA estimator is given by

dJT

dξ
=

n

∑
i=1

dJT

dST
i

dST
i

dξ

=
n

∑
i=1

(

1

S0
i

dST
i

dξ
− ST

i

(S0
i )

2

dS0
i

dξ

)

1
{ sT

i
s0
i
≤

sT
j

s0
j
,∀ j 6=i}

,

and we find that (as pointed out in Hall 2009)

∆ =
dJT

dS0
i

=
n

∑
i=1

(
1

Si0
ST

i

S0
i

− ST
i

(S0
i )

2
) = 0. (8)

For other Greeks,
dS0

i
dξ = 0, where ξ could be σi,νi,θi,T. Therefore

dJT

dξ
=

1

S0
i

dST
i

dξ
1
{ sT

i
s0
i
≤

sT
j

s0
j
,∀ j 6=i}

. (9)

The derivative of ST
i w.r.t to different parameters ξ are given as in Fu (2007).

3.1.2 LR for Everest Option

The LR estimator is

min
i=1,··· ,n

(

ST
i

S0
i

)

d ln f (XT
1 ,XT

2 , · · · ,XT
n ;ξ )

dξ
, (10)

where n = 2, f (XT
1 ,XT

2 ;ξ ) = h1(z1) · h2(z2), where h1(z1) and h2(z2) are the density functions of XT
1 ,XT

2 in (6) for

j = 1,2 respectively. Due to space limitations, the details of the calculation of
d ln f (XT

1 ,XT
2 ;ξ )

dξ are not included here, but
can be found in Cao and Fu (2010).

3.1.3 GL for Everest Option

We use the LR estimates as in (10), but approximate hi(zi) and dhi(zi)
dξ separately through the characteristic function as

in (5).
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Table 1: Everest option simulation results

VG1 Rho Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.1953469 -0.05653285 -0.0990439 -0.1190807 -0.05605222 -0.0098866 -0.031017 -0.0248973
StdErr 8.55E-05 0.03169108 0.0027073 0.0026424 0.03232712 0.03254652 0.0012334 0.001405
IPA 0.195152 0.338435 -0.097177 -0.117733 -0.053776 -0.036777 -0.030057 -0.023645
StdErr 8.54E-05 0.0317364 0.0027252 0.00265496 0.0078798 0.01990643 0.001247 0.001421
LR -0.794334 3.94683 2.106137 1.937903 1.404842 -1.318293 -0.895224
StdErr 0.027162 0.078509 0.049966 0.02226 0.017368 0.023043 0.016883
VG2
FD 0.1952389 -0.06273382 -0.1072506 -0.1182797 0.00896037 0.00838822 -0.0314099 -0.0216959
StdErr 8.54E-05 0.06059977 0.00256686 0.0025537 0.05930252 0.05833827 0.0009187 0.00095
IPA 0.195043 0.4117492 -0.012775 -0.014911 -0.1373324 -0.1010475 0.021193 0.030463
StdErr 8.53E-05 0.02875367 0.000124 0.0001542 0.01560542 0.012627 0.001825 0.001848
LR -1.151322 4.270414 2.120657 2.177208 1.469639 -1.400568 -0.880311
StdErr 0.0277723 0.080310 0.049307 0.023406 0.018371 0.023728 0.016677
GL FD -0.04114368 -0.0915674 -0.100493 -0.0030287 0.0021092 -0.0330786 -0.02243387
StdErr 0.0013093 0.00244272 0.0024285 0.0002222 0.0002243 0.000707 0.0006621
GL 0.257925 0.836115 0.67904 0.779812 0.642608 -0.073425 -0.051864
StdErr 0.025401 0.0593164 0.0404484 0.029419 0.028962 0.029509 0.027148

3.1.4 Numerical Results

To compare the performance of the IPA, LR, GL and FD estimators for the Everest option, 10000 independent
replications were simulated, with parameter settings of T = 0.2 years,ν0 = 0.2686,ν1 = 0.2976, θ0 = 0.1436,θ1 = 0.1033,
σ0 = 0.1213,σ1 = 0.1532, r = 0.0570. The numerical results are shown in Table 1, where VG1 and VG2 correspond
to the time-changed Brownian motion and the difference-of-gammas representations of the VG processes, respectively.
The results indicate that the IPA estimator matches the FD estimator closer than the LR and GL estimates for Rho and
some others, with considerably lower standard error. However, there are problems with Theta, something that was also
reported in Hall (2009) for the geometric Brownian motion setting.

3.2 Atlas Option

Given two positive integers n1, n2 where n1 +n2 < n, and n stocks S1,S2, · · · ,Sn, with strike K, the payoff for an Atlas
option is given by

JT =

(

n−n2

∑
j=1+n1

RT
( j)

n− (n1 +n2)
−K

)+

, (11)

where Rt
(i) is the ith smallest return from

{

St
1

S0
1
,

St
2

S0
2
, · · · , St

n
S0

n

}

.

3.2.1 IPA for Atlas Option

The IPA estimator is given by

dJT

dξ
=

dJT

dST
i

dST
i

dξ
1{1+n1≤i≤n−n2}

=
1

(n− (n1 +n2))S0
(i)

1
{∑

n−n2
j=1+n1

RT
( j)

n−n1−n2
>K}

dST
i

dξ
1{1+n1≤i≤n−n2},

where dST
i

dσ j
, dST

i
dr , dST

i
dT are the same as in the Everest option.
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Table 2: Atlas option simulation results

VG1 Rho Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.159036 -0.0158852 -0.0362382 -0.0336875 -0.0401362 -0.012172 -0.033765 -0.0313695
StdErr 0.0007886 0.0246182 0.0015954 0.0012604 0.0255424 0.02511867 0.0010829 0.001176
IPA 0.157945 0.3483325 -0.037779 -0.034934 -0.055719 -0.055719 -0.033171 -0.030723
StdErr 7.99E-04 0.03122565 0.0016719 0.001311 0.0198458 0.4747499 0.0010973 0.001188
LR -0.032638 0.059033 0.05023 0.138973 0.097045 0.034971 0.036539
StdErr 0.0025664 0.0027265 0.0024749 0.0016691 0.0010944 0.0019362 0.0015127
VG2
FD 0.157255 -0.016965 -0.038218 -0.033474 0.0152349 0.02292447 -0.0333294 -0.0290269
StdErr 8.00E-04 0.0447099 0.00141597 0.0011544 0.04361048 0.0432855 0.0008513 0.0007886
IPA 0.15585 0.370754 -0.01066 -0.011347 -0.070123 -0.0311865 -0.016232 -0.016798
StdErr 8.14E-04 0.009441 0.0001239 0.000151 0.0064307 0.0012461 0.0011146 0.000945
LR -0.076233 0.054035 0.049993 0.14383 0.109235 0.033789 0.039159
StdErr 0.0022163 0.0030254 0.0023068 0.0013697 0.0010415 0.0021623 0.001686
GL 0.109806 -0.005084 0.005352 0.025381 0.026887 0.084429 0.076695
StdErr 0.0032667 0.0027291 0.0025486 0.0013492 0.0012727 0.0019843 0.0016859

3.2.2 LR for Atlas Option

The LR estimator is
(

n−n2

∑
j=1+n1

RT
( j)

n− (n1 +n2)
−K

)+
d ln f (XT

1 ,XT
2 , · · · ,XT

n ;ξ )

dξ
, (12)

where n = 2, the density f (XT
1 ,XT

2 ;ξ ) = h1(z1) · h2(z2). The calculation of
d f (XT

1 ,XT
2 ;ξ )

dξ is the same as in the Everest
option.

3.2.3 GL for Atlas Option

We use the LR estimator in (12) to estimate, but approximate hi(zi) and dhi(zi)
dξ through the characteristic function as

in (5).

3.2.4 Numerical Results

Again, the performance of the IPA, LR, GL and FD estimators are compared using 10000 independent replications
were simulated, with strike price K = 0.95 and n1 = 0,n2 = 1 and using the same values as in the Atlas option for the
other parameter settings: T = 0.2 years, ν0 = 0.2686,ν1 = 0.2976, θ0 = 0.1436,θ1 = 0.1033, σ0 = 0.1213,σ1 = 0.1532,
r = 0.0570. From the results in Table 2, again IPA is generally closer to the FD results, with smaller standard error
than the LR and GL method, and there are significant discrepancies between all of the Theta estimates.

3.3 Altiplano/Annapurna Option

Given n stocks S1,S2, · · · ,Sn, a coupon amount C, a limit L and strike K, the barrier period from t1 to t2, the payoff
for Altiplano option is

JT =















C if max
(

St
i

S0
i

)

≤ L,∀i,∀t ∈ (t1, t2)
(

n
∑
j=1

ST
j

S0
j
−K

)+

otherwise
. (13)

If the limit is a floor rather than a ceiling, the option is Annapurna.
Due to the discontinuities in the payoff functions, IPA will not be applicable for Altiplano and Annapurna options.

3.3.1 Numerical Results for Annapurna Option

Again, 10000 independent replications were simulated to compare the performance of the LR, GL and FD estimators,
with strike price K = 1.8, boundary levels L = 0.75,C = 0.75, barrier period t1 = 0, t2 = 1/3, and all other parameter
values remaining the same. The results in Table 3 indicate similar conclusions as before, with the LR estimates all having
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Table 3: Altiplano and Annapurna options simulation results

VG1 Rho Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.0125041 0.01151162 -0.00044710 -0.00010735 -0.00185042 0.00670405 1.77E-05 -2.17E-06
StdErr 7.23E-05 0.0239784 0.0008394 0.0008443 0.0237760 0.0224050 0.000448 0.0004515
LR -0.632261 -0.018207 -0.016837 0.179233 0.237734 0.003234 0.010078
StdErr 0.007175 0.0082798 0.0244308 0.0038626 0.0078192 0.0024114 0.006493
VG2
FD 0.012013 0.0994565 0.00817122 0.0134781 -0.02935161 0.0237006 0.0799004 0.079851
StdErr 7.24E-05 0.0917235 0.00276237 0.00294089 0.090495 0.0892023 0.00167481 0.00169140
LR -3.49639 1.168193 0.812599 2.4657 1.669322 0.03548 0.128527
StdErr 0.012140 0.032039 0.024548 0.010850 0.007281 0.014214 0.011926
GL 0.705108 0.207643 0.25539 0.199728 0.199733 0.422369 0.422562
StdErr 0.0146927 0.016973 0.017243 0.008698 0.008734 0.011636 0.0112303

much larger standard error than the FD estimates. Furthermore, not surprisingly the GL method is computationally far
more intensive than the usual LR method, so knowing the density saves a lot of computational burden.

3.4 Himalayan Option

Define

Ri =

{

St
1

S0
1

,
St

2

S0
2

, · · · , St
n

S0
n

}

i∗1 = argmaxR1

i∗2 = argmaxR2\
{

St
i∗1

S0
i∗1

}

i∗3 = argmaxR3\
{

St1
i∗1

S0
i∗1

,
St2

i∗2

S0
i∗2

}

Given a basket of n stocks and a number of time points {t0, t1, · · · ,T}, first construct

{

Rt1
i∗1
,Rt2

i∗2
, · · · ,RT

i∗n

}

,

the payoff of a Himalayan option is given by

JT =



















(

n
∑
j=1

(R
t j
i∗j
−1)

)+

if globally floored,

n
∑
j=1

(R
t j
i∗j
−1)+ if locally floored.

(14)

Again, since the Himalayan option has a discontinuous payoff, IPA is not applicable.

3.4.1 Numerical Results for the Himalayan Option

Again, 10000 independent replications were simulated to compare the performance of the LR, GL and FD estimators,
using a local floor over 0.2 year with strike price K = 1.8, and all other parameter values remaining the same. Preliminary
results reported in Table 4 indicate potential implementation problems, indicated by the large discrepancies.

4 CONCLUSION

The IPA method performs well where applicable, but it is not applicable in many cases. And the discrepancy in
estimating Theta, reported also in Hall (2009), is still unresolved. Discrepancies for some of the other examples indicate
that implementation of the estimators can present practical implementation challenges. When the density is available,
the direct LR method is preferred to the numerical approximation, as they have essentially the same statistical properties,
but the numerical approximation is computationally intensive.
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Table 4: Himalayan option simulation results

VG1 Rho Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.07465529 0.02429409 0.01116208 0.0096664 -0.0224674 -0.0245313 0.00385225 0.0031703
StdErr 5.68E-04 0.05225252 0.00262158 0.0027304 0.0502685 0.0522712 0.00332053 0.0022075
LR -0.527853 0.203279 0.120401 0.356572 0.243691 -0.033431 -0.013259
StdErr 0.0090514 0.0075663 0.0047919 0.0058844 0.0040752 0.0027434 0.0020601
VG2
FD 0.0746191 0.01365887 0.0105495 0.00999457 -0.00211135 0.00113118 0.00527929 0.00472026
StdErr 5.68E-04 0.06573117 0.00263391 0.00311503 0.0653485 0.0623135 0.0025863 0.0024531
LR -0.524836 0.197253 0.127338 0.355567 0.242128 -0.034231 -0.013318
StdErr 0.0090048 0.0069403 0.0050826 0.0058075 0.004076 0.0026761 0.002136
GL 0.201545 0.082342 0.09934 0.0893 0.086913 0.102032 0.096517
StdErr 0.0238168 0.026162 0.020448 0.013089 0.012830 0.014724 0.013302

In ongoing work (Cao and Fu 2010), in addition to trying to resolve and/or explain the apparent discrepancies in
the reported numerical experiments, we are developing IPA and LR estimators for the case where the underlying assets
are correlated. Also, the detailed derivations for the estimators are included there.
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