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ABSTRACT

In this paper, we study a two-level loan portfolio optimization problem, a problem motivated by our work for some
commercial banks in China. In this problem, there are two levels of decisions: at the higher level, the headquarter of
the bank needs to decide how to allocate its overall capital among its branches based on its risk preference, and at the
lower level, each branch of the bank needs to decide its loan portfolio based on its own risk preference and allocated
capital budget. We formulate this problem as a two-level portfolio optimization problem and then propose a Monte
Carlo based method to solve it. Numerical results are included to validate the method.

1 INTRODUCTION

Since the seminal work by Markowitz (Markowitz 1952), portfolio selection has become one of the pillars of today’s
finance research and practice. The main concern of an investor in portfolio selection is to balance the expected return
and the risk of possible loss. In this paper, we study a loan portfolio selection problem motivated by the practice at
some commercial banks in China. Different from traditional portfolio selection problem, in this problem, there are two
levels of decisions. At the higher level, the headquarter of the bank needs to decide how to allocate its overall budget
among its branches based on its risk preference, and at the lower level, each branch of the bank needs to decide its
loan portfolio based on its own risk preference and allocated capital budget. We formulate this problem as a two-level
portfolio optimization problem.

In this paper, we will use Monte Carlo methods to solve the portfolio selection problem. There are two different
Monte Carlo methods that have been proposed to solve the portfolio selection problem: one is based on gradient
method (Hong and Liu 2009) and the other is to convert the original problem into a sample-based linear programming
program (Rockafellar and Uryasev 2000). Our method proposed in this paper is mainly based on the combination of
(Hong and Liu 2009) and Lagrangian relaxation method.

The remainder of this paper is organized as follows. In Section 2, we present the formulation of the two-level loan
portfolio optimization problem. A Monte Carlo based solution procedure is proposed in Section 3. In Section 4, we
provide several numerical examples to validate our proposed method. Finally, a conclusion is provided in Section 5.

2 PROBLEM FORMULATION

In this section, we present the formulation for the two-level loan selection problem. Suppose that the bank has m
branches and makes loans to n different types of customers (industries). Let xi j be the amount of loan that branch i
makes to customer j and pi j(t) be the unit value of the loan made to customer j by branch i at time t (i = 1, . . . ,m,
j = 1, . . . ,n). We only consider two periods, i.e., t = 0,1. Let xi = {xi1, . . . ,xin}

′ and pi(t) = {pi1(t), . . . , pin(t)}′. The
expected return of the loan portfolio for branch i is expressed as Ei[(pi(1)− pi(0))′xi], where we assume that each
branch has its own distinct beliefs on the return of its loan portfolio. So, our model is heterogeneous for branches.

We use CVaR as a risk measure for the portfolio and let Cαi be the upper limit loss for branch i, though our
formulation can be extended to other risk measures as well, such as variance and VaR. Therefore, the loan portfolio
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selection problem for branch i can be formulated as follows:

(Li) max Ei[(pi(1)− pi(0))′xi]

s.t. pi(0)′xi ≤ wi

CVaRαi([pi(0)− pi(1)]′xi)≤Cαi

pi j(0)xi j ≤ c j, j = 1, · · · ,n

xi j ≥ 0, j = 1, · · · ,n,

where wi is the capital allocated to branch i by the bank and c j is the upper limit set by the bank for the total loan
lent to type j customers.

At the higher level, the headquarter has a total capital of w, and its objective is to maximize the total expected
returns of all branches with an upper limit Cα on the overall risk. Therefore, the corresponding loan portfolio selection
problem can be formulated as:

(H) max
m

∑
i=1

Ei[(pi(1)− pi(0))′x∗i ]

s.t.
m

∑
i=1

pi j(0)x∗i j ≤ c j, j = 1, · · · ,n,

CVaRα(
m

∑
i=1

[pi(0)− pi(1)]′x∗i )≤Cα

m

∑
i=1

wi = w

wi ≥ 0, i = 1, · · · ,m,

where x∗i is the optimal solution of (Li), which depends on wi. Together, (Li) and (H) form a two-level loan portfolio
selection problem, which in general is quite difficult to solve. In the next section, we will propose a procedure to solve
this two-level optimization problem.

We should point out that an alternative one-level formulation is also proposed in Hu et al. (2010) where numerical
results are provided to compare it with the two-level formulation. In fact, their numerical results show that the one-level
formulation is a good approximation for the two-level formulation.

3 A PROCEDURE FOR SOLVING THE TWO-LEVEL PROBLEM

In this section, we propose a numerical method to solve the two-level loan portfolio optimization problem presented
in the previous section.

Let us first consider the lower level problem Li. To solve Li, we use the gradient-based simulation method proposed
in (Hong and Liu 2009). For ease of exposition, let fi(xi) =−Ei[(pi(1)− pi(0))′xi]. Define the Lagrange function

L(xi,λi,µi,τ j,γ j)

= fi(xi)+λi[pi(0)′xi−wi]+ µi[CVaRαi([pi(0)− pi(1)]′xi)−Cαi ]+
n

∑
i=1

τ j(pi j(0)xi j− c j)+
n

∑
i=1

γ j(−xi j)

where λi, µi, τ j, γ j are Lagrange multipliers. Then, according to the duality theory, we have ∂ fi(x∗i )
∂wi

=−λ ∗i , where x∗i
is the optimal solution of Li(wi) and λi is the corresponding Lagrange multiplier.

We notice that the objective function of the upper level problem (H) is the sum of all branches, i.e, f (x) =

∑m
i=1 fi(xi(wi)), where x , (x1(w1), · · · ,xm(wm)). So the negative gradient of f (x) can be expressed as −∇w f (x∗) ,

λ = (λ1, · · · ,λm)′, which is a descent direction of f (x) in space Rm.
To solve the optimization problem (H), we use the following gradient-base stochastic approximation algorithm to

update w: method can be generally formed as

w(k+1) = w(k) +α(k)d(k)
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where d(k) is a descent direction and α(k) ≥ 0 is the step size. Since ∑m
i=1 wi = w, we must have ∑m

i=1 d(k)
i = 0. Hence,

we need to project the descent direction λ on the hyperplane ∑m
i=1 d(k)

i = 0 and obtain a new direction

d = λ −
(λ ,e)

‖e‖2
2

e

where e = (1, · · · ,1)′m×1.
Once the descent direction is determined, we need to choose an appropriate step-size α(k). To do that, we start

with an initial step-size α(k), if the corresponding w(k+1) is a feasible solution, then we could increase the step size,
otherwise, we would have to decrease it until the corresponding w(k+1) becomes feasible or we need to choose a different

descent direction. We note that 0≤ w(k+1)
i = w(k)

i +α(k)d(k) ≤ w (i = 1, · · · ,m), therefore

0≤ α(k) ≤
w−w(k)

i

d(k)
i

if d(k)
i > 0;

0≤ α(k) ≤−
w(k)

i

d(k)
i

if d(k)
i < 0.

Let α(k)
t denote the t-th modification of step size α(k) and β (k)

t denote the minimum value for the t-th modification.

In order to insure that w(k+1) is feasible, we modify α(k)
t as follows:

α(k)
t = min







β (k)
t , min

d(k)
i >0

{

w−w(k)
i

d(k)
i

}

, min
d(k)

j <0







−
w(k)

j

d(k)
j













.

Based on what we discussed above, we propose the following algorithm:

1. For k = 0 and a given initial feasible solution w(k) = (w(0)
1 , · · · ,w(0)

m ), we solve each lower level problem Li(w
(0)
i )

and obtain the optimal solution x(0)∗
i , optimal value f (0)∗

i , and its corresponding Lagrange multiplier λ (0)
i .

2. Let λ (k) = (λ (k)
1 , · · · ,λ (k)

m ). In order to ensure ∑m
i=1 wi = w and we update the descent direction d(k) as d(k) =

λ (k)− (λ (k), e(k))

‖e(k)‖22
e(k) .

3. In this step, we compute an appropriate step-size α(k) along the descent direction d(k). The procedure works as
follows:

a. For t = 0, let w(k)
t = w(k), β (k)

t = 1. Pre-specify η > 1, σ < 1, and ε1 << 1.

b. Set

α(k)
t = min







β (k)
t , min

d(k)
i >0

{

w−w(k)
i

d(k)
i

}

, min
d(k)

j <0







−
w(k)

j

d(k)
j













.

If β (k)
t > α(k)

t or α(k)
t < ε1, stop.

c. Let w(k)
t = w(k)

t−1 +α(k)
t d(k) and solve each lower level problem Li(w

(k)
t,i ) to obtain its optimal solution x(k)∗

t,i

and the corresponding Lagrange multipliers λ (k)
t,i .

d. Let x(k)∗
t = (x(k)∗

t,1 , · · · ,x(k)∗
t,m ), λ (k)

t = (λ (k)
t,1 , · · · ,λ (k)

t,m), and compute d(k)
t+1 as in Step 2. If (d(k)

t+1,d
(k)) ≤ 0,

stop and goto Step 4, otherwise, consider the following three cases:

If both x(k)∗
t and x(k)∗

t−1 are feasible for (H), we increase the step-size by a factor of η (i.e., β (k)
t+1 = ηβ (k)

t ).

If x(k)∗
t is feasible but x(k)∗

t−1 is not, stop and goto Step 4.

If x(k)∗
t is infeasible for H, we set β (k)

t+1 = σβ (k)
t .

Let t← t +1 and goto 2.

4. Set α(k) = α(k)
t and w(k+1) = w(k) +α(k)d(k). We solve each lower level problem Li(w

(k+1)
i ) and obtain optimal

solution x(k+1)∗
i , optimal value f (k+1)∗

i and the corresponding Lagrange multiplier λ (k+1)
i .

5. If |∑m
i=1 f (k+1)∗

i −∑m
i=1 f (k)∗

i |< ε2 (ε2 is another pre-specified constant), stop; otherwise, set k← k +1 and goto
Step 2.
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4 NUMERICAL EXAMPLES

To test the method we proposed in Section 3, in this section, we present three numerical examples.

4.1 Example 1

In this example, we have two branches (m = 2) and three types of customers (n = 3). The values of various parameters
are given in the following table:

α α1 α2 Cα Cα1 Cα2 pi(0) c1 c2 c3 w
99% 95% 97% 0.2 0.25 0.15 1 1 1 1 1 1 1

We assume that {pi(0)− pi(1), i = 1,2} has a multivariate normal distribution whose mean and covariance matrix are
given by (the numbers are generated randomly):

µ = (µ1,µ2) = (−0.1730,−0.2714,−0.8757,−0.9797,−0.2523,−0.7373)

Ω =

















1.4846 , 0.3227 , 0.0456 , 0.1748 , 0.1060 ,−0.8760
0.3227 , 0.8009 , 0.3184 ,−0.2192 ,−0.1618 , 0.0131
0.0456 , 0.3184 , 0.5031 , 0.0649 ,−0.2677 , 0.0470
0.1748 ,−0.2192 , 0.0649 , 0.6676 ,−0.1124 ,−0.0584
0.1060 ,−0.1618 ,−0.2677 ,−0.1124 , 0.5729 ,−0.1221
−0.8760 , 0.0131 , 0.0470 ,−0.0584 ,−0.1221 , 0.6983

















We first solve the two-level problem (Li) + (H) using the enumerative method and then compare the results with
our method proposed in Section 3. The results are provided in the following table:

w∗1 w∗2 opt. value
Enumerative method 0.36404 0.63596 0.7975

Our method 0.36403 0.63597 0.7980

From the above table, it is clear that our method works very well and the results obtained based on it are very
close to those obtained from the enumerative method.

4.2 Example 2

This example is similar to Example 1 and have the following parameter values:

α α1 α2 Cα Cα1 Cα2 pi(0) c1 c2 c3 w
99% 96% 97% 0.3 0.25 0.2 1 1 1 1 1 1 1

µ = (µ1,µ2) = (−0.3475,−0.4972,−0.3097,−0.3246,−0.2535,−0.3609)

Ω =

















0.7252 , 0.2385 , 0.1930 ,−0.0334 ,−0.1955 ,−0.3863
0.2385 , 1.0934 ,−0.1405 ,−0.4391 , 0.1905 , 0.4216
0.1930 ,−0.1405 , 0.3709 ,−0.0822 ,−0.1194 , 0.1824
−0.0334 ,−0.4391 ,−0.0822 , 0.7109 ,−0.0981 ,−0.5308
−0.1955 , 0.1905 ,−0.1194 ,−0.0981 , 1.2288 , 0.1146
−0.3863 , 0.4216 , 0.1824 ,−0.5308 , 0.1146 , 1.1934

















The results are provided in the following table:

w∗1 w∗2 opt. value
Enumerative method 0.12471 0.87529 0.174095

Our method 0.124924 0.875076 0.174217

The results are similar to those for Example 1.

2617



Hu, Tong, Liu, Cao and Yang

4.3 Example 3

In this example, we have three branches (m = 3) and three types of customers (n = 3). The values of various parameters
are given in the following table:

α α1 α2 α3 Cα Cα1 Cα2 Cα3 pi(0) c1 c2 c3 w
99% 95% 97% 96% 0.4 0.25 0.15 0.2 1 1 1 1 1 1 1

Again, we assume that {pi(0)− pi(1), i = 1,2,3} has a multivariate normal distribution whose mean and covariance
matrix are given by (the numbers are generated randomly):

µ = (µ1,µ2,µ3) = (−0.2981,−0.3639,−0.2428,−0.3765,−0.2080,−0.2692,−0.2115,−0.2243,−0.4059)

Ω =





























0.7012 ,−0.1651 ,−0.3435 ,−0.5460 , 0.0630 , 0.5162 , 0.3282 , 0.2355 , 0.4400
−0.1651 , 0.9495 , 0.0253 ,−0.0931 ,−0.2481 ,−0.4407 ,−0.4844 , 0.3813 ,−0.7256
−0.3435 , 0.0253 , 0.7095 , 0.5138 ,−0.0368 , 0.1124 ,−0.2512 , 0.2611 ,−0.8672
−0.5460 ,−0.0931 , 0.5138 , 1.4692 , 0.2575 ,−0.0575 ,−0.4911 ,−0.5253 ,−0.5154
0.0630 ,−0.2481 ,−0.0368 , 0.2575 , 0.8545 , 0.2114 , 0.0087 ,−0.6932 , 0.0146
0.5162 ,−0.4407 , 0.1124 ,−0.0575 , 0.2114 , 1.2193 , 0.0456 , 0.0686 ,−0.2094
0.3282 ,−0.4844 ,−0.2512 ,−0.4911 , 0.0087 , 0.0456 , 0.7636 ,−0.1572 , 1.0078
0.2355 , 0.3813 , 0.2611 ,−0.5253 ,−0.6932 , 0.0686 ,−0.1572 , 1.4252 ,−0.6000
0.4400 ,−0.7256 ,−0.8672 ,−0.5154 , 0.0146 ,−0.2094 , 1.0078 ,−0.6000 , 2.1854





























The results are provided in the following table:

w∗1 w∗2 w∗3 opt. value
Enumerative method 0.562 0.23 0.208 0.241466

Our method 0.57989 0.22739 0.19271 0.24147

Similar to Examples 1 and 2, our method produces very good the solutions.

5 CONCLUSIONS

In this paper, we studied a two-level loan portfolio selection problem and proposed a numerical method to solve the
problem. Numerical examples are provided to validate the method. We plan to investigate the convergence properties
of the method in our future research.
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