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ABSTRACT

On-time delivery performance of a semiconductor manufacturing system depends on the cycle time
distribution of lots produced in the manufacturing network. A detailed simulation model of the
manufacturing system that can predict the cycle time distribution may be helpful in performance
improvement activities, but requires considerable development and maintenance effort. To reduce
development and maintenance effort, an aggregate model has recently been developed that is a
lumped-parameter representation of a manufacturing workstation. The lumped-parameters are directly
determined from arrival and departure events measured at the workstation in operation. In this paper,
we investigate under which conditions the previously developed aggregate model can be used to
model a re-entrant flow line of workstations, motivated by semiconductor manufacturing. We find
that the range of throughput levels for which accurate cycle time predictions are obtained decreases
for increasing network size.

1 INTRODUCTION

On-time delivery performance, and time-to-market of new products are key to the profitability of many
semiconductor facilities, and may be improved by reduction of the cycle time (i.e., time a lot spends
in the manufacturing system). Queueing models may be used to assess the effect of operational and
planning decisions on the cycle time distribution. Two types of queueing models can be distinguished:
analytical models and discrete-event simulation models.

Analytical queueing network models represent the manufacturing system as a group of nodes,
where each node typically represents a workstation. Shanthikumar et al. (2007) give an overview of
queueing network models that can be used to model semiconductor facilities, but also state that the use
of queueing theory has been considered unsatisfactory so far (Shanthikumar et al. 2007), because it is
difficult to include many factory-floor details in an analytical model. Furthermore, analytical queueing
models are typically used to predict the first moment (the mean) of the cycle time distribution, and
not the whole cycle time distribution.

An alternative to model semiconductor manufacturing systems is discrete-event simulation mod-
eling, which allows for the inclusion of all relevant factory-floor aspects required to accurately predict
the cycle time distribution. Examples of such approaches include Miller (1990) and Kiba et al. (2009).
Because many factory-floor aspects may be relevant in semiconductor factories, detailed simulation
models often require much development time and maintenance, and model evaluations are typically
computationally expensive.

To reduce computation time, a technique that may be used is aggregation. Aggregation com-
bines several system components in a single component that has similar behavior. For exam-
ple, Brooks and Tobias (2000), Johnson et al. (2005) used a simplification technique in which non-
bottleneck workstations were replaced by a constant delay. Rose (2007) modeled the non-bottleneck
workstations by a FCFS (First-Come-First-Served) single-server system with Work-In-Process (WIP)-
dependent process times, which are determined by running a full-detail simulation model at various
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Figure 1: Modeling a manufacturing network by a single-server aggregate model

utilization levels. Rose (2007) used this aggregate model for the prediction of the cycle time distri-
bution.

The aforementioned model abstractions require that a model of the system is available beforehand
to determine the model parameters of the abstract model. In this paper, we investigate using the
single server EPT-based aggregate model presented in Veeger et al. (2009a), for which the model
parameters can be obtained directly from arrival and departure events measured at the manufacturing
system in operation. No (detailed) simulation or analytical model of the network is needed beforehand
to construct the aggregate model.

The EPT-based aggregate model developed in Veeger et al. (2009a) is a single-server representation
of a manufacturing workstation with a generally distributed WIP-dependent process time distribution,
which is referred to as the EPT distribution. Lots that arrive at the aggregate model have a probability to
overtake one or more lots already in the system, according to a lot overtaking probability distribution.
From lot arrival and departure events, we calculate the EPT realizations and the amount of overtaken lots
for each lot processed at the system being modeled, which is used to estimate the EPT and overtaking
distribution. The EPT-based aggregate model is tested for various workstation configurations in
Veeger et al. (2009a), but not for networks of workstations.

In this paper, we investigate under which conditions the EPT-based aggregate model presented in
Veeger et al. (2009a) is able to accurately predict cycle time distributions for a simulation case of a
re-entrant flow line, motivated by semiconductor manufacturing. We model the entire flow line by a
single-server aggregate model of the type presented in Veeger et al. (2009a). We estimate the EPT
and overtaking distribution of the single server from arrival times of lots at the network, and departure
times of lots from the network. Two scenarios of the flow line are investigated.

2 MODEL CONCEPT

This section describes the EPT-based aggregate modeling method developed by Veeger et al. (2009a)
that we use to model the flow line. Figure 1 visualizes the aggregate modeling approach. The figure
depicts the re-entrant flow line under consideration. The re-entrant flow line has l workstations that
each consist of an infinite-capacity queue and m identical parallel servers. Each lot is processed r
times by the flow line, after which it leaves the system.

2.1 Aggregate Model Concept

The single-server aggregate model representation of the re-entrant flow line is depicted at the bottom of
Figure 1. This aggregate model is the aggregate model as presented in Veeger et al. (2009a). That is,
the aggregate model consists of an infinite queue, and a timer. Lots arrive in the queue of the aggregate
model according to some arrival process, as observed at the entrance of the re-entrant flow line. Lot
i is defined as the ith arriving lot at the (first buffer of) the network. Because the aggregate model
represents the entire network, the queue of the aggregate model contains all lots that are currently in
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the system. Lots stay in this queue during processing. If the aggregate process time has elapsed, the
lot that is currently first in the queue leaves the system. Each Lot i that arrives in the queue has a
probability to overtake K other lots that are already in the system. Number of lots to overtake K is
sampled from overtaking probability distribution FQ

K (k;w), which defines the probability P(K ≤ k;w)

that k or fewer lots are overtaken in the network Q; probability distribution FQ
K (k;w) depends on the

number of lots w in the queue just before Lot i arrives (so not including Lot i itself). The reason is
that the amount of lots that an arriving lot can overtake depends on the number of lots already in the
system.

The timer determines when the next lot leaves the queue. The timer starts when i) a lot arrives
while no lots are present in the queue, or ii) a lot departs while leaving one or more lots behind. When
the timer starts, a time period E is sampled from probability distribution FQ

E (t;w), which defines the
probability P(E ≤ t;w) that E is less than or equal to t in network Q. The probability distribution
FQ

E (t;w) depends on the number of lots w in the system just after the timer start. So in case of an
arrival (case i)), w includes the arrived lot. In case of a lot departure (case ii)), w does not include
the departed lot. Time period E is referred to as the Effective Process Time (EPT), and FQ

E (t;w) as
the EPT distribution. When the EPT is finished, the lot that is presently first in the queue leaves the
system.

The EPT is obviously not the processing time in the queueing network being modeled, but instead
relates to the interdeparture times of lots from the network. The interdeparture time depends on the
Work-In-Process (WIP) in the system: the more WIP in the system, the shorter the interdeparture
time will typically be.

2.2 Measuring the EPT and Overtaking Distributions

The input of the aggregate model consists of EPT distribution FQ
E (t;w) and overtaking distribution

FQ
K (k;w). We estimate FQ

E (t;w) and FQ
K (k;w) from measured arrival events aQ at the network Q

and departure events dQ from the network Q, as illustrated in Figure 1. Arrival and departure events
consists of the time the event occurred, and the arrival number i of the lot that arrives or departs.
We measure aQ and dQ of a number of lots processed by the network, while it is operating at a
certain throughput ratio δ/δmax, with δ the actual throughput, and δmax the maximum obtainable
throughput of the network. We refer to this throughput ratio as the training level. Restricting ourselves
to measuring at a single training level reflects the situation in a real factory, where the network is
also operating at a certain throughput ratio during the measurement period. From arrivals aQ and
departures dQ, we calculate EPT realizations and overtaking realizations using the algorithm given
in Appendix A. An example of the calculation of EPTs and overtaking realizations can be found in
Veeger et al. (2009a).

The EPT realizations calculated by the algorithm are grouped according to the number of lots w
in the system upon the EPT start. For each WIP-level w for which EPT-realizations are obtained,
a distribution is estimated, which is used for the EPT distribution FQ

E (t;w) in the aggregate model.
For the various experiments presented in this paper, we assume that the EPT distributions for each
WIP-level are gamma distributed, with mean EPT tQ

e,w and coefficient of variability cQ
e,w. In this

notation, ‘e’ is a short-hand notation for EPT, w denotes the WIP level, and Q denotes the system
modeled by the single-server aggregation (the network Q in this case). Overtaking realizations are also
grouped, but now according to the number of lots in the system w upon arrival. For each WIP-level,
we use the measured overtaking distribution directly for FQ

K (k;w) in the aggregate model.
The aggregate model with estimated distributions FQ

E (t;w) and FQ
K (k;w) is used to predict the

mean and distribution of the cycle time of the network Q for throughput levels other than the training
level.

2.3 Curve Fitting

The accuracy of the cycle time predictions by the aggregate model depends on whether EPT-distribution
parameters tQ

e,w and cQ
e,w, and overtaking distribution FQ

K (k;w) can be accurately estimated for the
various WIP-levels. In a network, we may not be able to accurately obtain these estimates for certain
WIP levels from the measured arrivals and departures, because these WIP levels were rare, or did not
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occur at all during the data collection period. During the data collection period, the WIP in the network
will fluctuate in a range around an average WIP level that one expects for the average throughput
during the collection period. Given the limited number of arrivals and departures measured in the
data collection period, it is unlikely that high or low WIP levels are observed compared to the average
WIP level, in particular for increasing network size. Consequently, tQ

e,w, cQ
e,w, and FQ

K (k;w) cannot be
accurately estimated for these WIP levels.

A curve-fitting procedure is used to deal with the limited number of EPT realizations obtained in
the data collection period. Closed-form expressions t̂Q

e (w) and ĉQ
e (w) are fitted to the measured tQ

e,w

and cQ
e,w values. Expressions t̂Q

e (w) and ĉQ
e (w) are also used to estimate the mean and coefficient of

variation of the EPT for WIP levels for which no tQ
e,w and cQ

e,w estimates have been measured. This
may be viewed as extrapolation.

The expressions used for the curve fitting should be able to represent the observed functional
behavior of tQ

e,w and cQ
e,w. In the experiments performed in this paper, we typically observe that

tQ
e,w decreases for increasing w, and approaches a horizontal asymptote for w → ∞. This is because

for w > 1, the mean EPT may be interpreted as the mean interdeparture time from the network.
For increasing w, more servers in the network have lots to process which results in a lower mean
interdeparture time. Intuitively, we would expect that for increasing w the mean EPT approaches a
minimum mean interdeparture time that corresponds to the maximum capacity of the system. We
refer to this minimum interdeparture time as the expected horizontal asymptote, which is given by
1/δmax. Similarly, we observe from the experiments performed in this paper that cQ

e,w approaches a
horizontal asymptote for w → ∞; for w > 1, cQ

e,w can be interpreted as the coefficient of variation of
the interdeparture time.

In the simulation experiments presented in the subsequent sections, the following reciprocal
function is used for the curve fitting of tQ

e,w:

t̂Q
e (w) = θ +

η
wλ (1)

In this equation, θ represents the value of t̂Q
e (w) at w = ∞; θ +η represents the value of t̂Q

e (w) at
w = 1. With η > 0, the curve is decreasing for increasing w and approaches a horizontal asymptote
at θ for w → ∞. Variable λ determines the gradient of the curve. Variables θ , η , and λ are estimated
using a weighted least-squares fitting procedure: tQ

e,w is weighted according the
√

nw, which is the
number of measured EPT realizations that started with WIP level w. In the curve fitting procedure,
we use a lower bound of 0 for θ , η , and λ . For η , we use an upper bound equal to the sum of the
mean processing times encountered by a lot processed by the flow line, which equals l · r · t0. For θ
and λ , we do not use an upper bound.

A similar expression and curve fit procedure is used for cQ
e,w. In the simulation experiments, cQ

e,w
is generally found to be either increasing or decreasing for increasing w, which gives η < 0 or η > 0
respectively. The reciprocal function (1) is the simplest function that we have found so far that is able
to model the functional behavior of tQ

e,w and cQ
e,w reasonably well. The exponential function proposed

in Veeger et al. (2009a) does not appear to be suitable in the context of flow lines.
The measured distribution FQ

K (k;w) is directly used in the aggregate model, without a curve-
fitting procedure. For WIP levels lower than the lowest WIP level for which we measured overtaking
realizations, we assume that no overtaking occurs. For WIP levels higher than the highest WIP level
for which we measured overtaking realizations, we assume that the overtaking probabilities are the
same as for the highest measured WIP-level.

3 CASE DESCRIPTION

The re-entrant flow line shown in Figure 1 is used in the simulation study. Lots arrive at the network
according to a Poisson process with mean interarrival time ta. The re-entrant flow line consists of l
identical workstations; each workstation consists of an infinite First-Come-First-Served (FCFS) buffer,
and m identical parallel machines. The process time of the machines is gamma-distributed, with mean
t0 and coefficient of variation c0. The number of times each lot is processed by the flow line is denoted
r. The simulation case is modeled using the simulation language χ (Hofkamp and Rooda 2007). We
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refer to this simulation model as the ‘detailed simulation model’, to distinguish this model from the
aggregate model.

To estimate FQ
E (t;w) and FQ

K (k;w), arrivals at and departures from the network are obtained
from the detailed simulation model at a throughput ratio δ/δmax = 0.8, with δ = 1/ta being the
actual throughput of the network and δmax the maximum obtainable throughput of the network. The
algorithm in Appendix A is used to calculate EPT realizations and overtaking realizations, which are
assigned to WIP-levels as explained in Section 2. We discard the first 3 · 104 EPT and overtaking
realizations to account for the warm-up period. For each WIP-level w, FQ

E (t;w) and FQ
K (k;w) are

estimated as explained in Section 2.
We test the aggregate model on two scenarios of the flow line. In Scenario I, the effect of the

number of workstations l (the length of the line) on the prediction accuracy is investigated, which
is studied for low, medium, and high variability of the process time distribution at the machines. In
Scenario II, the effect of re-entrance is investigated.

To assess the accuracy of the cycle time predictions, we compare the cycle time distributions
predicted by the aggregate model to the cycle time distributions obtained by the detailed simulation
model of the network. The simulation model of the network is used to obtain the real cycle time
distributions. For each scenario, we perform 10 simulation replications of 105 processed lots. For
each replication run, the first 3 ·104 lots are discarded to account for the warm-up period. The same
number of simulation replications, number of processed lots, and warm-up period are used in the
simulation runs of the two aggregate models, which are also implemented in the language χ .

4 SCENARIO I: LENGTH OF THE FLOW LINE

Scenario I aims to investigate the effect of the number of workstations on the accuracy of the cycle
time predictions by the aggregate models. The number of workstations l = {5,10,20}, and the
coefficient of variability c0 = {0.5,1.0,1.5} are varied. The number of machines per workstations
is fixed (m = 10) and there is no re-entrance (r = 1). The number of measured EPT and overtaking
realizations after the warm-up period equals 106. We first present a selection of estimated aggregate
model parameters. Next, the mean cycle times and cycle time distributions predicted by the aggregate
model are presented and compared with the measured cycle times of the flow line being modeled.

Estimated Aggregate Model Parameters

Figure 2 shows the measured mean EPT tQ
e,w as a function of WIP level w (the black solid curves)

and the corresponding fitted curves t̂Q
e (w) (the grey dashed curves). The dashed black lines represent

the expected horizontal asymptote, as determined by the maximum throughput. From left to right,
the plots consider numbers of workstations l = 5, 10, and 20, respectively, with constant m = 10 and
r = 1. Figure 2a considers c0 = 0.5, Figure 2b c0 = 1.0, and Figure 2c c0 = 1.5.

We first discuss the results for the cases with c0 = 1.0, shown in Figure 2b. The figure shows that
for increasing l, the range of WIP levels for which EPT realizations are obtained becomes relatively
smaller, and shifts to higher WIP levels. Noise in the tQ

e,w estimates is clearly present, in particular at
the edges of the range. In particular for l = 10 and l = 20, the reciprocal function (1) seems to be an
appropriate function to fit the measured tQ

e,w estimates in the range for which EPT realizations were
obtained. In the aggregate model, the fitted curve is used for all WIP levels, including for WIP levels
below and above the range for which EPT realizations were obtained. For increasing l, tQ

e,w estimates
have to be estimated by extrapolation of the fitted curve for a larger range of low and high WIP levels
compared to the WIP range for which EPT realizations were obtained. As a consequence, for the
high WIP levels, the horizontal asymptote predicted by the fitted curve is lower than the expected
horizontal asymptote.

For c0 = 0.5, Figure 2a shows that the horizontal asymptote predicted by the fitted curve is much
lower than the asymptote that one would expect considering the maximum throughput of the system.
For c0 = 1.5, the predicted horizontal asymptote is very close to the expected one.

For the measured coefficient of variation of the EPT, cQ
e,w (not shown here), we also observe that

for increasing l, no estimates are measured for an increasing range of low and high WIP levels, similar
to our observation for tQ

e,w. Consequently, these estimates also rely on the extrapolation of the fitted
curve.
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Figure 2: Measured mean EPT tQ
e,w as a function of WIP level w, and the corresponding fitted curves for l = {5,10,20}

with m = 10, and r = 1; (a) considers c0 = 0.5, (b) c0 = 1.0, and (c) c0 = 1.5.

Examination of the overtaking distribution (not shown here) shows that if l increases, the more
lots may be overtaken, because there is on average more WIP in the system.

Cycle Time Predictions

Figure 3 shows the mean cycle time ϕ̄ as a function of throughput ratio δ/δmax, measured at the
network considered (the black solid curves), and predicted using the aggregate model (the grey dashed
curves). From left to right, the plots show the CT-TH curves for l = 5, 10, and 20, with constant
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m = 10, and r = 1. Figure 3a considers c0 = 0.5, Figure 3b considers c0 = 1.0, and Figure 3c considers
c0 = 1.5.

Figure 3 shows that for c0 = 1.0, the throughput region for which accurate mean cycle time
predictions are obtained becomes narrower for increasing l. This is because if the flow line becomes
longer, the WIP range for which EPT realizations are obtained becomes relatively smaller (see Figure
2b). The estimates for the mean and coefficient of variation of the EPT at WIP levels higher or
lower than the WIP range for which EPT realizations were obtained are predicted by the fitted curve.
The fitted curve estimates become less accurate for WIP levels further away from the measured WIP
range. We observe that the accuracy of the mean cycle time prediction particularly depends on the
mean EPT estimates. We may therefore conclude that accurate extrapolation by the fitted curve for
the mean EPT is crucial for the accuracy of the cycle time predictions, in particular for higher WIP
levels than observed during the measurement period.

In the cases in which c0 = 0.5, ϕ̄ is underestimated for high throughput ratios. The reason is
that the estimated horizontal asymptote for te is lower than the expected horizontal asymptote (see
Figure 2a). For the case c0 = 1.5 (Figure 3c), the mean cycle time is slightly underestimated for high
throughput levels.

Figure 4 depicts the cycle time distributions measured at the network (the black curves), and the
cycle time distributions predicted by the aggregate model (the dashed grey curves). The x-axes denote
the cycle time ϕ , whereas the y-axes denote the probability P(ϕ − ε < X < ϕ), where ε denotes
the size of an interval, for which we choose 0.5. From left to right, the figure shows the cycle time
distributions for throughput ratios of 0.6, 0.8, and 0.9, with constant m = 10, c0 = 1.0, and r = 1.
Recall that throughput ratio δ/δmax = 0.80 is the training level. The leftmost set of curves in each
plot represents l = 5, the middle set l = 10, and the rightmost set l = 20.

Figure 4 shows that the cycle time distribution is predicted accurately at the training level (δ/δmax =
0.8). For other throughput ratios, the prediction accuracy deteriorates for increasing l. This was also
observed for the mean cycle time (Figure 3b, c0 = 1.0). Additionally, Figure 4 suggests that the
aggregate model underestimates the variance of the cycle time distribution predicted for δ/δmax = 0.60,
in particular for increasing l. This may be explained as follows: the WIP-dependent overtaking
distribution is obtained at the training point of δ/δmax = 0.80. In the aggregate model this WIP-
dependent overtaking distribution is used to predict the overtaking at higher or lower utilization levels.
A higher utilization level means more WIP on average; a lower utilization level less WIP. If for a
certain WIP-level no overtaking realizations were measured, it is assumed in the aggregate model that
for this WIP level no overtaking occurs (as explained in Section 2). Increasing the length of the flow
line (l) implies that the WIP range for which overtaking realizations are obtained becomes relatively
smaller. As a result, for increasing l, it becomes more likely to encounter WIP levels for which no
overtaking realizations were measured, when predicting the cycle time for throughput levels other
than the training level. Consequently the amount of overtaking is underestimated, which causes the
variability of the cycle time distribution to be underestimated as well.

For an accurate prediction of the cycle time distribution, a fitted curve for the overtaking distribution,
which can also be used outside the interval of measured overtaking realizations, seems a necessary
improvement. Similar to the fitted curves used in this paper for te and ce, fitted curves might be used
to estimate the mean and coefficient of variation of the number of overtaken lots as a function of
w. The difference with the EPT is that the number of overtaking lots is a discrete variable that may
realize values only between 0 and w (no more than w lots can be overtaken), whereas the EPT is a
continuous variable that may exists between 0 and ∞. In Van Eenige (1996), families of fit functions
are presented for discrete variables that realize values within a finite range. Those fit functions may
be a starting point to fit the overtaking distribution.

5 SCENARIO II: RE-ENTRANCE

Scenario II aims to investigate the effect of re-entrance in the flow line on the accuracy of the cycle
time predictions by the aggregate model. The number of times each lot is processed by the flow line
r = {1,2,4}, and the process time variability c0 = {0.5,1.0,1.5} are varied. The length of the line,
and the number of machines per workstations are fixed (l = 5, m = 10). The number of measured
EPT and overtaking realizations after the warm-up period equals 106.
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Figure 3: Mean cycle time ϕ as a function of throughput ratio δ/δmax measured at the network, and predicted by the
aggregate model, for l = {5,10,20}, with m = 10, and r = 1: (a) considers c0 = 0.5, (b) c0 = 1.0, and (c) c0 = 1.5.
Aggregate models are trained at δ/δmax = 0.80.

Estimated Aggregate Model Parameters

Figure 5 shows the measured tQ
e,w values (the black solid curves) and the corresponding fitted curves

t̂Q
e (w) (the grey dashed curves) for r = {1,2,4}, with constant l = 5, m = 10, and c0 = 1.0.

Figure 5 shows that the width of the WIP range, and the mean of the WIP range for which
EPT realizations were measured are approximately the same for all values of r. This is because the
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Figure 4: Cycle time distribution measured at the network, and predicted by the aggregate model for l = {5,10,20},
m = 10, c0 = 1.0, and r = 1. Aggregate models are trained at δ/δmax = 0.80.

Figure 5: Measured mean EPT tQ
e,w as a function of WIP level w, and the corresponding fitted curves for r = {1,2,4}

with l = 5, m = 10, and c0 = 1.0.

throughput ratio δ/δmax at which the arrival and departure events are measured is the same for all
three values of r (which is achieved in the detailed simulation by multiplying mean inter-arrival time
ta by r). The mean and width of the observed WIP levels in the network depends on the number of
machines and the variability in the network, respectively, which are the same for different values of r.

Examination of the measured overtaking probabilities shows that for increasing r, the maximum
number of lots that may be overtaken decreases. The cause may be that for increasing r, the probability
that an overtaking lot will be overtaken itself in a downstream workstation, or during a subsequent
cycle, will increase.

Cycle Time Predictions

Figure 6 shows the CT-TH curves measured at the network considered (the black solid curves), and
predicted by the aggregate model (the grey dashed curves). From left to right, the plots show the
CT-TH curves for r = 1, 2, and 4, with constant l = 5, m = 10, and c0 = 1.0.

Figure 6 shows that the accuracy of the mean cycle time predicted by the aggregate model is
approximately the same for the different values of r. This is because the WIP range for which EPT
realizations were obtained is also approximately the same for the different values of r (see Figure
5). Similar calculations were carried out to predict the cycle time for c0 = 0.5 and c0 = 1.5. These
predictions also show that the accuracy of the cycle time distribution does not depend on r.
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Figure 6: Mean cycle time ϕ as a function of throughput ratio δ/δmax measured at the network, and predicted by the
aggregate model, for r = {1,2,4}, with l = 5, m = 10, and c0 = 1.0. Aggregate models are trained at δ/δmax = 0.80.

6 CONCLUSION

In this paper, we have investigated under which conditions the EPT-based aggregate modeling method
presented in Veeger et al. (2009a) can accurately predict the cycle time distribution of a re-entrant
flow line. The aggregate model was tested using a simulation case of a re-entrant flow line, motivated
by semiconductor manufacturing, for which two different scenarios have been investigated.

In Scenario I, the length of the line (i.e., the number of workstations in the flow line) has been
gradually increased. The accuracy of the prediction of the mean cycle time and variance of the cycle
time deteriorates if the length of the flow line increases. The cause is that for increasing length of the
flow line, EPT and overtaking realizations are measured in only a part of the WIP range for which
the mean EPT varies. This measured part becomes smaller for increasing length of the flow line. As
a consequence, the prediction of the fitted curve becomes less accurate, in particular for WIP levels
further away from the WIP range for which EPT realizations were obtained. The accuracy of the
predicted cycle times is particularly sensitive to the estimates of the mean EPT for high WIP levels,
because they determine the maximum throughput of the system predicted by the aggregate model.
This sensitivity increases if the WIP range for which EPT realizations are obtained becomes smaller.
Regarding the overtaking probabilities, we assumed that for WIP levels lower than the WIP range
in which we measured overtaking realizations, no overtaking occurs. This assumption reduces the
prediction accuracy of the variance of the cycle time distribution at low throughput ratio compared
to the training level, in particular for long flow lines.

In Scenario II, we have increased the amount of re-entrant cycles in the flow line. We have found
that for both modeling approaches, the prediction accuracy is independent of the amount of re-entrant
cycles.

The EPT-based aggregate model is considered particularly useful to make quick approximations of
the cycle time for throughput levels relatively close to the working point, because it requires arrival and
departure events at the network level only, and the aggregate model evaluations are computationally
cheap.

There are a couple of questions that arise from the outcome of this work. The central question is
whether it is possible to further improve the accuracy of the single-server aggregate model, in particular
if the size of the aggregated system increases. Is there a theoretical limit to what can be reconstructed
from information measured at a single operating point, to predict cycle times outside the operating
point? If we need additional information from inside the network, what is the minimum additional
information that is needed to arrive at a significantly more accurate single-server aggregation of a
network? For instance, suppose that in a network the bottleneck station(s) are known. Can data (e.g.,
the maximum effective capacity) be used to correct the aggregate model regarding the maximum
throughput prediction?
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loop
read τ,ev, i
if ev = a :

if len(xs) = 0 :
(s,sw) := (τ,1)

end if
xs := xs++[(i, len(xs))]

elseif ev = d :
write τ − s,sw
(xs,k,aw) := detOvert(xs, i)
write k,aw
if len(xs) > 0 :

(s,sw) := (τ, len(xs))
end if

end if
end loop

function detOvert(xs, i)
ys := []
while len(xs) > 0 :

( j,aw) := head(xs);xs := tail(xs)
if j < i :

ys := ys++[( j,aw)]
elseif j = i :

return (ys++xs, len(ys),aw)
end if

end while

Figure 7: EPT Algorithm (left) and function detOvert (right)

A ALGORITHM

The algorithm used to calculate EPT-realizations and overtaking realizations (Veeger et al. 2009b) is
depicted in Figure 7. The following variables are used: variable τ denotes the event time, variable
ev the event type (arrival a or departure d), and i the lot arrival number (so lot i is the ith arriving
lot). Furthermore, variable xs is a list that contains for each lot in the system its arrival number, i,
and the number of lots in the system upon its arrival, aw. Variable s is used to store the EPT start
time. Variable sw denotes the number of lots in the system upon the EPT start. Variable k denotes the
number of lots that a lot has overtaken. Function detOvert uses the following additional variables: ys
is a list that stores part of list xs. Variable j stores a lot arrival number.

The EPT algorithm takes the aggregate model viewpoint. Upon an arrival event, a new EPT
is started if the lot arrives in an empty system (len(xs) = 0). The start time s becomes τ and the
corresponding wip-level is stored in variable sw. For every arriving lot, the lot arrival number i and
the number of lots in the system upon arrival (len(xs)) are added to the end of list xs (indicated by
++). When a departure event occurs, an EPT ends, the EPT being current time τ minus EPT start
time s. The EPT is written to output along with number of lots in the system upon the EPT start sw.
Next, the algorithm reconstructs how many lots k were overtaken by the departing lot using function
detOvert, and furthermore returns number of lots aw in the system upon arrival of lot i and list xs
with the information of lot i removed. The number of overtaken lots (k) and the number of lots in the
system upon arrival of lot i (aw) are written. If there are still lots in the system after the departure
(len(xs) > 0), a new EPT start time is stored in s, as well as the corresponding number of lots currently
in the system (len(xs)).

The input of function detOvert consists of list xs and the arrival number i of the departing lot.
The function iteratively removes each lot from xs and assigns its arrival number and the number of
lots upon its arrival to variables j and aw respectively. If the arrival number of the observed lot is
lower than the arrival number i of the departed lot, then ( j,as) is concatenated to ys. If the arrival
number j of the observed lot is equal to i, the function returns list ys++xs, which does not include
lot i. Furthermore, the length of ys, and aw are returned. Note that the length of ys is equal to the
number of lots that arrived earlier than lot i, but that are still in the system upon the departure of lot
i. In other words, the length of ys is equal to the number of lots overtaken by lot i.
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