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ABSTRACT

This paper proposes a methodology based on phase type distributions and a state dependent Markov
chain model to estimate the cycle time of workstations (toolsets) in semiconductor manufacturing.
Due to implicit operational policies adopted by the line managers the performance of the existing
queueing models for toolsets is not satisfactory. On the other hand developing accurate simulation
models for toolsets can be very time consuming and hard to maintain. In this paper we propose a
Markov chain model with the ability to include implicit operational rules on dispatching and main-
tenance. We verify the performance of this model via simulation and present the results for a variety
of arrival and service distribution shapes.

1 INTRODUCTION

Reducing cycle time (CT) and improving delivery performance has long been a key focus area for
semiconductor manufacturers. Accurate cycle time estimation can play a major role in production
planning and scheduling of semiconductor fabrication facilities (fab) which are among the most capital
intensive industries. The key to efficiently design a fab is to have proper capacity predictions based
on accurate cycle time estimations. Understanding the main factors that contribute to high cycle time
will greatly help identify the most effective levers to reduce it. Due to the complicated nature of
semiconductor manufacturing systems (SMS) it is not easy to accurately estimate the cycle time for
fab toolsets. Most of the SMS toolsets are very complicated in design and their operations are closely
governed by line managers. Scheduled and non-scheduled tool downtime add to the uncertainty of the
service provided by these toolsets and the line managers constantly try to synchronize the operations
to meet cycle time goals.
Shanthikumar et al. (Shanthikumar, Ding, and Zhang 2007) discuss the common approaches to cycle
time estimation in SMS. They point out that one of the main reasons that the classical queueing
models are inaccurate for SMS is the assumption of independent relationships. In a previous work
Akhavan-Tabatabaei (Akhavan-Tabatabaei, Ding, and Shanthikumar 2009) perform a case study on
several G/G/m approximations including those that are specifically developed for SMS. They show
that such formulas can estimate the cycle time with very large margins of error and hence can be
misleading in many cases.
Classical queueing models assume that the arrival process and the service process are independent.
However in many cases in SMS the line managers interfere with the random process of arrival and
service. They make operational decisions and adopt certain policies to meet the cycle time goal
or work in process (WIP) goals. These operational rules mainly target the adjustment of arrival
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process based on the WIP level or the adjustment of failure rates based on the toolset availability
and through pulling-in or pushing out the maintenance activities. Therefore such operational rules
create dependency between the arrival and service process through correlating them to the WIP level
or toolset availability.
In this paper we propose a state-dependent Markov chain model that is capable of reflecting these
operational rules in cycle time estimation. Unlike classical G/G/m formulas that are blind to the
implicit operational rules, this model has the flexibility to adjust the arrival rate or the failure rate
based on the WIP level or toolset availability. We verify the results of this model by a simulation
model that closely mimics a toolset with operational rules. Our comparison shows that the estimated
cycle time by the Markov chain model is within the 95% confidence interval of the simulated toolset’s
mean cycle time.
The remaining of the paper is structured as follows. The detailed formulation of the state-dependent
Markov chain model is discussed in Section II. Section III presents three case studies that verify the
accuracy of the proposed model under different operational rules and various shapes of arrival and
processing distributions. Section IV concludes the paper and discusses the next steps to extend the
model for more general cases.

2 MODEL FORMULATION OF THE STATE-DEPENDENT MARKOV CHAIN

We consider a toolset with kmax parallel tools and buffer size of wmax lots. The inter-arrival time
of lots to this toolset follows exponential distribution with mean 1/λ and their processing time also
follow exponential distribution with mean 1/µ , the time to fail and time to repair for each tool follow
exponential distributions as well, with means 1/d and 1/u, respectively. The toolset also follows one
or more operational rules. We propose a continuous-time Markov chain model for this toolset with
the general state space of {[K(t),W (t)], t = 0}, where K(t) represents the number of available tools
at time t, and W (t) denotes the number of lots in process or in the queue at time t. Variables K(t)
and W (t) take on values in the set of nonnegative integers K(t) = 0, · · · ,kmax and W (t) = 0, · · · ,wmax.
We also define [k,w] as the state descriptor for this stochastic process at an arbitrary time, t0, such
that K(t0) = k and W (t0) = w. At any time epoch a one-step transition from the current state [k,w] is
triggered by the occurrence of one of the following events:

• A new lot arrives to the toolset, which takes the model from state [k,w] to [k,w+1].
• A lot finishes its processing and departs the toolset. The transition is from [k,w] to [k,w−1].
• One of the tools fails and becomes unavailable for production. In this case the model transits

from state [k,w] to state [k−1,w].
• One of the currently failed tools is repaired and made available for production. In this case

the model transits to [k +1,w] from [k,w].

The presence of operational rules in SMS makes these transition rates dependent on k,w or both.
For example if the operational rule dictates the adjustment of arrival rate based on the WIP level then
when the toolset is in state [k,w] the arrival rate is a function of w. Similarly if the operational rule
calls for the adjustment of failure rate in low availability then the failure rate depends on k, hence
making the transition rates dependent on the state variables. For such a state-dependent Markov chain
model we denote the transition rates as Arrival rate: λ k,w, Processing rate: µk,w, Failure rate: dk,w,
Repair rate: uk,w Figure 1 shows a partial view of the state transition diagram for the Markov chain
model.

Given the values of k,w, and the state-dependent transition rates for a toolset of interest, the
steady-state probabilities can be calculated through solving the balance equations of the Markov
chain, assuming that the inter-arrival, processing, time to fail and time to repair distributions follow
the exponential distribution with corresponding rates of 1/λ , 1/µ ,1/d and 1/u. The steady-state
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Figure 1: State transition diagram of Markov Model

probability for state [k,w] is denoted by π(k,w) and the average number of lots at the toolset, WIP ,
can be found through

WIP = ∑
k,w

w×π(k,w). (1)

We define λ̄ as the long-run average arrival rate of the lots to the toolset where

λ̄ = ∑
k,w

λ k,w ×π(k,w). (2)

Applying Little’s formula, finds the long-run average cycle time of the proposed state-dependent
Markov chain as

CT =
WIP

λ̄
=

∑k,w w×π(k,w)

∑k,w λ k,w ×πk,w
. (3)

2.1 Restrictions of The Current Model

Since we use a Markov chain framework for this model one necessary assumption is that all the
transition probabilities follow exponential distribution. This can be limiting since in reality of SMS
toolsets there are many instances with non-exponential arrival or service distributions. To address
this restriction in the next section we introduce a method to estimate a continuous distribution with
squared coefficient of variation (SCV) less than 1 with an Erlang distribution. Erlang distribution is a
sequence of exponential phases in series and hence it retains the memoryless property of exponential
while being able to model various shapes of continuous distributions. The current model structure
also requires two assumptions regarding the failure of the toolset. The first is that the tools do not
fail when they are idle and the second is that when a busy machine fails the failure preempts the job
in process and the job goes back to the queue and restarts its processing time, in the same machine,
as if it is an unprocessed job. These assumptions keep the state-space smaller but on the other hand
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sacrifice the accuracy of the model compare to a real system. For example the state-space can be
expanded to keep track of the phase at which the processing of a lot gets interrupted due to a failure.
Then after the failed tool is repaired the job can continue its processing from where it was interrupted.
This modification adds kmax variables to the state-space to keep track of the lot on each failed machine.

2.2 Model Verification Through Simulation

In order to verify the results by the proposed Markov chain model we develop a simulation model
of the toolset with the same characteristics and restrictions as mentioned in subsections 2.1 and 2.2.
For a variety of inter-arrival and processing time distributions we compare the cycle time estimation
of the proposed model with the cycle time of the simulated toolset. We make this comparison when
the system in under heavy traffic since in light traffic the operational rules do not apply. We estimate
the cycle time via both models for different utilization levels above 70% and calculate the percent
difference at each point. We incrementally change the utilization by increasing the arrival rate to the
system. We consider the average percent difference between simulation and the proposed model in
high utilization as a quantitative measure of model accuracy.

2.3 Application of Erlang Distribution for Non-exponential Arrival and Service processes with Low Coefficient
of Variation

Like many other processes, SMS toolsets often deviate from the exponential distribution in their
inter-arrival, processing, time to fail and time to repair distributions. However, when solving complex
models in queuing theory involvement of any non-exponential probability distribution complicates the
task of finding the steady-state probabilities with analytical solutions (Cox 1955). One approximate
method to overcome this issue is to match the first moment of a continuous non-exponential distribution
with its exponential equivalent and use the latter in the model. However, this approximation adds to
the inaccuracy of the cycle time estimation by the proposed model.

A different approach to this problem is application of phase-type distributions (Neuts 1994) to
approximate any positive valued distribution. Phase-type distributions are dense in [0,∞) and can
provide a close approximation to any positive continuous distribution. In the past twenty years the
problem of fitting the parameters of a Phase-Type distribution has been studied extensively in the ap-
plied probability community and different approached have been proposed. These approaches can be
classified in two categories of maximum likelihood estimates (MLE) and moment matching techniques
(Dempster, Laird, and Rubin 1977), (Asmussen, Nerman, and Olsson 1996), (Lang and Arthur 1996),
(Riska, Diev, and Smirni 2004), and (Horváth and Telek 2000). However, application of such com-
plex distributions to the Markov chain model adds to the complexity of the model and the time to
solve it.
To model the inter-arrival, processing, failure or repair times in a toolset by phase-type distribution
we need to introduce new variables in the stochastic process underlying the Markov chain to indicate
the phase in which each of these variables reside at any time t. In order to keep a balance between
accuracy and complexity we use three categories of Erlang distributions with distinct SCV’s and
replace any non-exponential distribution with one of them that has the closest SCV to the original
distribution.
More specifically we introduce the following Erlang categories of Erlang(1,x),Erlang(2,x) and
Erlang(10,x) where the rate parameter, x is to be adjusted to match the first moment of the original
distribution. Erlang(1,x) distribution is essentially the exponential distribution with rate x and Squared
Coefficient of Variation (SCV, from now) equal to 1, Erlang(2,x) is a right-skewed distribution with
SCV = 0.5 and Erlang(10,x) is a symmetric distribution with SCV = 0.1.
Therefore for any non-exponential distribution of inter-arrival or service we can pick the Erlang
distribution from this set that has the closest SCV to the original distribution. Since any Erlang(k,x)
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distribution consists of k phases of exponential distributions each with rate x, it can be easily integrated
in the proposed Markov chain model to represent the original distribution.
In the next section we present numerical results for a number of cases with and without operational
rules and with the application of the Erlang distribution.

3 NUMERICAL RESULTS

In this section we present the numerical results of applying the proposed model to a toolset with two
parallel servers. We first develop a simulation model of this toolset as described in 2.3 and then build
a Markov chain model that represents the same system as discussed in 2.1. We compare the results
of the proposed model with the cycle time of the simulated toolset in the absence of any operational
rule and also in presence of two types of operational rules, for adjusting the arrival rate and the failure
rate according to the WIP level.
We also make the comparison with two G/G/m models that are commonly used in manufacturing.
In this case we do not apply any operational rule on the toolset since the queueing formulas are not
capable of modeling those. However we show that even in the absence of the operational rules the
proposed model gives more accurate estimation In both cases we measure the accuracy by average
percent difference with simulation in heavy traffic as discussed in 2.3. We try different distributions for
inter-arrival and service times to see the effect of approximation with Erlang distribution, as discussed
in 2.4, on the accuracy of cycle time estimation by the proposed model.

3.1 Toolsets with Operational Rules

3.1.1 Case with Erlang Distribution

First we use three different Erlang distributions for the inter-arrival times and also for the processing
times, namely exponential with SCV = 1, skewed with SCV = 0.5 and symmetric with SCV = 0.1.
The distribution of time to failure and time to repair are both exponential with rate d = 4 and u = 1
in all cases. We apply three conditions regarding the operational rules to this system. The first case
depicts the toolset in the absence of operational rules, in the second case (Rule I) the operational rule
adjusts the arrival rate based on the WIP level and the third case (Rule II) adjusts the failure rate
based on the WIP level. For each case all the 9 combinations of inter-arrival and processing time
distributions are applied and the resutls are obtained. In the case of Rule I we decrease the arrival
rate by 50% compared to the case with no rule, whenever the two servers are busy and increase the
arrival rate when at least one server is idle. For Rule II the failure rate is decreased by 50% when the
two servers are busy and is increased when there is at least one idle server. We calculate the average
percent difference between the two models at utilization levels of 70%, 80% and 90%. We verify the
performance of the model using simulation and present the results in Table 1.

Table 1: Average Percent Difference of Cycle Time Estimation by Simulation and The Proposed Model in Heavy Traffic

High Utilization (≥ 70%) Processing Time
InterarrivalTime Erlang(1, 1), SCV=1 Erlang(1, 2), SCV=0.5 Erlang(1, 10), SCV=0.1

NO Rule Rule I Rule II NO Rule Rule I Rule II NO Rule Rule I Rule II
Erlang-(1,X) SCV =1 -0.5% -4.5% -3.5% -0.5% -4.9% -6.1% -0.7% -5.0% -7.2%

Erlang-(2,X) SCV =0.5 0.8% -4.1% -4.7% -0.5% -4.5% -6.6% -0.5% -4.5% -9.6%
Erlang(10,X) SCV =0.1 -0.3% -3.4% -5.1% -0.5% -3.5% -7.9% -0.1% -3.7% -11.2%

As it is observed in this table that percent difference between simulation and Markov chain prediction of cycle time

does not exceed 12% in any of the cases. This level of accuracy is higher than the other models in the literature, such as

(Morrison and Martin 2007). The complex simulation models that are used in the semiconductor companies can predict the

cycle time with at most 90% accuracy. For example Chen (Chen, Harrison, Mandelbaum, van Ackere, and Wein 1988)
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state that their proposed queueing model predicts the cycle time with 12% accuracy.

However, since Erlang distribution is a special case of Gamma distribution and also all the failure and repair distributions

are exponential, this level of accuracy is not surprising.

3.1.2 Case with Lognormal Distribution

We repeat the same experiment of 3.1.1 but with longnormal distributions for the inter-arrival and
service time. We apply Rule I and Rule II respectively and measure the percent difference between the
cycle time of simulation and the Markov model in high utilization. For this case we try two different
methods of approximation for the sake of comparison.
First we directly match the first moment of the original distribution with that of exponential and use
the exponential equivalent in the Markov model. The Results for this approximation method are
shown in Table 2. Then we match an Erlang distribution from the chosen set to each distribution of
arrival and service and show the results in Table 3
.

Table 2: Average Percent Difference of Cycle Time Estimation by Simulation and The Proposed Model in Heavy
Traffic, with exponential approximation

High Utilization (≥ 70%) Processing Time
InterarrivalTime LogN(1, 1), SCV=1 LogN(1, 0.71), SCV=0.5 LogN(1, 0.32), SCV=0.1

NO Rule Rule I Rule II NO Rule Rule I Rule II NO Rule Rule I Rule II
LogN-SCV=1 -3.0% -14.4% -5.4% 9.2% -9.8% -4.9% 22.0% -6.0% -7.5%

LogN- CV=0.5 -21.1% -17.2% -19.1% -9.2% -12.6% -20.4% 3.3% -8.8% -24.9%
LogN-SCV=0.1 -41.0% -19.7% -34.1% -30.6% -15.2% -37.5% -20.9% -11.5% -43.6%

Table 3: Average Percent Difference of Cycle Time Estimation by Simulation and The Proposed Model in Heavy
Traffic, with Erlang approximation

High Utilization (≥ 70%) Processing Time
InterarrivalTime LogN(1, 1), SCV=1 LogN(1, 0.71), SCV=0.5 LogN(1, 0.32), SCV=0.1

NO Rule Rule I Rule II NO Rule Rule I Rule II NO Rule Rule I Rule II
LogN-SCV=1 -3.0% -14.4% -5.4% -5.0% -15.9% -6.2% -5.4% -16.8% -9.2%

LogN- CV=0.5 -1.4% -8.2% -3.2% -2.4% -9.1% -4.6% -2.0% -9.5% -7.7%
LogN-SCV=0.1 -0.1% -3.6% -2.7% -0.4% -4.4% -4.9% 0.0% -4.4% -8.5%

It is observed that in the majority of cases using an Erlang distribution improves the results. This
proves the fitting of a phase-type distribution a promising method to enhance the accuracy.

3.2 Classical G/G/m Models

In this section we make a comparison between the classical G/G/m models and the proposed Markov chain model in
the absence of any operational rule. The classical queueing models all have the inherent assumption of independence
between the arrival and service processes and hence are incapable of modeling operational rules. Hence in this section
the comparison is only made in the absence of operational rules. We consider two G/G/m approximations that are
commonly used in manufacturing. Hopp and Spearman (Hopp and Spearman 2002) present the approximation proposed
by Kingmanm (Equation 4) for the cycle time of a G/G/m queue with failure prone servers and with the notion of
the effective processing time, te. In this approximation ρ is the effective utilization of the system, m is the number of
parallel servers and C2

a and C2
e present the squared coefficient of variation of effective processing time and inter-arrival

time respectively.

CT ≈ (
C2

a +C2
e

2
)(

ρ
√

2(m+1)−1

m(1−ρ)
)te + te. (4)

Buzacott and Shanthikumar also propose Equation 5 to approximate the cycle time of the G/G/m queue based on the
cycle time of the M/M/m queue.

CT G/G/m ≈ C2
a(1− (1−ρ)C2

a)/ρ +C2
e

2
tM/M/m
q + te, (5)
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where tM/M/m
q denotes the queue time of the M/M/m system. We have examined the system under the same combinations

of inter-arrival and processing time distributions as in 3.1 and with the same parameters for time to fail and time to

repair. The comparison is done with a base simulation model as described in 2.3. The results are presented in Table 4.

Table 4: Average Percent Difference of Cycle Time Estimation by the Proposed Model and Two Classical G/G/m
Formulas Under Heavy Traffic and No Operational Rule

High Utilization (≥ 70%) Ek/Ek/2
Interarrival Time Processing Time

Erlang(1, 1), SCV=1 Erlang(1, 2), SCV=0.5 Erlang(1, 10), SCV=0.1
Expo Erlang H&S B&S Expo Erlang H&S B&S Expo Erlang H&S B&S

Erlang-(1,X) SCV =1 -0.5% -0.5% -44.9% -51.3% 13.1% -0.5% -3.4% -7.6% 25.7% -0.7% 26.1% 23.5%
Erlang-(2,X) SCV =0.5 -18.6% 0.8% -42.4% -51.5% -7.1% -0.5% -2.4% -8.9% 5.0% -0.5% 27.2% 22.6%
Erlang(10,X) SCV =0.1 -41.3% -0.3% -42.6% -49.0% -30.8% -0.5% 0.0% -3.8% -21.0% -0.1% 30.2% 28.2%

As we observe in Table 4 even in the case with no operational rule the proposed Markov chain model performs with

higher accuracy than the two G/G/m approximations of (Hopp and Spearman 2002) and (Buzaccott and Shantikumar 1993).

The results of average percent difference of cycle time (for utilization ≥ 70%) in the model without operational

rules are shown in Table 5

Table 5: Average Percent Difference of Cycle Time Estimation by The Proposed Model and Two Classical G/G/m
Formulas Under Heavy Traffic and No Operational Rule

High Utilization (≥ 70%) LogN/LogN/2
Interarrival Time Processing Time

LogN(1, 1), SCV=1 LogN(1, 0.71), SCV=0.5 LogN(1, 0.32), SCV=0.1
Expo Erlang H&S B&S Expo Erlang H&S B&S Expo Erlang H&S B&S

LogN- SCV =1 -3.0% -3.0% -47.8% -54.4% 9.2% -5.0% -8.1% -12.4% 22.0% -5.4% 22.5% 19.8%
LogN- SCV =0.5 -21.1% -1.4% -45.4% -54.6% -9.2% -2.4% -4.3% -11.0% 3.3% -2.0% 25.9% 21.2%
LogN- SCV =0.1 -41.0% -0.1% -42.1% -48.5% -30.6% -0.4% 0.1% -3.7% -20.9% 0.0% 30.2% 28.2%

In Table 5 we observe that, we can see that for the base case, without operational rules, the approximation always

perform better (with regard to the classical queueing models). In Figure 2 we can see that for the base case with inter-arrival

and service time SCV = 1, the result for both models (Markov-Expo and Markov-Erlang), are exactly the same as we

expect. For another case whit inter-arrival and service time SCV = 0.71, the results with the Markov-Expo are better than

the classical queueing theory, but the Markov-Erlang gives the closest results to simulation, as it can be observed in Table 5

For the model with Rule I, the average percent differences of the cycle time approximations are presented in the

Table 6; and for model with rule II is presented in Table 7.

Table 6: Average Percent Difference of Cycle Time Estimation by The Proposed Model and Two Classical G/G/m
Formulas Under Heavy Traffic and Operational Rule1

High Utilization (≥ 70%) LogN/LogN/2 (RULE 1)
Interarrival Time Processing Time

LogN(1, 1), SCV=1 LogN(1, 0.71), SCV=0.5 LogN(1, 0.32), SCV=0.1
Expo Erlang Expo Erlang Expo Erlang

LogN- SCV =1 -14.4% -14.4% -9.8% -15.9% -6.0% -16.8%
LogN- SCV =0.5 -17.2% -8.2% -12.6% -9.1% -8.8% -9.5%
LogN- SCV =0.1 -19.7% -3.6% -15.2% -4.4% -11.5% -4.4%

As can be see in Table 6, using the operational rule I (described in section 3.1), the results of the Markov model
for service time with SCV of 1 or 0.5 (all cases of interarrival times SCV) are almost always better than the exponential
approximation. Also, the worst error is around 17%. One examples of these results are also presented in Figure 3
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Figure 2: Results for LogN-LogN without rules with service time SCV=1 and arrival time SCV=0.1

Table 7: Average Percent Difference of Cycle Time Estimation by The Proposed Model vs 4 and 5 Under Heavy Traffic
and Operational Rule2

High Utilization (≥ 70%) LogN/LogN/2 (RULE 2)
InterarrivalTime Processing Time

LogN(1, 1), SCV=1 LogN(1, 0.71), SCV=0.5 LogN(1, 0.32), SCV=0.1
Expo Erlang Expo Erlang Expo Erlang

LogN-SCV=1 -5.4% -5.4% -4.9% -6.2% -7.5% -9.2%
LogN- CV=0.5 -19.1% -3.2% -20.4% -4.6% -24.9% -7.7%
LogN-SCV=0.1 -34.1% -2.7% -37.5% -4.9% -43.6% -8.5%

The result for the model with operational Rule II (Table 7) show that the Markov with Erlang approximation is
always better than the Exponnetial approximation . In this case the worst error is around 9%. One example of this
behavior is presented in Figure 4

3.3 Efficiency

The efficiency of the Markov model is also measured in terms of the computational time. The measurement of efficiency
is made using the ratio between the simulation running time and the Markov model running time r = Sim.RunningTime

Markov.RunningTime .
The results are presented in the Table 8

In Table 8 can be see that only in the cases with very low variability, the simulation running time is lower than
the Markov model running time. In all the other cases the running time of the Markov model is much lower than the
simulation model.

4 CONCLUSIONS

The proposed Markov chain model along with the Erlang fitting method provides a practical tool to estimate cycle time
for toolsets with operational rules. The accuracy of estimation through this model is verified by simulation. Compared
with simulation this model is easier and faster to use and maintain with less input data requirements. Compared
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Figure 3: Results for LogN-LogN with Rule 1 and Service time SCV=1 inter -arrival times SCV=0.1

Figure 4: Results for LogN-LogN with Rule 2 and Service Time SCV=0.1 Inter-Arrival Time SCV=0.1

to the classical G/G/m formulas that are not capable of modeling operational rules the proposed model provides a
flexible modeling tool with high accuracy. However, some inaccuracy is introduced due to approximation of a general
distribution with Erlang which also poses a limit to the use of distributions with SCV ≤ 1. The next steps to improve
this model include the application of phase-type distributions for a more efficient approximation of any positive dis-
tribution as well as adding capabilities for modeling multiple types of failures and multiple types of products with priority.
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Table 8: Ratio of the running time efficiency of the Markov model and number of states

SCV Serv. Time 1 1 1 0.5 0.5 0.5 0.1 0.1 0.1
SCV Int. Arriv Time 1 0.5 0.1 1 0.5 0.1 1 0.5 0.1

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
Utilization 70% 100.63 102.56 9.81 97.69 35.23 2.42 1.15 0.22 0.00

80% 115.60 56.97 13.28 55.45 56.97 2.81 1.24 0.24 0.00
90% 119.13 121.06 9.70 117.19 40.55 2.74 1.33 0.25 0.00
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