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ABSTRACT 

The advanced scheduling of patients for elective surgeries is challenging when the operating room capaci-

ty usage by these procedures is uncertain. We study the application of some revenue management con-

cepts and techniques to operating rooms for several surgical procedures performed in a multi-tier reim-

bursement system. Our approach focuses on booking requests for elective procedures, under the 

assumption that each request uses a random amount of time. We create and use a modified version of Be-

lobaba’s well-known  EMSRb algorithm (Belobaba 1989) to decide on near-optimal  protection levels for 

various classes of patients. Under the random resource utilization assumption, we decide, for each plan-

ning horizon, how much time to reserve for satisfying the demand coming from each class of patients,  

based on the type of surgical procedure requested and the patient’s reimbursement level. 

1 INTRODUCTION 

In order to cope with the increasing demand for healthcare, and in particular, for surgery, a surgical suite 

is required to efficiently and effectively balance a high utilization of the operating room (OR) with the 

need for maintaining or improving the quality of care.  Two factors affect the efficient use of existing re-

sources: the challenges imposed by the increasing demand for healthcare, and the variability in both de-

mand and service time. In an OR setting, this translates in both an uncertain number of patients in need 

for surgery, as well as inherent variability in the surgery times across types of surgeries, surgeons and pa-

tients.  

 When managing demand for a relatively fixed and perishable capacity, revenue management (RM) 

techniques prove very successful. One of the pillars of revenue management objective is the optimal allo-

cation of capacity to various demand classes, and two of the important questions that RM studies refer to 

how many requests to accept from discount customers and how much capacity to reserve for customers 

that are willing to pay full price in order to maximize revenues (profits) over a planning horizon. After its 

success in the airline industry in the 1970s, numerous efforts and research studies tried to adapt RM ap-

proaches to the needs of other industries, ranging from oil and gas pipelines to healthcare to made-to-

order manufacturing (Phillips 2005).  

 In the OR setting, where available surgery time is relatively limited and perishable, one can apply ca-

pacity-based revenue management to better manage demand from the various patients. In this context, the 

specific managerial decision that we address is how much OR capacity should the scheduling department 

reserve or protect in advance, over the planning horizon, for various patient classes, where a class  can be 

defined as a combination of patient reimbursement level and the type of surgery requested. Because of the 

inherent variability in the service rendered, each accepted and scheduled request for surgery uses up a va-
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riable amount of time, which makes the patient scheduling problem not trivial. Thus, the main difference 

between the capacity allocation problem in airlines and healthcare is the resource utilization aspect: while 

a passenger requests only one seat, a patient scheduled for surgery would use a random amount of re-

source. The exact amount of time that is consumed is known with certainty only after the procedure is 

performed. 

 Stanciu (2009) and Vargas, May and Stanciu (2010) obtained optimal partitioned protection levels as-

suming both random demand for surgery services and random utilization of the resource. However, the 

optimization problem formulated in these papers becomes computationally intractable, due to the expo-

nential growth in both the number of variables and in the number of constraints. Here, we provide a dif-

ferent methodological approach to this problem, by devising a heuristic algorithm to obtain near-optimal 

protection levels for various classes of patients. Through simulation-based optimization, based on several 

sets of surgical procedures, we compute the near-optimal expected revenues  as well as approximate ca-

pacity allocations, and compare the results to the known corresponding optimal results (Stanciu 2009). 

Preliminary results show that the heuristic algorithm could perform very well in practice and be used as a 

viable alternative to the optimal mathematical model.  

 The results of the simulation model presented here incorporate the idea of accepting/postponing re-

quests for service from several competing classes of patients that present fluctuating demands. The patient 

segmentation in various fare classes is based on the contractual revenue expected to be paid by each pa-

tient category. We can think of this segmentation in terms of patients’ ability to pay, rather than their wil-

lingness to pay (Karaesmen and Nakshin 2007).  

 It is widely accepted that inefficient OR scheduling results in delays and cancellations of surgical or 

other procedures, with a negative impact on hospital and patients. The patients suffer because a delay or 

cancellation may be detrimental to their health condition with a negative effect on quality of life in gener-

al. From the hospital’s perspective it may result in deferred or lost revenue (if the surgery is ultimately 

performed by another hospital or in another country altogether), loss of goodwill, over and/or underutili-

zation costs, to mention just the most obvious ones. Traditionally, the primary focus of the healthcare op-

erations literature, has been the reduction of the operating costs and the increase of the OR utilization. 

Since the survival and prosperity of the surgical suite in the long run also depends on the revenue it gene-

rates, we examine how to better manage the mix of patients that request elective surgeries, with the goal 

of increasing the expected revenue generated by the surgical department.  

 In this paper we are not concerned with the OR daily schedule or procedure sequencing, but rather 

with the booking decisions that lead to accepting or rejecting a particular request and assigning it OR time 

during the open booking period, if accepted. The surgical procedures use a variable amount of time and 

usually cannot be well confined within the allocated time slot, resulting in over- and under-utilization of 

both the OR’s and doctors’ time. This is also why we are looking at the time resource as a continuous va-

riable, rather than discretizing it into the classical slots.  

 We label our simulation-based heuristic algorithm Expected Marginal Capacity Revenue for Operat-

ing Rooms (EMCR-OR). EMCR-OR  can be used to implement an advanced dynamic booking policy for 

the OR scheduling personnel. The simulation-based protection levels provide an average optimality gap 

of only about 0.7%, thus making this approach quite attractive in practice. 

The paper is organized as follows. After the literature review in section 2, we present in section 3 the 

analytical model for computing the protection levels under random resource utilization. Section 4 presents 

the description of the algorithm, followed by preliminary numerical results in sections 5, an extension of 

the heuristic in section 6, and final conclusions and remarks in section 7. 

2 LITERATURE REVIEW 

The research stream that opened the road for revenue management  implementations in healthcare can be 

traced back to the 1990s. Chapman and Carmel (1992) used threshold curves to determine whether and 

when to apply discounts in order to increase the capacity utilization and revenue yield within Duke Uni-

versity’s diet and fitness center. Gerchak, Gupta and Henig (1996) develop an advanced reservation plan-
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ning policy for elective surgery patients when the operating room capacity is common for both elective 

and emergency surgeries. In a more recent article, Green et al. (2006) analyze the patient scheduling prob-

lem faced by an MRI diagnostic facility and identify threshold policies to manage patient demand and the 

capacity allocation (appointment scheduling and dynamic priority) by using a finite-horizon dynamic pro-

gram (in contrast, our approach incorporates the stochasticity of the service time).  

Olivares, Terwiesch and Cassorla (2008) analyzed the situation of OR time allocation to a single sur-

gical procedure with random service time. Their paper provides a general structural model to estimate the 

overage and underage costs in a newsvendor setting, with an application in reserving OR time. Specifical-

ly, the decision on OR time allocation to a specific surgical case (emergency or elective) is analyzed from 

the perspective of the factors that influence demand, while providing insight into what the cost parameters 

are for the hospital under study. From past observations one can derive the overage/underage cost ratio 

which becomes the input for the decision of how much OR time to reserve for a particular surgical case. 

Gupta and Wang (2008) propose several heuristics to help clinics decide how to ration the available slots 

between walk-ins (same-day appointments) and regular patients (advance booking) who may have a pre-

ference for both the  slot time (assumed to take up the same amount of time)  and their primary care phy-

sician.  

The classical approach when dealing with multiple-class patient scheduling takes the form of priority 

queues. Solution approaches are simulation and stochastic linear and multi-objective mathematical pro-

gramming. Various decision support models for tactical decisions in the day-to-day hospital admission 

and scheduling for surgery have been proposed, like the studies made by Everett (2002), Lowery (1996), 

and Ivaldi, Tanfani and Testi (2003), among others. The simulation models are regularly used as an op-

erational tool to balance hospital availability and patients’ needs while comparing the effectiveness of dif-

ferent alternative policies in this multi-criteria decision setting. A first-come-first-served rule within a 

class of urgency is adopted and usually no considerations are given to various classes’ financial characte-

ristics. 

 Reducing the operating costs and increasing the utilization using a more efficient OR and patient 

scheduling were the focus of the largest OR literature. Most models in the related literature deal with 

computing performance measures for the proposed control policies, like average utilization, patients and 

resources waiting time, waiting queue length, etc. (see, for example, Taylor and Templeton (1980), Rege 

and Sengupta (1996)). Rather than computing performance measures for various policies, we are deriving 

near-optimal protection levels that lead to increased expected revenue for the surgical department. We 

consider that focusing on increasing the revenue from better surgical scheduling may become as impor-

tant as containing costs, because in the end, the survival and good functioning of any unit, be it in manu-

facturing or healthcare, would depend on the financial soundness of that unit, and how well it balances re-

lated costs and revenues. 

3 ANALYTICAL MODEL  

Unlike previous research where priority classes usually correspond to the degree of urgency for the pro-

cedure, in the present study the priority classes correspond to the expected revenue per unit of time ex-

pected to be obtained by performing a procedure on a patient from that class. This choice of patient seg-

mentation, based on the reimbursement category (level of the insurance coverage) for the type of 

procedure requested lends itself naturally to analyzing the problem as one of expected revenue maximiza-

tion. Traditionally, maximizing the expected revenue is the objective of choice when there is a limitation 

of resources and when there are several customer classes that compete over a relatively fixed amount of 

resource over a specified time period. Additionally, EMCR-OR can also be used to track the expected 

revenue distribution and answer further questions of interest for the decision maker, for example, the 

probability of incurring a certain revenue.   

 Considering the class definition described above,  it is not always true that higher patient classes 

would correspond to patients who have full health insurance/coverage, while lower priority classes cor-

respond to classes of patient who have low or partial health insurance. The expected revenue per unit of 
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time dictates the rankings across classes, where both the revenue per surgery and the surgery durations are 

influencing factors. For this reason, two hospitals practicing the same prices, but where surgeons perform-

ing those surgeries differ in their effectiveness, may have different rankings for those patient classes, re-

sulting in different protection levels. This means that a surgeon’s efficiency and effectiveness are direct 

factors influencing the optimal protection levels and ultimately the revenue expected to be incurred by the 

surgical department.  

 We assume that the hospital has evidence and records of all or most past requests for elective surge-

ries, including those that were not finally honored (patients either gave up, died, or went to a different 

hospital). This assumption avoids demand censoring situations that are common in airline and hotel in-

dustry (van Ryzin and McGill 2000), where it is difficult to keep track of every unfilled request that was 

made online, for example. In the hospital environment, where requests for surgery are taken by the sche-

duling personnel, it is not unrealistic to assume that there is a complete or large enough set of records of 

all past requests. 

 The EMCR-OR simulation algorithm is a generalization of the EMSRb heuristic (Belobaba 1989). 

The method makes use of forecasted demand for the next planning period, which is based on historical 

demand distribution for each type of surgery. The distribution of the reimbursement category would fol-

low the national distribution of the main insurance categories, but each institution is free to use the distri-

bution that better fits its market demand. These demand distributions would be updated as the time hori-

zon progresses, at intervals that would make sense to suspect that there are relevant changes in the 

demand distributions that warrant changes in the protection levels.  

 New requests for bookings for elective surgeries arrive each day from patients, based on their doc-

tors’ recommendations. Under unconstrained capacity conditions, these procedures would be performed 

as soon as possible, but in reality OR capacity is limited in a given day, considering the number of availa-

ble doctors, nurses, equipment etc., so accepting too many requests for a certain day or time period will, 

in most cases, result in excessive overtime, or even turning away previously scheduled patients or emer-

gency cases. An additional difficulty arises from the fact that the exact time it takes to perform various 

elective surgical procedures is not known with certainty at the time of booking Shukla, Ketcham and Oz-

can 1990). The problem the hospital faces in general, and the surgical scheduling department in particular, 

at the beginning of each planning period or booking window, is to decide how many of the additional re-

quests for elective surgery to accept for that time interval for which the booking process is open, with the 

goal of maximizing the expected revenue, while also considering regular and overtime utilization, as well 

as emergency treatments.  

 EMCR-OR does not make any assumptions about the order of patients’ arrival. That is, we assume 

random customer arrivals, with stochastic total demand per customer class. This mimics what happens in 

practice, where customers from different classes arrive based on needs, concurrently rather than sequen-

tially, and not necessarily in some order determined by their reimbursement category. All patients’ re-

quests for surgery type j possessing coverage level i contribute to class ij’s demand. Hence, a class’ de-

mand is function of the surgery j’s duration and the fraction of patients holding type i reimbursement 

level. The information can be obtained by analyzing historical data on past surgeries of that type per-

formed in that surgical unit or medical facility, and by analyzing historical data about the population 

structure on surgical needs and insurance coverage.  

 The data we use in this research come from a large teaching hospital, collected over six years. The in-

formation on the actual cost incurred and revenue generated by the surgeries performed is not available, 

because it was not recorded when the surgeries took place. To compensate for this, we make some as-

sumptions on the relative values between the revenues rij generated by a surgery of type j when requested 

by a patient holding a reimbursement plan type i, that are reimbursed to the hospital for the services per-

formed. We also assume that we can establish an ordering between the expected revenues per unit of time 

across classes of patients. As each surgery takes a variable amount of time, tj, the revenue generated per 

unit of time will vary even across same type surgeries. 
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 Given N surgeries (identified by their Current Procedural Terminology or CPT) and M reimbursement 

categories, a patient’s class will be determined based on the type of surgery requested (1,…,j,…N) and the 

reimbursement level (1,…,i,…M). Let k be the class of the request (the combination of patient’s reim-

bursement level and surgery requested), with k = 1,…,K and K = M x N.  Each class k’s demand is a ran-

dom variable with a given probability density function, fk, and cumulative distribution, Fk. Let Dk be a rea-

lization of such a demand, ci be the reimbursement level for insurance type i, pj be the price for surgery 

type j, and rk ≡ rij = cipj. With this formulation, the implied assumption is that the price of a surgery is in-

dependent of the reimbursement levels, which is a reasonable (and ethical) assumption to make in the 

context of managed care. The ranking across these k classes of patients is based on the order statistics of 

ρk = rk / tj, the revenue generated per unit of time. Let µk = E(ρk), the expected revenue per unit of time 

collected per class k. Suppose that all µk are ordered decreasingly, (1) ( ) ( )... ... .k Kµ µ µ> > > >  The question 

then becomes how many time units, xk - xk-1, should be protected in a partitioned fashion for each individ-

ual class k (reserved strictly for that class), or in a nested fashion, for classes k and higher, xk, while ob-

serving the total system capacity C, in order to maximize the total expected revenue. We are looking at 

the non-trivial case for which the total demand does exceed the available system capacity. Under this as-

sumption, the total expected revenue is of the form: 

1

1
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 Let X = (x1, x2, …, xK-1) be the vector of nested protection levels for the K - 1 classes, and X
*
 be the 

vector of optimal protection levels (defined in a corresponding fashion). Then, the problem can be formu-

lated as 
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k
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X ER X x C
=

 
= ≤ 

 
∑  

 With an increased number of classes, the above mathematical formulation suffers from the curse of 

dimensionality, and poses serious computational issues in practice. The problem reduces to a stochastic 

knapsack problem with random item (surgery) sizes, known exactly only after the selection decision has 

been made, and known item values at the time of the decision. The general knapsack problem is known to 

be NP-hard (Garey and Johnson 1979). In practice, heuristic approaches are preferred to the optimal cal-

culations due to the intuition behind them, faster computation time, and small optimality gaps (observed 

0.5% gap in the case of EMSRb (Talluri and van Ryzin 2004)). This is why in this paper we use simula-

tion to compute the protection levels.  The EMCR-OR output takes the form of near-optimal protection 

levels (time allocations) that would give the scheduler a very good insight into how many time units to 

protect for each reimbursement class within a surgery type or surgical subspecialty. This information 

would then become the basis for deciding, during each planning period, on the number of ORs to open 

and the number of surgeries to be performed within each class. 

4 DESCRIPTION OF THE EMCR-OR ALGORITHM  

The goal of the EMCR-OR approach is to obtain a distribution of protection levels (for each class of pa-

tients), the mean of which is reported as the near-optimal protection level for that class. The new idea we 

introduce here is that of identifying and analyzing a distribution of protection levels, rather than just a set 

of fixed protection levels, as is the case in the RM literature. The algorithm consists of the following 

steps: 

 

Step 1 (Initialization): Pre-compute all revenues rk and averages µk, with k = 1,…,K.  All µk are ordered 

decreasingly, (1) ( ) ( )... ... .k Kµ µ µ> > > >  
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Step 2: Let
1

K
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average revenue for all k classes,  1
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Step 3: The nested protection level for class k  and higher, kx , is chosen (Littlewood 2005) so that:  

1( ) .k

k k

k

P A x
µ

µ

+≥ =  

Step 4: Update
1 2 1( , ,..., )N KX x x x

−
= , the vector of nested protection levels, with the values obtained in 

Step 3. Let -1max{0, - }K Kx C x= , where C = system’s capacity.
  

Step 5: Partitioned (i.e., disaggregated) protection levels are obtained so that 1k kx x
−

− time units are allo-

cated to class k.  
Step 6: Simulate the distributions for each disaggregated protection level. The means  of these distribu-

tions of protection levels become the near-optimal protection levels reported for each class. Report the 

vector of partitioned protection levels, * * * * *
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Report total revenue, 

* *
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−
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 If the surgical department is interested in pooling the total available time for all N surgical types pro-

vided, and then compute protection levels for all N*M possible class combinations, then it needs to gener-

ate N*M - 1 protection levels. If it is interested in deciding how much OR time to allocate for patients in 

one reimbursement class within one particular surgery, then it needs to compute only M - 1 protection le-

vels for that surgical procedure. If the department is interested in deciding how much time to allocate for 

the first k procedures, then it only needs to use the nested protection levels found at steps 3 and 4.  

5 PRELIMINARY NUMERICAL RESULTS 

We present several examples to show the algorithm’s implementation and performance, and compare its 

results with the optimal ones obtained by Stanciu (2009) using the same set of surgical procedures. In the 

general case with n classes, the n - 1 optimal protection levels are found by solving a system of n - 1 eq-

uations of first order conditions. They are set to balance the expected revenue losses between any two ad-

jacent classes (when all are ordered function of their expected revenue per unit of resource), by not pro-

tecting enough capacity for these classes. 

 First, consider two surgeries, defined by their CPTs: Surgery 1, CPT 36489 (Placement of central 

venous catheter) with a duration following a 2-parameter lognormal distribution with µ = 1.15 hours and 

σ = 0.6 hours, and Surgery 2, CPT 52000 (Cystourethroscopy of bladder) with a duration following a 2-

parameter lognormal distribution with µ = 0.68 hours and σ = 0.32 hours. In the first example, we assume 

that the capacity for the next planning horizon is C  = 40 hours, c1 = 100% and c2 = 75%. In the second 

example, C = 50 hours, c1 = 100%, c2 = 75% and c3 = 50%. Based on past history, we were able to esti-

mate the demand distribution for each of these four and six classes, respectively, along with the relative 

procedure prices. Since the individual surgical durations follow the lognormal distribution, the aggregated 

demand for a particular class, as a summation over multiple lognormal distributions, lends itself to an ap-

proximation by the normal distribution (by the central limit theorem). Empirically, the normal distribution 

was also found to be a very good fit for the demand across each class, with the extremes of the distribu-

tion more than six standard deviations away from the mean. We chose to use it, for simplicity, over the 
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Weibull distribution (another good fit), and, as a precautionary measure, we truncated from the left the 

normal distribution in the simulation runs, so that no negative surgery times are generated.   

Applying the EMCR-OR heuristic described above, and using the Crystal Ball add-in for MS Excel 

(11
th
 edition, 10,000 iterations) we get the partitioned protection levels (x) that are displayed in Figure 1 

along with the optimal ones (x*) obtained in our previous work (Stanciu 2009). Note that if xk = 0 for 

some class k, then there is no time protected for class k over the planning period under analysis, and those 

patients would be postponed until later, when it becomes economically feasible to serve that class.  

 

  

Figure 1: Protection levels comparison (x and x*) for 4 and 6 classes 

 The classes are shown in decreasing order of their expected revenue per time unit, as presented in the 

heuristic algorithm above. Note that this order can be easily changed (by surgery or by reimbursement 

category), but a different order would not always preserve the information on relative expected revenues 

for two adjacent classes.  

 Figure 1 shows a slight difference between the optimal and simulated protection levels. What is more 

relevant, though, is the expected revenue comparison. We can report an average revenue gap, in both ex-

amples, of only 0.7%, with a maximum gap of 1.5%. Similar simulation runs were performed using other 

CPTs, and the expected revenue gaps were consistently around 0.7%.  

 We now extend the two-surgery, three-class example mentioned above, by adding one more cardi-

ovascular surgery (Surgery 3, CPT 33512, Three vein coronary artery bypass graft) with a duration fol-

lowing a 2-parameter lognormal, with µ = 6.25 hours and σ = 1.2 hours. We now have nine final patient 

classes. Assuming a capacity of C = 120 hours, we present in Figure 2 the simulation-based protection le-

vels (x) along with optimal ones (x*). As in Figure 1, the classes are shown in decreasing order of their 

expected revenue per time unit.  
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Figure 2: Protection levels comparison for 9 classes 

 The expected revenue gap, computed using 10,000 iterations and random patient arrivals is about on-

ly 0.7%, with a maximum gap of about 1.4%. The heuristic is attractive in practice, with just slight loss in 

expected revenue, but with the advantage of less computational time.  

6 EMCR-OR EXTENSION: INCORPORATING OVERTIME 

Overtime is necessary in the situations where a surgery goes beyond the end of the budgeted OR time for 

that day, since we assume that no surgery continues on the next day. Subsequently, once a decision is 

made to start a surgery, in the event that it goes beyond the budgeted time, it incurs overtime cost, which 

usually is higher than the cost of regular time.  

 Strum and Vargas (1997) developed a minimal cost analysis (MCA) approach to decide on the time 

allocations across subspecialties in order to minimize under and overutilization costs, based on the ratio of 

overtime to regular time cost. When overtime is unavoidable but allowed, we can incorporate this idea 

when making the decision of capacity allocation across classes of demand. The idea we propose is that af-

ter obtaining the distribution of protection levels for each class, instead of reporting the mean as the near-

optimal protection levels, we can decide on a threshold, or cut-off value based on this MCA analysis, that 

would represent the time the surgical department should allocate for that surgery-reimbursement class 

combination, in an attempt to increase revenue and decrease overtime costs. For example, if the ratio be-

tween overtime and regular costs per time unit is 2, then we can use the 66.7
th
 percentile of each probabil-

ity distribution for the number of units of time to be assigned for that patient class.  

 To illustrate this extension, we employ the example with nine patient classes presented above. Table 1 

shows the simulation results of the mean and the 66.7
th
 percentile values for these (empirical) distribu-

tions of protection levels for each of the nine classes. The values for the 66.7
th
 percentiles should be used 

as fixed protection levels when overtime is allowed. The last column displays the probability of not allo-

cating any time to that particular class during the planning horizon (probability that x = 0, i.e., the class is 

closed because it is not financially feasible). The classes are presented in decreasing order of their ex-

pected revenue per time unit.  
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Table 1: Protection levels for 9 classes. 

Rank Class Mean (hrs.) 66.7
th
 percentile (hrs.) Prob(x = 0) 

1 S1C1 9.23 10.18 0.00 

2 S2C1 7.51 8.52 0.04 

3 S1C2 8.91 10.23 0.08 

4 S2C2 8.11 9.45 0.11 

5 S3C1 32.03 33.86 0.00 

6 S1C3 4.38 5.90 0.30 

7 S2C3 4.95 6.55 0.28 

8 S3C2 31.79 35.22 0.00 

9 S3C3 13.03 17.82 0.10 

  

 We further used simulation to compute the increase in expected revenue when using as protection le-

vels the 66.7
th
 percentile of the protection level distributions, rather than the mean of those distributions. 

The results obtained show that the new protection levels would result in an 11.5% increase in expected 

revenue, which comes with an average capacity usage of about 123 hours; this represents an average 

overtime of only 3 hours, 2.5% of the initial capacity of 120 hours. We consider this to be a remarkable 

expected revenue increase, which is due to recognizing the fact that procedure variability plays a large 

role in the financial situation of the surgical unit. 

 While overtime is not desirable, it may become necessary in situations where unexpected complica-

tions arise, or when longer surgeries are scheduled during a day. While the former situation cannot be 

predicted, the latter should take into account the probability of going over the allocated time, due to the 

potential costs involved. The models presented here should be coupled with rigorous forecasting and pre-

diction methods, helping the decision maker determine and implement more accurate protection levels.  

7 CONCLUSIONS 

This work focuses on determining the reservation of a relatively fixed capacity across multiple customer 

classes, in the case where the accepted customers’ requests use a variable amount of the resource under 

consideration. We look especially at situations faced by a surgical unit that is in the process of scheduling 

elective surgeries over a certain period. We propose a simulation algorithm that computes the protection 

levels (both partitioned and nested) for the classes of patients considered over this planning period. We 

analyze a very realistic situation in which the actual service duration is known with certainty only after 

the procedure is performed, but scheduling customers’ requests should be performed days before this 

happens. Customers arrive in a random order, and we assume that customers can be segmented based on 

two criteria: their need for a specific surgery, and their reimbursement level. The latter criterion could be 

dropped in the case of cosmetic surgeries, for example, which are not usually covered by health insur-

ance. The use of protection levels would determine which patients to be accepted and which to be post-

poned during the planning period under study, resulting in maximizing the expected revenue incurred by 

the surgical unit.  Patients are accepted given the protection level for that class, and the postponed ones 

are scheduled for a later date when the protection level for that class can accommodate that patient. Pre-

liminary results on a selected sample of surgeries provided very encouraging results, with small revenue 

gaps, which renders our heuristics to be very attractive in practice. Further testing should provide more 

insight into the performance of the heuristics over longer planning periods and more patient classes. 

While our examples are from the healthcare area, the simulation model has applicability in many 

other sectors characterized by stochastic service times. While there are many tradeoffs and criteria that 

decision makers need to consider when budgeting time and booking customers’ request for service, the 

model we present here can be used as a decision and planning tool to improve the operational decision 

making in many service settings, with operating room being one of them. Efficient time allocation across 
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classes of patient in the form of protection levels is of great importance for improving the revenue of the 

health care unit. Incremental revenue could be used for capacity expansion, so that, when coupled with 

adequate personnel, could help the surgical unit accommodate more surgeries in the long run, thus im-

proving the quality of care.  

This study could offer a viable alternative to the queuing approach when analyzing a service envi-

ronment’s complex behavior, characterized by uncertain service duration and random customer arrivals. 

We recognize that the model can be extended to account for other various situations encountered in prac-

tice, additions that would make the problem we present here of an even greater importance. As a possible 

future extension, the decision maker can incorporate a class related deadline, after which a penalty is in-

curred for postponed requests. At the same time, the model could be enhanced by including penalties for 

surgical errors, which affect the quality and duration of care. Penalties could take different forms, both 

monetary and non-monetary, from deterioration in the health condition of a patient, to some monetary pe-

nalty imposed by the hospital for postponed, or even lost, surgical requests, or, in extreme cases, malprac-

tice expenses, all affecting the efficiency of medical care at various degrees.  
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