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ABSTRACT

Motivated by interest in making delay announcements in service systems, we develop new real-time delay predictors
that effectively cope with customer abandonment and time-varying parameters. First, we focus on delay predictors
exploiting recent customer delay history. We show that time-varying arrival rates can introduce significant prediction
bias in delay-history-based predictors when the system experiences alternating periods of overload and underload. We
then introduce a new delay-history-based predictor that effectively copes with time-varying arrival rates. Second, we
consider a time-varying number of servers. We develop two new predictors which exploit an established deterministic
fluid approximation for a many-server queueing model with time-varying demand and capacity. The new predictors
effectively cope with those features, often observed in practice. Throughout, we use computer simulation to quantify
the performance of the alternative delay predictors.

1 INTRODUCTION

We investigate alternative ways to predict, in real time, the delay (before entering service) of an arriving customer
in a service system such as a hospital emergency department (ED) or a call center. We model such a service system
by a queueing model with a time-varying arrival rate, a time-varying number of servers, and customer abandonment.
In this paper, we present initial results of ongoing research extending Ibrahim and Whitt (2009a, b, c) where we
investigated real-time delay prediction in conventional stationary queueing models both with and without customer
abandonment. Our main contribution here is to propose new real-time delay predictors that effectively cope with
the time variation often observed in practice; e.g., see Brown et al. (2005).

Our delay predictors may be used to make delay announcements. Delay announcements may be especially
helpful when delays are sometimes long, as in a hospital ED. In many cases, waiting customers are unable to
accurately predict their own delay, and would therefore gain from delay announcements. That is typically true with
invisible queues, as occur in call centers; see Aksin et al. (2007) for background on call centers.

1.1 Alternative Delay Predictors

Alternative delay predictors differ in the type and amount of information that their implementation requires. In broad
terms, we consider two families of delay predictors: (i) delay-history-based predictors, and (ii) queue-length-based
predictors. Delay-history-based predictors exploit information about recent customer delay history in the system.
Queue-length-based predictors exploit knowledge of the queue length (number of customers) seen upon arrival.

Delay-history-based predictors are appealing because they rely solely on information about recent customer
delay history and thus need not assume knowledge of system parameters. Therefore, they are robust and respond
automatically to changes in those parameters. A standard delay-history-based predictor is the elapsed waiting time
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of the customer at the head of the line (HOL), assuming that there is at least one customer waiting at the new arrival
epoch. That is, θHOL(t,w) ≡ w, where w is the elapsed delay of the HOL customer at the time of a new arrival,
t. Delay-history-based predictors are natural candidates when the queue length in the system cannot be observed.
For one example, in ticket queues studied by Xu et al. (2007). Upon arrival at a ticket queue, each customer
is issued a numbered ticket. The number currently being served is displayed. The queue length is not known to
ticket-holding customers or even to system managers, because they do not observe customer abandonments. For
another example, with Web chat, servers typically serve several customers simultaneously, different servers may
participate in a single service, and there may be interruptions in the service times, as the customers explore material
on the Web in between conversations with agents.

Queue-length-based predictors exploit system-state information including the queue length seen upon arrival.
Additionally, they exploit information about various system parameters such as the arrival rate, the abandonment rate,
and the number of servers. In general, queue-length-based predictors are more accurate than delay-history-based
predictors because they exploit additional information about the state of the system at the time of prediction. A
standard predictor is the simple queue-length-based predictor, QLs, commonly used in practice, which multiplies
the queue length plus one times the mean interval between successive service completions, ignoring customer
abandonment. That is, a system having s agents each of whom, on average, completes one service request in m
time units, may predict that a customer arriving at time t and finding n customers in queue upon arrival will be
able to begin service in θQLs(t,n)≡ (n+1)m/s time units.

1.2 Queueing Models

We consider queueing models with customer abandonment and time-varying parameters. In the first part of this
paper (Sections 3-5), we consider the M(t)/M/s+GI queueing model which has a nonhomogeneous Poisson arrival
process with an arrival-rate function λ ≡ {λ (t) :−∞ < t < ∞}. The number of servers, s, is fixed. Service times, Sn,
are independent and identically distributed (i.i.d.) exponential random variables with mean E[S] = µ−1 (we omit the
subscript when the specific index is not important). Abandonment times, Tn, are i.i.d. with a general distribution and
mean E[T ] = ν−1. The arrival, service, and abandonment processes are assumed to be independent. Customers are
served according to the first-come-first-served (FCFS) service discipline. In the second part of this paper (Sections
6-9), we consider the M(t)/M/s(t)+GI queueing model which has a time-varying number of servers. In particular,
we assume that the number of servers varies according to the staffing function: s≡ {s(t) :−∞ < t < ∞}.

1.3 Performance Measures

We quantify the accuracy of a delay predictor by the mean-squared error (MSE), which is defined as the expected
value of the square of the difference between delay prediction and corresponding actual delay. It is usually difficult
to determine the MSE of a delay predictor. Therefore, we rely in this paper on computer simulation to quantify the
accuracy of the alternative predictors. In our simulation experiments, we quantify the accuracy of a delay predictor
by computing the average squared error (ASE), defined by:

ASE ≡ 1
k

k

∑
i=1

(pi−ai)2 , (1)

where pi is the delay prediction for customer i, ai > 0 is the potential waiting time of delayed customer i, and k is
the number of customers in our sample. A customer’s potential waiting time is the delay he would experience if he
had infinite patience (his patience is quantified by his abandon time). For example, the potential waiting time of a
delayed customer who finds n other customers waiting ahead in queue upon arrival, is the amount of time needed
to have n+1 consecutive departures from the system. We regard ASE as directly meaningful, but now we indicate
how it relates to the MSE.

Let WQL(t,n) represent a random variable with the conditional distribution of the potential delay of an arriving
customer, given that this customer must wait before starting service, and given that the number of customers seen in line
at the time of his arrival, t, is equal to n. Let θQL(t,n) be some given single-number delay estimate which is based on n
and t. Then, the MSE of the corresponding delay predictor is given by: MSE(θQL(t,n))≡ E[(WQL(t,n)−θQL(t,n))2],
which is a function of t and n. In order to get the overall MSE of the predictor at time t, we average with
respect to the unconditional distribution of the number of customers Q(t) = n, seen in queue at time t, i.e.,
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MSE(t)≡ E[MSE(θQL(t,Q(t)))]. Finally, to obtain an average “per-customer” perspective, we consider a weighted
MSE (WMSE), defined by

WMSE ≡
∫ T

0 λ (t)MSE(t)dt∫ T
0 λ (t)dt

.

Our ASE is an estimate of the WMSE.
In addition to the ASE, we quantify the performance of a delay predictor by computing the root relative average

squared error (RRASE), defined by

RRASE ≡
√

ASE

(1/k)∑k
i=1 pi

, (2)

using the same notation as in (1). The RRASE is useful because it measures the effectiveness of a predictor relative
to the average potential waiting time, given that the customer must wait.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we discuss previous research. In Section 3, we
demonstrate potential problems with the HOL predictor with time-varying arrivals. In Section 4, we propose a new
HOL-based predictor for the M(t)/M/s+GI model, HOLa, which effectively copes with time-varying arrivals. The
HOLa predictor is similar to a queue-length-predictor, QLa, proposed in Ibrahim and Whitt (2009b). In Section 5,
we describe simulation results for QLa, HOLa, and HOL in the M(t)/M/s+GI model. In Section 6, we demonstrate
potential problems with both QLa and HOLa with a time-varying number of servers. In Section 7, we review a
deterministic fluid approximation for the M(t)/M/s(t)+GI model developed in Liu and Whitt (2010). In Section 8,
we propose new delay predictors based on those fluid approximations, which effectively cope with a time-varying
number of servers. In Section 9, we describe simulation results for all predictors in the M(t)/M/s(t)+GI model.
In Section 10, we make concluding remarks.

2 PREVIOUS RESEARCH

In Ibrahim and Whitt (2009a), we studied the performance of QLs and HOL in the GI/M/s queueing model,
which has a renewal arrival process and no abandonment. We showed that QLs is the most effective predictor,
under the MSE criterion, in the GI/M/s model. We also showed that HOL is an effective predictor, and that the
difference in performance between QLs and HOL need not be too great. In particular, we showed that the ratio
ASE(HOL)/ASE(QLs) should be approximately equal to (1 + c2

a), where c2
a is the squared coefficient of variation

(SCV, variance divided by the square of the mean) of the interarrival-time distribution. (This relation was shown
to hold especially in large systems.) That is, HOL performs nearly the same as QLs when the arrival process has
low variability.

In Ibrahim and Whitt (2009b, c), we considered the GI/GI/s + GI model, including customer abandonment.
As one would expect, QLs can overestimate customer delay when there is significant customer abandonment in
the system. We showed that QLs performs poorly in a heavily loaded GI/GI/s + GI model, while HOL remains
an effective estimator. For systems where customer abandonment is a serious issue, we proposed alternative
queue-length-based predictors which effectively cope with non-exponential abandonment-time distributions. One
such predictor is the approximation-based queue-length predictor, QLa, which we describe in Section 4. The QLa

predictor assumes that the number of servers in the system is constant. In Section 6, we show that QLa is not an
effective predictor with a time-varying number of servers. Therefore, there is a need to propose new delay predictors
which effectively cope with time-varying demand and capacity.

3 TIME-VARYING ARRIVAL RATES

In this section, we study the performance of the HOL predictor with time-varying arrival rates. When the delays
vary rapidly over time, as can occur when there are alternating periods of significant overload and underload, we
expect that the delay of a new arrival will not be like the HOL delay. To demonstrate potential problems with
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the HOL predictor, we plot simulation sample paths of HOL predictions given, and actual delays observed, as a
function of time, in a simulation run for a heavily-loaded M(t)/M/100+M model.

In Figure 1, we consider the M(t)/M/100+M model with sinusoidal arrival rates, a traffic intensity ρ = 1.4
(defined as the long-run average arrival rate divided by the total service rate), and mean service time E[S] = 30
minutes. We let the relative amplitude be αa = 0.5. (The ratio of the peak arrival rate to the average arrival rate
is 1 + αa.) We let the abandonment rate be ν = 0.1 which corresponds to slow customer abandonment. With a
small value of ν , waiting times are typically long. Delay prediction tends to be especially important with such long
waiting times. We measure time and, thus, the delays in units of mean service times. Figure 1 shows that, with
time-varying arrival rates, the HOL curve is clearly shifted to the right of the actual-delay curve; i.e., there is a time
lag between the HOL predictions and the actual delays observed, leading to big errors. Figure 1 also shows a third
plot of an new approximation-based HOL predictor, denoted by HOLa, which we develop in Section 4. Clearly, it
eliminates the time lag; visually the HOLa plot falls nearly on top of the actual delays.
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Figure 1: ASE of the alternative predictors in the M(t)/M/100+M model for sinusoidal arrival rates and a relative
amplitude αa = 0.5. We let γa = 0.131 which corresponds to E[S] = 30 minutes with a 24 hour arrival-rate cycle.
We let the abandonment rate ν = µ/10 = 0.1 which corresponds to slow abandonment.

4 A NEW HOL-BASED PREDICTOR WITH TIME-VARYING ARRIVALS

In this section, we propose a new HOL-based predictor for the M(t)/M/s+GI model. We denote this new predictor
by HOLa because it is based on approximations for the M/M/s+GI model developed in Whitt (2005). The HOLa

predictor is similar to a previous queue-length-based predictor (QLa) for the M/M/s + GI model, proposed in
Ibrahim and Whitt (2009b). However, unlike QLa, HOLa exploits the HOL delay and does not assume knowledge
of the queue length seen upon arrival. We begin with a description of QLa.

We have the representation WQL(t,n)≡ ∑n
i=0 Yi , where Yn−i is the time between the ith and (i+1)st departure

epochs.
For QLa, we draw on the approximations in Whitt (2005). That is, we approximate the M/M/s + GI model

by the M/M/s + M(n) model, with state-dependent Markovian abandonment rates. We begin by describing the
Markovian approximation for abandonments, as in Section 3 of Whitt (2005). We assume that a customer who is
jth from the end of the queue has an exponential abandonment time with rate ψ j, where ψ j is given by

ψ j ≡ h( j/λ ), 1≤ j ≤ k ; (3)

k is the current queue length, λ is the arrival rate, and h is the abandonment-time hazard-rate function, defined as
h(t)≡ f (t)/(1−F(t)), for t ≥ 0 , where f is the corresponding density function (assumed to exist).

Here is how (3) is derived: If we knew that a given customer had been waiting for time t, then the rate of
abandonment for that customer, at that time, would be h(t). Therefore, we need to estimate the elapsed waiting time
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of that customer, given the available state information. Assuming that abandonments are relatively rare compared
to service completions, it is reasonable to act as if there have been j arrival events since our customer arrived. With
a stationary arrival process, a simple rough estimate for the time between successive arrival events is the reciprocal
of the arrival rate, 1/λ . Therefore, the elapsed waiting time of our customer is approximated by j/λ , and the
corresponding abandonment rate by (3).

With time-varying arrival rates, we replace λ by λ̂ , where λ̂ is defined as the average arrival rate over some recent
time interval. For example, assuming that we know w, the elapsed delay of the customer at the HOL at the time of
estimation, then we could define λ̂ as the average arrival rate over the interval [t−w, t], i.e., λ̂ ≡ (1/w)

∫ t
t−w λ (s)ds.

For the M(t)/M/s+M(n) model, we need to make further approximations in order to describe WQL(t,n): We
assume that successive departure events are either service completions, or abandonments from the head of the line.
We also assume that an estimate of the time between successive departures is 1/λ̂ . Under our first assumption,
after each departure, all customers remain in line except the customer at the head of the line. The elapsed waiting
time of customers remaining in line increases, under our second assumption, by 1/λ̂ . Then, Yi has an exponential
distribution with rate sµ +δn−δn−i, where δk = ∑k

j=1 ψ j = ∑k
j=1 h( j/λ̂ ), k≥ 1, and δ0 ≡ 0. That is the case because

Yi is the minimum of s exponential random variables with rate µ (corresponding to the remaining service times
of customers in service), and i exponential random variables with rates ψl , n− i+1≤ l ≤ n (corresponding to the
abandonment times of the customers waiting in line). The QLa delay prediction given to a customer who finds n
customers in queue upon arrival is

θQLa(n) =
n

∑
i=0

1
sµ +δn−δn−i

; (4)

that is, θQLa(n) approximates the mean of the potential waiting time, E[WQL(t,n)]. With a time-varying number of
servers, we replace s in (4) by s̄, defined as the average number of servers in the system.

We now propose a new predictor, HOLa, which is based on the HOL delay and does not assume knowledge
of the queue length seen upon arrival. We proceed in two steps: (i) we use the observed HOL delay, w, to
estimate the queue length seen upon arrival, and (ii) we use this queue-length estimate to implement a new delay
predictor, paralleling (4). The HOLa predictor is valuable only when the queue length is not known. This case is
not uncommon, as in Web chat and ticket queues, when we directly observe arrivals and service completions, but
not the queue, because we do not observe customer abandonments. An important point is that HOLa is based on
the HOL delay but is much more accurate than the direct HOL predictor with time-varying arrivals; see Section 5.

For step (i), let Nw(t) be the number of arrivals in the interval [t−w, t] who do not abandon. That is, Nw(t)+1
is the number of customers seen in queue upon arrival at time t, given that the observed HOL delay at t is equal
to w. It is significant that Nw has the structure of the number in system in a M(t)/GI/∞ infinite-server system,
starting out empty in the infinite past, with arrival rate λ (u) identical to the original arrival rate in [t−w, t] (and
equal to 0 otherwise). The individual service-time distribution is identical to the abandonment-time distribution in
our original system. Thus, Nw(t) has a Poisson distribution with mean

m(t,w)≡ E[Nw(t)] =
∫ t

t−w
λ (s)(1−F(t− s))ds , (5)

where F is the abandonment-time cdf. For step (ii), we use m(t,w)+ 1 as an estimate of the queue length seen
upon arrival, at time t. Paralleling (4), the HOLa delay prediction given to a customer such that the observed HOL
delay, at his time of arrival, t, is equal to w, is given by:

θHOLa(t,w)≡
m(t,w)+1

∑
i=0

1
sµ +δn−δn−i

, (6)

for m(t,w) in (5). If we actually know the queue length, then we can replace m(t,w) by Q(t), i.e., we can use QLa.
With a time-varying number of servers, we replace s in (6) by s̄.
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5 SIMULATION RESULTS WITH TIME-VARYING ARRIVALS

In this section, we present a sample of our simulation results for the M(t)/M/s+GI model. Our methods apply to
general time-varying arrival functions. To illustrate, we consider a sinusoidal function which is similar to what is
observed with daily cycles. In Figures 2 and 3, we plot s× ASE (average number of servers times the ASE) for
QLa, HOLa, and HOL in the M(t)/M/s+M and M(t)/M/s+E10 (Erlang abandonment, sum of 10 exponentials)
models, respectively.

5.1 Description of the Experiments.

We vary the number of servers, s, but consider only relatively large values (s≥ 100), because we are interested in
large service systems. We let the service rate, µ , be equal to 1. We consider a sinusoidal arrival-rate function

λ (t) = λ̄ + λ̄αa sin(γat) , (7)

where λ̄ is the average arrival rate, αa is the amplitude, and γa is the frequency. As pointed out by Eick et al.
(1993), the parameters of λ (t) in (7) should be interpreted relative to E[S]. Then, we speak of γa as the relative
frequency. Small (large) values of γa correspond to slow (fast) time-variability in the arrival process, relative to the
service times. Table 1 displays values of the relative frequency as a function of E[S], assuming a daily (24 hour)
cycle. Here, we fix γa = 1.57 which corresponds to E[S] = 6 hours; see Table 1. For example, this value could
be used to describe the experience of waiting patients in a hospital ED. We let αa = 0.5 and the traffic intensity
ρ = λ̄/sµ = 1.4. We let the abandonment rate be ν = 1 because that seems to be a representative value. Simulation
results for all models are based on 10 independent replications of length 1 month each, assuming a daily cycle. We
present additional simulation results in Ibrahim and Whitt (2010a).

5.2 Results for the M(t)/M/s+M Model.

Figure 2 shows that QLa is the most accurate predictor. In Ibrahim and Whitt (2009b), we provided theoretical
support for this observation. The RRASE of QLa ranges from about 14% for s = 100 to about 4% when s = 1000.
From Section 4 of Ibrahim and Whitt (2009a) and Section 5 of Ibrahim and Whitt (2009b), we have theoretical
results that provide useful perspective for the more complicated models we consider here. For example, we anticipate
that the ASE of QLa and HOLa should be inversely proportional to the number of servers. Indeed, Figure 2 shows
that s×ASE(QLa) is nearly constant for all values of s considered. This shows that QLa is asymptotically correct,
i.e., ASE(QLa) approaches 0 as s increases.

As expected, HOLa is the second most accurate predictor for this model. The RRASE of HOLa ranges from
about 20% for s = 100 to about 6% for s = 1000. The difference in performance between HOLa and QLa is not
too great: ASE(HOLa)/ASE(QLa) is close to 1.6, for all s. Moreover, Figure 2 shows that HOLa is asymptotically
correct: s×ASE(HOLa) is roughly equal to a constant, for all s.

The HOL predictor performs much worse than both QLa and HOLa. For example, the ratio ASE(HOL)/ASE(HOLa)
ranges from about 3 for s = 100 to about 20 for s = 1000. The RRASE of HOL ranges from about 33% for s = 100
to about 27% for s = 1000. That is, we do not see considerable improvement in the performance of HOL as s
increases. That is confirmed by Figure 2, which shows that s× ASE(HOL) increases roughly linearly as s increases.

Similar conclusions hold with smaller service times, but the difference in performance between the alternative
predictors is less extreme in that case. For example, with E[S] = 5 minutes and s = 100 (and all other parameters
as above), the ratio ASE(HOL)/ASE(HOLa) is roughly equal to 1.5, whereas it is roughly equal to 3 with E[S] = 6
hours.

5.3 Results for the M(t)/M/s+GI Model.

In Figure 3, we consider E10 abandonment. For simulation results corresponding to other abandonment-time
distributions, see Ibrahim and Whitt (2010a). Figure 3 shows that QLa and HOLa perform nearly the same for this
model, so we will only discuss HOLa. The RRASE of HOLa ranges from about 11% for s = 100 to about 4% for
s = 1000. That is, HOLa is relatively accurate for this model. Figure 3 also shows that HOLa is asymptotically
correct.

2380



Ibrahim and Whitt

Table 1: The relative frequency, γ , as a function of the mean service time E[S] for a daily cycle. The relative
frequency is the frequency computed with measuring units so that E[S] = 1.

Relative Frequency Mean Service Time
γ E[S]

0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.571 6 hours
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Figure 2: E[S] = 6 hours, αa = 0.5, ρ = 1.4
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Figure 3: E[S] = 6 hours, αa = 0.5 , ρ = 1.4

The least effective predictor is, yet again, the HOL predictor. The RRASE of HOL ranges from about 27%
for s = 100 to about 25% for s = 1000. The difference in performance between HOL and HOLa is remarkable:
ASE(HOL)/ASE(HOLa) ranges from roughly 7 for s = 100 to roughly 33 for s = 1000. Figure 3 shows that s×
ASE(HOL) increases roughly linearly (and steeply) as s increases.

6 TIME-VARYING NUMBER OF SERVERS

In this and the following sections, we consider a time-varying number of servers as well as a time-varying arrival
rate. In Figure 4, we demonstrate potential problems with both HOLa and QLa in that setting. In particular, we
consider the M(t)/M/s(t)+M model with a sinusoidal arrival-rate intensity function, λ (t), and a sinusoidal number
of servers, s(t), where there are periods of overloading leading to significant delays. We assume that λ (t) and s(t)
have a period equal to 4 times the mean service time. With daily (24 hour) arrival-rate cycles, this assumption is
equivalent to having a mean service time E[S] = 6 hours. We let the relative amplitude, αa, for λ (t) be equal to
0.5. We let the relative amplitude, αs, for s(t) be equal to 0.3; see Figure 4.

The HOLa and QLa predictors assume that the number of servers seen upon arrival is constant throughout the
waiting time of the arriving customer, and equal to the average number of servers in the system. In the second
(third) subplot of Figure 4, we plot simulation estimates of the average differences between HOLa (QLa) delay
predictions and actual delays observed in the system, as a function of time (dashed curves). These simulation
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estimates are based on averaging 100 independent simulation replications. It is apparent that both HOLa and QLa

are systematically biased in the M(t)/M/s(t)+M model.
In Section 8, we propose a refined HOL-based predictor, HOLr, and a refined queue-length-based predictor,

QLr. Both HOLr and QLr are based on a fluid approximation for the M(t)/M/s(t)+GI queue, developed in Liu and
Whitt (2010). Figure 4 nicely illustrates the improvement in performance resulting from our proposed refinements:
We plot simulation estimates of the average differences between HOLr (QLr) delay predictions and actual delays
observed in the system, as a function of time (solid curves).
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Figure 4: Bias of standard and refined delay predictors in the M(t)/M/s(t) + M model with sinusoidal arrival
rates. The differences between delay predictions and actual (potential) delays observed are based on averaging 100
independent simulation replications.

7 FLUID MODEL

In this section, we review fluid approximations for the M(t)/M/s(t)+ GI queueing model developed by Liu and
Whitt (2010). Let Q(t,x) denote the quantity of fluid in queue (but not in service), at time t, that has been in queue
for time less than or equal to x time units. Similarly, let B(t,x) denote the quantity of fluid in service, at time t, that
has been in service for time less than or equal to x time units. We assume that functions Q and B are integrable
with densities q and b, i.e.,

Q(t,x) =
∫ x

0
q(t,y)dy and B(t,x) =

∫ x

0
b(t,y)dy ,

where we define q(t,x) (b(t,x)) as the rate at which quanta of fluid that has been in queue (service) for exactly x time
units, is created at time t. Let Q f (t)≡ Q(t,∞) be the total fluid content in queue at time t, and let B f (t)≡ B(t,∞)
be the total fluid content in service at time t. We require that (B f (t)− s(t))Q f (t) = 0 for all t, i.e., Q f (t) is positive
only if all servers are busy at t. Under the FCFS service discipline, we can define a boundary waiting time at time
t, w(t), such that q(t,x) = 0 for all x > w(t):

w(t) = inf{x > 0 : q(t,y) = 0 for all y > x} . (8)

In other words, w(t) is the waiting time experienced by quanta of fluid that enter service at time t (and have
arrived to the system at time t −w(t)). We assume that the system alternates between intervals of overload
(Q f (t) > 0,B f (t) = s(t), and w(t) > 0) and underload (Q f (t) = 0,B f (t) < s(t), and w(t) = 0). For simplicity, we
assume that the system is initially empty.

Let F̄ denote the complementary cumulative distribution function (ccdf) of the abandon-time distribution; i.e.,
F̄(x) = 1−F(x). Let Ḡ denote the ccdf of the service-time distribution. The dynamics of the fluid model are defined
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in terms of (q,b, F̄ , Ḡ,w) as follows:

q(t +u,x+u) = q(t,x)
F̄(x+u)

F̄(x)
,0≤ x≤ w(t) , and, (9)

b(t +u,x+u) = b(t,x)
Ḡ(x+u)

Ḡ(x)
. (10)

The queue length in the fluid model, at time t, is therefore given by

Q f (t) =
∫ w(t)

0
q(t,y)dy =

∫ w(t)

0
λ (t− x)F̄(x)dx , (11)

where we use (9) to write q(t,x) = q(t− x,0)F̄(x) = λ (t− x)F̄(x).
Let v(t) denote the potential waiting time in the fluid model at time t. That is, v(t) is the waiting time of

infinitely patient quanta of fluid arriving to the system at t. Recalling that the waiting time of fluid entering service
at t is equal to w(t), it follows that this fluid must have arrived to the system w(t) time units ago, and that

v(t−w(t)) = w(t) . (12)

Therefore, for a given feasible boundary waiting time process, {w(t) : t ≥ 0}, we can determine the associated
potential waiting time process, {v(t) : t ≥ 0}, using (12).

Liu and Whitt (2010) show that, under some regulatory conditions, if Q f (t) > 0, then w(t) must satisfy the
following ordinary differential equation (ODE): w′(t) = 1−b(t,0)/q(t,w(t)), for some initial boundary waiting time.
With exponential service times, b(t,0) = s(t)µ + s′(t) whenever Q f (t) > 0, where s′(t) denotes the derivative of
s(t) with respect to t. Note that this implies the following feasibility condition on s(t) when all servers are busy
(i.e., during an overload phase): s(t)µ + s′(t)≥ 0 for all t . This feasibility condition is possible because there is no
randomness in the fluid model. For the stochastic system, there would always be some probability of infeasibility.
Here, we assume that the staffing function is feasible.

Using (9), we can write that q(t,w(t)) = λ (t−w(t))F̄(w(t)). As a result, with exponential service times,

w′(t) = 1− s(t)µ + s′(t)
λ (t−w(t))F̄(w(t))

. (13)

Note that (13) is only valid for t such that Q f (t) > 0 (i.e., during an overload phase). During underload phases,
quanta of fluid is served immediately upon arrival, without having to wait in queue, i.e., w(t) = 0. Using the
dynamics of the fluid model in (9) and (10), together with (13), we can determine w(t) for all t, with exponential
service times.

We now specify how to compute w(t) by describing fluid dynamics in underload and overload phases. Assume
that t0 is the beginning of an underload phase, and let B f (t0) be the fluid content in service at time t0. (We assume
that Q f (t0) = 0.) Let t1 denote the first time epoch after t0 at which Q f (t) > 0. That, the system switches to an
overload period at time t1. For all t ∈ [t0, t1], the fluid content in service is given by

B f (t) = B f (t0)e−µ(t−t0) +
∫ t

t0
λ (t− x)e−µxdx . (14)

The first term in (14) is the remaining quantity of fluid, in service, that had already been in service at time t0. The
second term is the remaining fluid in service, at time t, that entered service in the interval (t0, t1]. We define t1 as
follows: t1 = inf{t > 0 : B f (t)≥ s(t)}, for B f (t) in (14). Note that w(t) = 0 for all t ∈ (t0, t1]. Let t2 denote the first
time epoch after t1 at which Q f (t) = 0. That is, [t1, t2] is an overload phase. For all t ∈ (t1, t2], we compute w(t)
by solving (13). We define t2 as follows: t2 = inf{t > t1 : w(0) = 0}. At time t2 a new underload period begins and
we proceed as above to calculate w(t). As such, we obtain w(t) for all values of t. Using w(t), we obtain v(t) via
(12), and Q f (t) via (11), for all t.
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8 FLUID-BASED PREDICTORS: QLr AND HOLr

In this section, we use fluid approximations for w(t), v(t), and Q f (t) to develop new fluid-based delay predictors for
the M(t)/M/s(t)+GI model, which effectively cope with time-varying arrivals, a time-varying number of servers,
and customer abandonment. Those new fluid-based predictors are consistent with previous ones, proposed in Ibrahim
and Whitt (2009b), based on fluid approximations for the stationary GI/GI/s+GI model.

8.1 The Refined-Queue-Length-Based (QLr) Delay Predictor

We propose a simple refinement of QLs, QLr, which makes use of the fluid model in Section 7. Consider a customer
who arrives to the system at time t, and who must wait before starting service. In the fluid approximation, the associated
queue length, Q f (t), seen upon arrival at time t, is given by (11). As a result, QLs, f predicts the delay of a customer
arriving to the system at time t, in the fluid model, as the deterministic quantity θQLs, f (Q f (t))≡ (Q f (t)+1)/(s(t)µ).
The fluid approximation for the potential waiting time, v(t), is given by (12). For QLr, we propose computing the
ratio

β (t) = v(t)/θQLs, f (Q f (t)) = v(t)/((Q f (t)+1)/s(t)µ) = v(t)s(t)µ/(Q f (t)+1) , (15)

and using it to refine the QLs predictor. That is, the new delay prediction given to a customer arriving to the system
at time t, and finding n customers in queue upon arrival, is the following function of n and t:

θQLr(t,n)≡ β (t)×θQLs(t,n) = v(t)× n+1
Q f (t)+1

, (16)

for β (t) in (15). It is significant that θQLr only depends on the number of servers, s(t), through v(t) and Q f (t).
Indeed, the queue length is directly observable in the system, but the potential waiting time requires estimation,
which is very difficult in the M(t)/GI/s(t)+GI model. The advantage of using the fluid model is that it provides
a way of approximating the potential waiting time.

8.2 The Refined HOL (HOLr) Delay Predictor

The HOL delay prediction, θHOL(t,w), given to a new arrival at time t, is well approximated by the fluid boundary
waiting time w(t) in (8). The potential waiting time of that same arrival is approximately equal to v(t) (which is
the fluid approximation of the potential waiting time at t). Thus, we propose computing the ratio v(t)/w(t) (after
solving numerically for v(t) and w(t)), and using it to refine the HOL predictor. Let HOLr denote this refined HOL
delay predictor. The delay prediction, as a function of w and the time of arrival t, is defined as

θHOLr(t,w)≡ v(t)
w(t)

×θHOL(t,w) =
v(t)
w(t)

×w . (17)

9 SIMULATION RESULTS WITH A TIME-VARYING NUMBER OF SERVERS

In this section, we describe a sample of our simulation results quantifying the performance of all candidate
delay predictors in the M(t)/M/s(t)+GI queueing model. We consider exponential abandonment times (i.e., the
M(t)/M/s(t)+M model) and vary the frequency of the arrival process (from slow variation to fast) while holding all
other system parameters fixed. We consider alternative abandonment-time distributions in on-going work, Ibrahim
and Whitt (2010b).

9.1 Description of the Experiments

We consider λ (t) in (7). We consider a sinusoidal number of servers, s(t). Specifically, we assume that

s(t) = s̄+ s̄αs sin(γst) , (18)
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where s̄ is the average number of servers. As in (7), γs is the frequency and αs is the amplitude. We assume that
γa = γs, and let αa = 0.5 and αs = 0.3. That is, we assume that λ (t) fluctuates more extremely than s(t).

We study the performance of the candidate delay predictors in the M(t)/M/s(t)+ M model for alternative
values of the arrival-process frequency, γa. In particular, we consider values of γa = γs ranging from 0.022 (E[S] = 5
minutes with a 24 hour cycle) to 1.57 (E[S] = 6 hours with a 24 hour cycle); see Table 1. It is important to consider
alternative values of E[S] to show that our delay predictors are accurate in different practical settings. We let s̄ = 100
and ρ = λ̄/s̄µ = 1.2.

Table 2 shows that QLa and HOLa are the least accurate predictors in this model, for all values of E[S]. In
contrast, QLr and HOLr are much more accurate, especially for large E[S]. In general, however, all predictors are
less accurate for large E[S]. The QLr predictor is the most accurate predictor in this model, slightly outperforming
HOLr. Indeed, RRASE(QLr) ranges from about 20% for E[S] = 5 minutes to about 25% for E[S] = 6 hours. The
HOLr predictor is the second most accurate predictor, and the difference in performance between HOLr and QLr

depends on E[S]. Indeed, Table 2 shows that ASE(HOLr)/ASE(QLr) ranges from about 1.6 for E[S] = 5 minutes
to about 1.3 for E[S] = 6 hours. That is, the difference in performance between HOLr and QLr decreases as E[S]
increases.

Table 2 shows that QLa and HOLa are not effective in this model, particularly for large E[S]. For example,
RRASE(QLa) ranges from about 26% for E[S] = 5 minutes to about 51% for E[S] = 6 hours. As expected, the
HOLa predictor performs slightly worse than QLa: RRASE(HOLa) ranges from about 30% for E[S] = 5 minutes to
about 53% for E[S] = 6 hours. The ratio ASE(QLa)/ASE(QLr) ranges from about 1.8 for E[S] = 5 minutes to about
4 for E[S] = 6 hours. We show in Ibrahim and Whitt (2010b) that the difference in performance between QLa and
QLr is even greater with a larger number of servers. That is not surprising since the fluid model is a remarkably
accurate approximation of large systems.

Table 2: Performance of the alternative predictors, as a function of E[S], in the M(t)/M/s(t)+M model with λ (t)
in (7), s(t) in (18), and s̄ = 100. Estimates of the ASE are shown together with the half width of the 95% confidence
interval.

ASE of the predictors in the M(t)/M/s(t)+M model as a function of E[S]
E[S] QLr HOLr QLa HOLa

5 min. 2.82 ×10−3 4.49 ×10−3 5.05×10−3 6.38×10−3

±2.5×10−4 ±4.4×10−4 ±2.1×10−4 ±2.1×10−4

30 min. 2.71 ×10−3 4.14×10−3 4.54×10−3 6.04×10−3

±8.1×10−5 ±1.2×10−4 ±3.5×10−5 ±6.6×10−5

1 hr. 2.82 ×10−3 4.44 ×10−3 4.79 ×10−3 6.33 ×10−3

±5.2×10−5 ±8.1×10−5 ±8.1×10−5 ±9.5×10−5

2 hrs. 3.49 ×10−3 5.38 ×10−3 6.32 ×10−3 8.04 ×10−3

±8.0×10−5 1.2×10−4 ±1.6×10−4 ±2.0×10−4

6 hrs. 7.25×10−3 9.40×10−3 2.99×10−2 3.21×10−2

±2.2×10−4 ±2.1×10−4 ±4.6×10−4 ±5.6×10−4

10 CONCLUSIONS

In this paper, we proposed alternative real-time delay predictors for nonstationary many-server queueing systems
and showed that they are effective in the M(t)/M/s+GI and M(t)/M/s(t)+GI queueing models. Throughout, we
used simulation to study the performance of the candidate delay predictors in several practical settings.

Figure 1 showed that existing delay-history-based-predictors, such as HOL, may be systematically biased in the
M(t)/M/s+GI model. Therefore, in Section 4, we proposed a new HOL-based predictor, HOLa, which is similar
to a previous predictor proposed in Ibrahim and Whitt (2009b), QLa; see (6). In Section 5, we showed that HOLa

(and QLa) is asymptotically correct in the M(t)/M/s + GI model. Figures 2 and 3 showed that the difference in
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performance between HOL and HOLa can be remarkable, particularly when the number of servers is large. Since
both QLa and HOLa assume that the number of servers in the system is constant, they may perform poorly with
a time-varying number of servers; e.g., see Figure 4. Therefore, in Section 8, we exploited a fluid approximation
for the M(t)/M/s(t)+GI model developed in Liu and Whitt (2010) to obtain the new fluid-based delay predictors,
QLr and HOLr; see (16) and (17). In Section 9, Table 2 showed that both QLr and HOLr are asymptotically
correct in the M(t)/M/s(t)+GI model, unlike QLa and HOLa. In particular, fluid-based predictors have superior
performance in large systems especially when E[S] is large.
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