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ABSTRACT 

Employing mathematical modeling and analytical optimization techniques, traditional approaches to the 
resource-allocation (RA) problem for control of epidemics often suffer from unrealistic assumptions, such 
as linear scaling of costs and benefits, independence of populations, and positing that the epidemic is stat-
ic over time. Analytical solutions to more realistic models, on the other hand, are often difficult or im-
possible to derive even for simple cases, which restricts application of such models. We develop an agent-
based simulation model of epidemics, and apply response-surface methodology to seek an optimum for 
the RA output in an iterative procedure. Validation is demonstrated through comparison of the results 
with the mathematical solution in an RA example for which the analytical solution is known. We apply 
the proposed approach to a more complicated RA problem in which a number of previous restricting as-
sumptions are relaxed. 

1  INTRODUCTION 

Epidemics of infectious diseases such as influenza, malaria, and human immunodeficiency virus (HIV) 
are a major threat for social health. While the World Health Organization (WHO) reports expenditure of 
more than $500 million in 2008-2009 to control the spread of epidemics (World Health Organization pro-
gramme budget 2009), the demand for efficient allocation of these resources is growing. The resource-
allocation (RA) problem concerns the best strategy for policy makers to allocate a fixed budget to various 
populations, through targeted interventions that affect the epidemic’s parameters. The efficacy of an in-
tervention on the value of epidemic parameters is usually an increasing function of the cost of interven-
tion and referred as the cost function (Brandeau, Zaric and Richter 2003). 

Allocation of epidemic-control resources has been studied for many years, and the literature contains 
analytical models using linear, integer, and dynamic programming (Epstein et al. 2005; Van Zon and 
Kommer 1999; Earnshaw and Dennett 2003). These models, however, are not applicable to epidemics 
with non-linear rates of growth and are restricted by several other assumptions like the number of inter-
ventions or independence of populations. Recent mathematical approaches to healthcare-resource alloca-
tion, on the other hand, suggest advanced models of disease prevalence among several populations, and 
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consider more general forms of a cost function for prevention programs. Zaric and Brandeau (2001) sug-
gest heuristic algorithms for solving RA problems, and approximating the epidemiological system when 
closed-form solutions are not known. However, further augmentation in the scope of the problem for real 
cases could rapidly increase the number and complexity of equations, so the final models might become 
intractable even for simple instances.  

Agent-based simulation (ABS) models are powerful tools that can describe structured epidemiologi-
cal processes involving human behavior and local interactions. While the computational capacity of ABS 
models allows for developing large-scale models of epidemics, they are flexible enough to display de-
tailed and complex characteristics of a real system. ABS models have been used to simulate epidemics 
and assess policy options (Longini et al. 2007; Epstein et al. 2004). Such models represent the system be-
havior at both macro and micro levels, and allow investigation into system behavior, sensitivity analysis, 
and predictions.  

In this paper, we present an ABS-based approach for allocation of epidemic-control resources. Devel-
oping an ABS model of epidemics, we investigate the response surfaces of RA objectives, and apply sta-
tistical simulation-optimization techniques to search for the optimal allocation of available resources.  

 We introduce the RA problem in Section 2. In Section 3 we present the ABS approach, discuss the 
application of simulation-optimization techniques to address the RA problem, and compare the ABS ap-
proach with the analytical approach for a case when the latter is workable, to validate that the ABS ap-
proach agrees. In Section 4, we illustrate the efficiency and applicability of the ABS approach thorough 
an RA example that is much more complex and cannot be solved by analytical methods. The conclusion 
is provided in Section 5.  

2 PROBLEM STATEMENT 

Consider an epidemic of a single disease existing in p populations (e.g. countries, cities, or any other 
groups of people under study). In order to model the progress of an epidemic within each population, the 
diversity of individuals in various fields must be reduced to a few key characteristics. This is done by di-
viding each population into subgroups, also called compartments. Each compartment consists of individ-
uals in a specific disease state (e.g. susceptible, infected). Transmission of the disease may occur through 
one or more diverse pathways, but in this paper we consider only transmission through physical contact 
with infected individuals. Additional assumptions regarding the epidemic process differ by study. 

Disease outbreak is usually far more rapid than the natural vital dynamics of the population (natural 
births and deaths, migrations, etc.), so that one may neglect them. In this case disease prevalence can be 
modeled through a set of ordinary differential equations, initially proposed by Anderson and May (1991). 
In general, however, the timeline of the study may extend to several years due to the nature of the disease, 
or the horizon of policy making. The epidemic process, in this case, is composed of several aspects of 
population dynamics, and the associated models incorporate additional epidemic parameters, such as the 
rate of natural birth/death, rate of migration into and out of populations, etc. These parameters are usually 
determined by characteristics of the disease and the population under study, and can be defined in sto-
chastic form, or as a function of other parameters. 

Resources used for combating a disease are assumed to affect parameters of the epidemic model (e.g. 
a specific therapy can reduce the disease progression rate) through healthcare interventions. Healthcare 
interventions target epidemic parameters in a specific compartment or in an entire population. Associated 
with each intervention is a cost function that depicts the relationship between the amounts invested in the 
intervention and the values of the associated parameters in the epidemic model. For a total available 

budget of B, let υh  be the amount of money invested in intervention h, h = 1, 2, …, n, where Bh ≤≤ υ0 , 

and let v = (υ1, υ2,…, υn) be the investment vector. We define H(v) as the objective function of the RA 
problem, with investment values of υh as the decision variables. The general form of the RA problem is 

 

2238



Kasaie, Kelton, Vaghefi, and Jalali Naini 

 

         
hv

BvtS

HOptimizeRA

h

n

h

h

∀≥

=∑
=

0

:.

)v(:

1

   
 

The epidemiology literature contains several discussions on the appropriate form of objective func-
tions in health-care policy making (Phillips, Haddix, and Holtgrave 1998). Although the definition and 
types of objective functions are based on several factors (such as the disease under study, characteristics 
of the population, and scope of decision making), there are general guidelines in choosing the appropriate 
function. However, analytical approaches to epidemiological problems are often restricted in form and the 
number of objective functions, and may become too complex or even intractable for nonlinear or dynamic 
cases. In a simulation-based approach, on the other hand, models of epidemics provide a virtual reality to 
generate any desired outputs, and simulation-optimization techniques put no restriction on the form or na-
ture of objective functions. We consider two generally accepted forms of objective functions suggested by 
Brandeau, Zaric and Richter  (2003). The first is to minimize the number of new infections occurring dur-
ing the time of the study, INF(v), and the second is to maximize the total number of quality-adjusted life 
years, QALY(v), gained. Let qij ∈ (0, 1), i = 1, 2, …, p;  j = 1, 2,…, m denote the quality adjustment for 
life years lived by individuals in compartment j of population i . We assume that quality of life is higher 
for individuals in the earlier state of disease than for individuals in late states; thus qij > qij´ for j´ > j. For 
more information on these functions, see Brandeau, Zaric, and Richter (2003). 

3 SIMULATION-BASED APPROACH TO HEALTHCARE RESOURCE-ALLOCATION 

PROBLEMS 

In this section we discuss our simulation-based approach to address the healthcare resource-allocation 
problem. This approach consists of two major steps: creating the ABS model of an epidemic, and apply-
ing a simulation-optimization technique to estimate the RA problem.  We close this section by investigat-
ing the consistency of results with the analytical solution for a relatively simple example where the ana-
lytical solution is available, by way of validation of our approach. 

3.1 Creating an Agent-Based Simulation Model of an Epidemic 

Agent-based modeling and simulation is a relatively new modeling paradigm that has seen extensive ap-
plication in recent years. While discrete-event simulation (DES) is still more common in operations re-
search, ABS introduces a new way to model complex systems. Such systems are characterized by the fact 
that their aggregate properties cannot be deduced simply by looking at how each component behaves, 
since the interaction structure itself is playing a crucial role. In comparison with the top-down modeling 
approach of DES (where a system is broken into its components represented by blocks, machines, or 
modules, and entities are defined as passive objects being directed through these components), ABS fol-
lows a bottom-up approach. In ABS, a system is modeled as a collection of autonomous decision-making 
entities called agents. Each agent individually assesses its situation, and makes decisions on the basis of a 
set of rules. Agents interact with one another, and with the environment through a computer code. Over 
many replications, these interactions can generate large-scale phenomena of interest, in our case the 
course of epidemics across space and time. This generative nature of such models enables us to focus on 
the microscopic individual behavior, as well as study the macroscopic pattern of epidemics emerging in a 
larger scale. In this regard, as Burke et al. (2006) suggest, ABS can provide credible bases for policy 
analysis when calibrated to actual epidemic data. 

We choose NetLogo (2010), a popular agent-based programming language that is particularly de-
signed for modeling complex systems developing over time. Figure 1 shows the proposed ABS logic of 
an epidemic model implemented as a set of five main sub-procedures: Creation, Contact, Progression, 
Migration, and Reproduction.  
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The simulation model is initialized by defining the model global variables and each agent’s attributes. 

In the create procedure, the epidemic system is created as a collection of agents in p different populations. 
Each population consists of m compartments with agents in different states of disease, where the initial 
size (number of agents) of the jth compartment of the ith population is N0ij, i = 1, 2, …, p; j = 1, 2,…, m. 
The contact procedure simulates the process of disease prevalence in each population. Infected individu-
als in later states of disease can transmit the disease to susceptible individuals (in the first compartment) 
through random contacts where λij is the sufficient contact rate for transmission among individuals of the 
first and the jth compartment of population i. With progression of the disease at the next procedure, the in-
dividuals in the jth state of disease move to the next state with probability θij. Migration takes place among 
individuals in different populations but in the same disease state j, with probability φii´j , i ≠i´. In the Re-
production procedure, a number of current agents in different populations and disease states die with 
probability δij for each agent. The remaining agents in each population then will have probability of ς i to 
bear new children, who will belong to their parent’s population, but do not inherit the disease. The model 
is executed until the simulation time reaches the study time horizon of T. The model outputs are defined 
as INF(v) and QALY(v) for individuals in each population. The outputs are reported at the end of each 
replication. 

 

 
Figure 1: Flowchart of Epidemic Simulation Model 

 

3.2 Applying a Simulation-Optimization Technique to Address the Resource-Allocation 

Problem 

By simulation-optimization we mean a repeated analysis of the simulation model with different values of 
input parameters, in an attempt to identify the best simulated system performance (Barton and Mecke-
sheimer 2006). However, for the extensive experimentation required for optimization, the simulation 
models themselves may require excessive computation, so simpler approximations are constructed, often 
referred to as meta-models (Kleijnen 2008) or surrogate models (Yesilyurt and Patera 1995). A meta-
model, or a model of model, provides a concise representation of the output response and its dependence 
on accompanying input factors. A meta-model simplifies the simulation-optimization in two ways: the 
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meta-model responses are deterministic rather than stochastic, and the run times are generally much 
shorter than the original simulation.  However, the meta-model is not an exact replica of the simulation 
model, so there is a trade-off involved. 

Meta-model-based optimization methods use an indirect-gradient optimization strategy to seek the 
optimal solution. Response-surface methodology (RSM) is a collection of mathematical and statistical 
techniques that are useful for the modeling and analysis of problems in which a response of interest is in-
fluenced by several variables and the objective is to optimize this response. RSM is a meta-model-based 
optimization heuristic that fits first- or second-order polynomial regression models to observed values of 
Y, the simulation output. An example of a full second-order response surface model would be 
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where ε is an independent normal random variable with mean 0 and variance σ2. Initiating from a random-
ly selected or predetermined local region, RSM designs the appropriate simulation experiment, typically 
factorial designs for first order, and central composite designs (CCDs) for second order, and fits a local 
meta-model to the response. This model is then used to decide the direction of improvement called steep-

est ascent (or descent). Investigations continue along the steepest direction until no further improvement 
in simulation output is observed. The procedure then moves to the  next iteration by replacing old meta-
models with new ones, and improving the result following the steepest direction. The stopping criteria are 
checked at the end of each search iteration, and the optimal solution is estimated at the end of final itera-
tion. We consider failure to achieve a minimum of 5% improvement in average response as the stopping 
criterion of our procedure (Castillo 2007).  

The RA problem seeks the best strategy to invest a fixed budget among populations through targeted 
interventions, with the goal of optimizing the problem objective functions. In our model, the simulation 
outputs, INF(v) and QALY(v), represent the objective functions controlled by the investment vector of  v 

= (υ1, υ2,…, υn). As defined in Section 2, υh, h=1, 2,…,n, is the invested amount of money in intervention 
i, which is designed as the input of the simulation model. In order to solve the RA problem, and to esti-
mate how to optimize the simulation’s outputs, we apply RSM to our ABS model in an iterative proce-
dure.  

3.3 Comparison of the Simulation-based and the Analytical Approaches 

Brandeau, Zaric, and Richter (2003) formulated the problem of resource allocation among non-interacting 
populations in general, and established conditions that characterized the optimal solution in certain cases. 
We apply our approach to a numerical example of such a problem, and compare our solution with the re-
sults of the exact RA mathematical model, which demonstrates consistency of our simulation-based re-
sults and analytical solution. 

Assume an epidemic among four non-interacting populations (p = 4), with constant sizes of Ni; i = 1, 
2,…, 4 over time. The epidemic within each population is described by a basic susceptible/infected (SI) 
epidemic model with I0i and S0i denoting the initial proportion of susceptible and infected individuals in 
population i. The natural rate of birth and death, ∆i, is the same for both infected and susceptible individu-
als in each population. The total amount of available funds is B, which can be spent to affect the contact 
rate among individuals. Therefore, the cost function ci(λi) denotes the net present cost of immediately 
achieving a sufficient contact rate λi in population i. The cost functions are assumed to follow non-linear 
growth over time, independent from each other, and to be strictly decreasing in λi, and ci(λ0i) = 0, i = 1, 2, 
…, 4; where λ0i is the initial contact rate of individuals in population i at time zero.   

Considering the objective function of minimizing the number of new infections, INF(v), we assumed 
that all epidemic parameter values are continuously uniformly distributed, and applied the simulation-
based approach to the RA problem, as discussed above. Subsequently the mathematical model was solved 
using LINGO (2010), which showed the same results with the solution given by simulation optimization. 
The results verify the performance of our ABS-RSM approach in this case to represent the epidemic sys-
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tem well, and demonstrate the consistency of our proposed approach against the analytical solution of at 
least this well-known RA problem. However, the precision of the simulation-optimization’s results may 
still vary due to the random nature of simulation runs, scale of the model, or complex behavior of the re-
sponse surface in more complicated types of RA problems. This may consequently require further analy-
sis of the response surface to estimate the optimal solution, and statistical hypotheses to test the optimality 
of the suggested solution. In the following section, we demonstrate the applicability and efficiency of the 
ABS approach in a more complicated RA problem for which an exact analytical optimum will be ex-
tremely  hard to derive.  

4 ANALYSIS OF A COMPLEX RESOURCE-ALLOCATION PROBLEM 

In this section, we apply our approach to a more complicated RA problem in which a number of previous 
restricting assumptions (e.g. independence of populations\interventions, constant value of epidemics’ pa-
rameters over time, equal rates of birth and death, etc.) are relaxed. This example demonstrates how the 
proposed method can effectively be used in more realistic epidemic models and complex RA problems 
for which deriving the analytical solution may be impossible. This example was designed with regard to a 
similar model proposed by Zaric et al. (2001).  

Consider an epidemic among p=2 populations as in Figure 2. The fixed budget is invested in three 
different interventions affecting the epidemic parameters. The RA objective is defined as maximizing 
QALY(v) while maintaining an upper bound for the value of INF(v) at the end of the time horizon. This 
requirement for the value of INF(v) can eventually barricade the RSM at the boundaries of the feasible 
region. Luckily for us, such a problem didn’t occur. 

 

 
 

Figure 2: A Three-State Epidemic Model Among Two Interacting Populations 
 
In this example, populations represent high-risk and low-risk groups of people in a society (e.g. the 

first population may represent intravenous drug users with a higher risk of disease transmission), and mi-
gration can take place among individuals in the same compartments of different populations. The epide-
miological system consists of three states, i.e. susceptible, early infected, and late infected, with different 
epidemic parameters. It is also assumed that only the infected individuals in the late state can transmit the 
disease to uninfected individuals. 
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Three types of healthcare interventions are designed to control the spread of the disease. Each inter-

vention targets one of the epidemic parameters gh , h = 1, 2, 3,  which are assumed to be the migration rate 
from a high-risk to low-risk group (φ121), and the individual contact rates (λ12, λ22) in each population. As-
sociated with each intervention is a cost function  
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 The first part of this function, P1, models the nonlinear effectiveness of each intervention, where αh is 
the location parameter taken from a continuous [0, 1] uniform distribution, βh is a shape parameter with 
similar values among interventions, and γh is a coefficient weighting the amount of investment in each 
prevention program. Figure 3 demonstrates the nonlinear trend of P1 in each intervention for different 
amounts of investment. 
 

 
 

Figure 3: Nonlinear Trend of Intervention h Through the First Part of Mh(v)  . 
 

Interventions can be thought of as risk-reduction programs in each population. However, the popula-
tions are not independent from each other, and the effects of an intervention are not necessarily restricted 
to the target group. In other words, interactions may occur among interventions, so that the amount in-
vested in one prevention program could influence the effectiveness of another program. For example, 
consider an epidemic of a viral disease with a higher risk of infection among smokers. A public preven-
tion program is designed to control the rate of disease transmission among the low-risk population. Such a 
program not only increases the social knowledge about the disease nature and reduces the transmission 
rate among the low-risk group, but also influences the social norm toward risky behaviors (smoking).  
This can consequently affect the individuals in the high-risk population to reduce their risky behaviors 
(quit smoking) and increase the rate of migration from the high-risk group to the low-risk group.  This in-
teraction is modeled through the second part of Mh (v) (P2) with a nonlinear return to scale. We assume 
that investment in intervention h ( h = 2 or 3) can influence the effectiveness of intervention h – 1, and 
consequently improve the value of the parameter gh-1 . In this part, the coefficient ηh is taken from a conti-
nuous [0, 1] uniform distribution, and the values of ah and bh are used to scale the strength of the interac-
tion. The associated values of these cost functions’ parameters for each intervention are in Table 1. 
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Table 1: Associated Values of Cost Functions’ Parameters  

 

h Cost function Wg(0) αh βh γh ηh ah bh 

1 C(φ121) 0.112 0.149 0.701 -0.0002128 0.15 100 1.85 
2 C(λ2) 0.5 0.414 0.786 0.00042126 -0.2 7 1 
3 C(λ1 ) 0.7 0.293 0.707 0.00046151 0 - - 

 
We assume a special type of disease that could reduce the pregnancy chance of infected individuals, 

and assume that the probability of child bearing is an exponential function of disease duration. Moreover, 
the disease progression rate of θij, i = 1, 2; j = 1, 2, 3, for each individual is assumed to be a function of 
disease duration (see Table 2 for formulae and values of parameters), where k is a constant coefficient as-
sociated with the severity of disease in each population (early progression of disease is faster in the high-
risk population). We also assume exponential death rates of δij, i = 1, 2; j = 1, 2, 3, with different values 
for individuals in each compartment (Bailey 1975), and define other epidemic parameters as shown in 
Table 2.  

 
Table 2:  Notation and Parameter Values for RA example  

 

Indices  

i, i´ Indices for population i = 1, 2  
j, j´ Indices for  epidemic model compartments, j = 1, 2,3  

Global Parameters  

B Total budget 10000 
T Time horizon 20 
N1j Size of compartment j of  population 1 500, 300, 200 
N2j Size of compartment j of  population 2 1000, 600, 400 

Epidemic Parameters  

ςi Entrance rate of population i 0.25 exp(- tinfection / 10) 
θij Disease progression rate in population i 1-exp(- tinfection / kj);  
ki Constant coefficient of disease progression k1 = 4, k2 = 20 
δ1j Death rates in compartment j of population 1 exp(dj); dj = 0.2, 0.23, 0.27 
δ2j Death rates in compartment j of population 2 exp(dj); dj=0.18, 0.21, 0.24 
φ211 Migration rates from population 2 to 1 for in the first compartment  0.4 
q1j Quality adjustment for life years in compartment j of population 1 0.32, 0.17, 0.1 
q2j Quality adjustment for life years in compartment j of population 2 0.55, 0.25, 0.15 

Simulation Model Variables  

T Time of simulation (simulation clock)  
tinfection The time of infection  
deads Total number of deaths  

 
We let v = (υ1, υ2, υ3) be the investment vector, and develop an ABS model of epidemics with the v as 

the input and the QALY(v) and INF(v) as the outputs reported at the end of each simulation run. The final 
goal is to determine the inputs that maximize the total value of QALY(v) at the end of time horizon, while 
maintaining the upper bound of 12500 for the value of INF(v). Considering the binding constraint of the 
total budget, the RA problem is 
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The RA problem analysis begins with applying RSM to the simulation model. We start our investiga-

tion with the initial vector of v = (2000, 5000, 3000) for the invested amounts in each intervention, and 
proceed with the investigation in an iterative procedure. A 2k factorial design is used at the first iteration 
to obtain a linear meta-model of outputs. The design is augmented with five center points that allow 
checking the adequacy of the fitted polynomial. The number of simulation replications was 300 during the 
first iteration; however, this number went up to 1700 replications for the final experiments to obtain a rel-
ative precision of 5% for a 95% half-width interval over the point estimation. Investigations were con-
ducted along the direction of maximum improvement in response until no further increase in QALY(v) 
point estimation was observed. Moreover, the value of INF(v) is checked at each step to assure the re-
quirement of meeting the upper bound. At this stage, the performance of the suggested optimum is 
checked, and the searching continues in a new iteration if needed. The RSM results are provided in Table 
3. 

 
Table 3: Summary of RA Simulation Results 

 

 
The final approximate optimum is identified through the 6th RSM iteration for an investment vector of 

v = (5673.8, 826.2, 3500). A CCD experimental design with 5 center points is used to check the perfor-
mance of the simulation model at this point. We also check the value of INF(v) as the second priority of 
optimization.  Figure 4 shows the overlay contour plot of both responses (QALY(v) > 16800 and INF(v) 
< 12400) for this experiment. The black dot in this figure demonstrates the approximate stationary point 
of v = (5708.8, 802, 3491) with the corresponding value of QALY(v) = 16800.2 and INF(v) = 12188.1 for 
the outputs.   

 

Iteration 1 2 3 4 5 6 

Initial point 
υ1 2000 3003 4080 5180 44478.8 5673.8 
υ2 5000 1997 2320 915.3 1352.2 826.2 
υ3 3000 5000 3600 3904.7 4200 3500 

Region of exploration 500 200 200 200 200 100 

Design  
(CP = center points) 

22+5 CPs 22+5 CPs 22+5 CPs 22+5 CPs 22+5 CPs CCD 

QALY(v) 15,935 16,447 16,572 16,600 16,618 16,800 

R2 (linear meta-model)% 96 46 78 96 64 53 
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Figure 4: Overlay contour plot of responses 
 

5 CONCLUSION AND FUTURE WORK 

This paper presented an agent-based-simulation approach for allocation of epidemic-control resources. 
The proposed approach considers diverse resource-allocation problems with only general and weak as-
sumptions made about the shape of the cost function and the underlying epidemic structures. Applying 
optimization-approximation techniques to the ABS model of epidemics, we solved the RA problem in a 
stepwise procedure. We demonstrated the consistency of our results with an analytical solution through a 
simplified RA example for which analytical results were previously derived. The application of the sug-
gested approach is finally discussed in a more complex and realistic RA example for which deriving an 
analytical solution might be impossible.  

Use of the ABS approach introduces several advantages to this type of research. Compared to other 
more-common simulation approaches such as discrete-event simulation where modeling is done at the 
macroscopic level and entities are just passive objects flowing through block diagrams of the model, ABS 
allows us to design detailed individual behaviors and their interactions at the microscopic level, so that 
the  developed models will eventually provide a valid representation of population dynamics and disease 
prevalence through the course of time. The flexibility of the developed model, on the other hand, enables 
us easily to incorporate new assumptions about populations’ characteristics and disease characteristics. 
We developed our ABS models using the NETLOGO software, which despite the ease of programming, 
suffers from a lack of statistical or optimization tools’ support for analysis of the simulation output. 

Future work includes migrating the simulation model of epidemic to other commercial ABS platforms 
such as REPAST, development of a comprehensive simulation model of epidemics with other means of 
transmission, extension of our optimization approach to dynamic RA problems, and more robust statistic-
al testing of optimality conditions for the derived solution.  
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